Напряжение переменного тока формула – Переменный ток. Формулы и параметры

Напряжение цепи переменного тока | Электрикам

Переменное напряжение — это напряжение, которое изменяется с течением времени. Далее будем рассматривать только гармоническое переменное напряжение (изменяется по синусоиде).

u = Umsin(2πt + Ψ ) = Umsin(ωt + Ψ )

Где u = u(t) — мгновенное значение переменного напряжения [В].

Um максимальное значение напряжения (амплитудное значение) [В].

f — частота  равная числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с-1)

ω — угловая частота (омега) (единица угловой частоты — рад/с или с-1)

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

U — Действующее значение напряжения [В]:

Рассмотрим параметры напряжения в бытовой электросети.

Все мы знаем, что у нас дома в розетке поступает переменный ток, с напряжением 220 вольт и частотой 50 герц (в идеальных условиях) на самом деле допускается не большая погрешность как в меньшую, так и в большую сторону так, что не удивляйтесь если ваш вольтметр покажет не 220, а например 210 или даже 230 В.).

Большинство приборов измеряет не амплитудное, а действующее значение переменного напряжения, тока, мощности так, что если мы говорим что у нас напряжение сети 220, 380 В и т. д. то имеется виду именно действующие значения.

  • Действующее значение напряжения U = 220 В.
  • Амплитудное значение напряжения цепи переменного тока Um = U*√2 = 220 *√2 = 311 В.
  • Угловая частота ω = 2πf = 3,14*2*50 = 314 рад/с.
  • Начальная фаза Ψ = 0 град.
  • Мгновенное значение u  = 311sin(314t) В.

electrikam.com

Переменное напряжение и его значения — Help for engineer

Переменное напряжение и его значения

Все мы знаем, что дома в розетках у нас напряжение 220В. Но не каждый знает, какое именно это напряжение. Давайте же разберемся с этой ситуацией.

Для упрощения рассматриваемого примера будем считать, что вид напряжения – синусоида, то есть переменное напряжение (с определенной периодичностью меняет значение с положительного на отрицательное).

Рисунок 1 – Вид переменного напряжения

На рисунке 1 изображен вид идеального синусоидального напряжения одного периода Т. Есть несколько значений напряжения, о которых обычно говорят и используют, рассмотрим:


Амплитудное значение напряжения (Um) – это максимальное, мгновенное значение напряжения, то есть амплитуда синусоиды.

Теперь правильнее будет говорить о токе.


Действующее значение переменного тока — это величина постоянного тока, который может выполнить ту же самую работу (нагрев).

Действующее значение напряжения (U) обозначают латинской буквой без индекса, в литературе может еще использоваться термин – эффективное значение напряжения.

Для периодически изменяющегося сигнала за период Т, величина действующего напряжения находится:


Приведем формулу к простому виду, приняв за изменяющийся сигнал синусоиду. Между рассмотренными выше двумя параметрами существует зависимость, которая выражается формулой:

То есть амплитудное значение в 1,414 раза больше действующего.

Вернемся к домашним розеткам с напряжением 220В. Это действующее значение напряжения, которое можно измерить тестером. Определим его амплитудное значение напряжения:

Среднее значение синусоидального тока, напряжения будет равно нулю. Поэтому если говорят о среднем значении переменного тока, то подразумевают рассматривание его в пол периода.

Добавить комментарий

h4e.ru

Формулы переменного тока. Часть 3. Переменный ток (краткая теория)

Переменный Ток

Переменный Ток

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока.

Если индуктивность проводника настолько мала, что при включении его в цепь переменного тока индукционными полями можно пренебречь по сравнению с внешним электрическим полем, то движение электрических зарядов в проводнике определяется действием только внешнего электрического поля, напряженность которого пропорциональна напряжению на концах проводника.

При изменении напряжения по гармоническому закону U = Um cos wt напряженность электрического поля в проводнике изменяется по такому же закону.

Под действием переменного электрического поля в проводнике возникает переменный электрический ток, частота и фаза колебаний которого совпадает с частотой и фазой колебаний напряжения:


где i — мгновенное значение силы тока, Im- амплитудное значение силы тока.

Колебания силы тока в цепи являются вынужденными электрическими колебаниями, возникающими под действием приложенного переменного напряжения.

Амплитуда силы тока равна: 

При совпадении фаз колебаний силы тока и напряжения мгновенная мощность переменного тока равна:

Среднее значение квадрата косинуса за период равно 0,5. В результате средняя мощность за период

Для того чтобы формула для расчета мощности переменного тока совпадала по форме с аналогичной формулой для постоянного тока (Р = PR), вводится понятие действующих значений силы тока и напряжения. Из равенства мощностей получим

Действующим значением силы тока называют величину, в корень из 2 раз меньшую ее амплитудного значения:

Действующее значение силы тока равно силе такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока.

Действующее значение переменного напряжения в корень из 2 раз меньше его амплитудного значения:

Средняя мощность переменного тока при совпадении фаз колебаний силы тока и напряжения равна произведению действующих значений силы тока и напряжения:

Сопротивление элемента электрической цепи, в которой происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением. Активное сопротивление участка цепи можно определить как частное от деления средней мощности на квадрат действующего значения силы тока:

sfiz.ru

14 Переменный Электрический Ток

Вынужденные Электромагнитные Колебания

Вынужденными электромагнитными колебаниями называют периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника. Внешним источником ЭДС в электрических цепях являются генераторы переменного тока, работающие на электростанциях.

Принцип действия генератора переменного тока легко показать при рассмотрении вращающейся рамки провода в магнитном поле.

В однородное магнитное поле с индукцией В помещаем прямоугольную рамку, образованную проводниками (abсd).

Пусть плоскость рамки перпендикулярна индукции магнитного поля В и ее площадь равна S.

Магнитный поток в момент времени t0 = 0 будет равен Ф = В*8.

При равномерном вращении рамки вокруг оси OO1 с угловой скоростью w магнитный поток, пронизывающий рамку, будет изменяться с течением времени по закону:


Изменение магнитного потока возбуждает в рамке ЭДС индукцию, равную

где Е0= ВSw — амплитуда ЭДС.

Если с помощью контактных колец и скользящих по ним щеток соединить концы рамки с электрической цепью, то под действием ЭДС индукции, изменяющейся со временем по гармоническому закону, в электрической цепи возникнут вынужденные гармонические колебания силы тока — переменный ток.

На практике синусоидальная ЭДС возбуждается не путем вращения рамки в магнитном поле, а путем вращения магнита или электромагнита (ротора) внутри статора — неподвижных обмоток, навитых на сердечники из магнитомягкого материала. В этих обмотках находится переменная ЭДС, что позволяет избежать снятия напряжения с помощью контактных колец. 

Переменный Ток

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока.

Если индуктивность проводника настолько мала, что при включении его в цепь переменного тока индукционными полями можно пренебречь по сравнению с внешним электрическим полем, то движение электрических зарядов в проводнике определяется действием только внешнего электрического поля, напряженность которого пропорциональна напряжению на концах проводника.

При изменении напряжения по гармоническому закону U = Um cos wt напряженность электрического поля в проводнике изменяется по такому же закону.

Под действием переменного электрического поля в проводнике возникает переменный электрический ток, частота и фаза колебаний которого совпадает с частотой и фазой колебаний напряжения:

где i — мгновенное значение силы тока, Im- амплитудное значение силы тока.

Колебания силы тока в цепи являются вынужденными электрическими колебаниями, возникающими под действием приложенного переменного напряжения.

10i5.ru

Переменный ток. ЭДС, напряжение, сила тока, заряд. Амплитудные значения. Формулы

Ранее мы познакомились с постоянным электрическим током — направленным движением зарядов, для которого сила тока постоянна. В случае, если значение силы тока непостоянно, тогда ток будем называть переменным.

Для школьной физики переменный ток рассматривается в двух, в общем-то, похожих случаях:

Рассмотрение свободных колебаний в случае переменного тока аналогично постоянному. Точно так же существует закон Ома для цепи переменного тока, рассчитываются мощности и энергии (работы) для такого случая.

Для школы характерно описание переменного тока через гармонические законы. Переменными параметрами в цепи могут быть ЭДС (

), напряжение на элементе (), сила тока (), заряд конденсатора (). Рассмотрим ЭДС источника гармонический колебаний:

(1)

Аналогичным образом можно ввести колебания напряжения 

на элементе:

(2)

Таким же образом вводится и колебание силы тока:

(3)

И, аналогично, заряд на конденсаторе:

(4)

Важно: нужно помнить, что тригонометрически можно превратить синус в косинус:

(5)

  • где
    • — новая начальная фаза колебания.

Вывод: таким образом, рассмотрение переменного тока в случае формульных задач, связанных с соотношениями (1) — (4), касается анализа сомножителей и слагаемых, входящих в само соотношение.

Поделиться ссылкой:

www.abitur.by

14 Переменный Электрический Ток

Вынужденные
Электромагнитные Колебания

Вынужденными
электромагнитными колебаниями
 называют
периодические изменения силы тока и
напряжения в электрической цепи,
происходящие под действием переменной
ЭДС от внешнего источника. Внешним
источником ЭДС в электрических цепях
являются генераторы переменного тока,
работающие на электростанциях.

Принцип
действия генератора переменного тока
легко показать при рассмотрении
вращающейся рамки провода в магнитном
поле.

В
однородное магнитное поле с индукцией
В помещаем прямоугольную рамку,
образованную проводниками (abсd).

Пусть
плоскость рамки перпендикулярна индукции
магнитного поля В и ее площадь равна S.

Магнитный
поток в момент времени t0 =
0 будет равен Ф = В*8.

При
равномерном вращении рамки вокруг оси
OO1 с
угловой скоростью w магнитный поток,
пронизывающий рамку, будет изменяться
с течением времени по закону:

Изменение
магнитного потока возбуждает в рамке
ЭДС индукцию, равную

где
Е0=
ВSw — амплитуда ЭДС.

Если
с помощью контактных колец и скользящих
по ним щеток соединить концы рамки с
электрической цепью, то под действием
ЭДС индукции, изменяющейся со временем
по гармоническому закону, в электрической
цепи возникнут вынужденные гармонические
колебания силы тока — переменный
ток
.

На
практике синусоидальная ЭДС возбуждается
не путем вращения рамки в магнитном
поле, а путем вращения магнита или
электромагнита (ротора) внутри статора
— неподвижных обмоток, навитых на
сердечники из магнитомягкого материала.
В этих обмотках находится переменная
ЭДС, что позволяет избежать снятия
напряжения с помощью контактных колец. 

Переменный
Ток

Рассмотрим
процессы, происходящие в проводнике,
включенном в цепь переменного тока.

Если
индуктивность проводника настолько
мала, что при включении его в цепь
переменного тока индукционными полями
можно пренебречь по сравнению с внешним
электрическим полем, то движение
электрических зарядов в проводнике
определяется действием только внешнего
электрического поля, напряженность
которого пропорциональна напряжению
на концах проводника.

При
изменении напряжения по гармоническому
закону U = Um cos
wt напряженность электрического поля в
проводнике изменяется по такому же
закону.

Под
действием переменного электрического
поля в проводнике возникает переменный
электрический ток, частота и фаза
колебаний которого совпадает с частотой
и фазой колебаний напряжения:

где
i — мгновенное значение силы тока, Im
амплитудное значение силы тока.

Колебания
силы тока в цепи являются вынужденными
электрическими колебаниями, возникающими
под действием приложенного переменного
напряжения.

Амплитуда
силы тока равна: 

При
совпадении фаз колебаний силы тока и
напряжения мгновенная мощность
переменного тока равна:

Среднее
значение квадрата косинуса за период
равно 0,5. В результате средняя мощность
за период

Для
того чтобы формула для расчета мощности
переменного тока совпадала по форме с
аналогичной формулой для постоянного
тока (Р = PR), вводится понятие действующих
значений силы тока и напряжения. Из
равенства мощностей получим

Действующим
значением силы тока называют величину,
в корень из 2 раз меньшую ее амплитудного
значения:

Действующее
значение силы тока равно силе такого
постоянного тока, при котором средняя
мощность, выделяющаяся в проводнике в
цепи переменного тока, равна мощности,
выделяющейся в том же проводнике в цепи
постоянного тока.

Действующее
значение переменного напряжения в
корень из 2 раз меньше его амплитудного
значения:

Средняя
мощность переменного тока при совпадении
фаз колебаний силы тока и напряжения
равна произведению действующих значений
силы тока и напряжения:

Сопротивление
элемента электрической цепи, в которой
происходит превращение электрической
энергии во внутреннюю энергию,
называют активным
сопротивлением
.
Активное сопротивление участка цепи
можно определить как частное от деления
средней мощности на квадрат действующего
значения силы тока:

Активным
сопротивлением R называется физическая
величина, равная отношению мощности к
квадрату силы тока ,
что получается из выражения для
мощности .
При небольших частотах практически не
зависит от частоты и совпадает с
электрическим сопротивлением проводника.

Пусть
в цепь переменного тока включена катушка.
Тогда при изменении силы тока по закону в
катушке возникает ЭДС самоиндукции .
Т.к. электрическое сопротивление катушки
равно нулю, то ЭДС равна минус напряжению
на концах катушки, созданному внешним
генератором (??? Каким еще генератором???) .
Следовательно, изменение силы тока
вызывает изменение напряжения, но со
сдвигом по фазе .
Произведение является
амплитудой колебаний напряжение, т.е. .
Отношение амплитуды колебаний напряжения
на катушке к амплитуде колебаний тока
называется индуктивным сопротивлением .

Пусть
в цепи находится конденсатор. При его
включение он четверть периода заряжается,
потом столько же разряжается, потом то
же самое, но со сменой полярности. При
изменении напряжения на конденсаторе
по гармоническому закону заряд
на его обкладках равен .
Ток в цепи возникает при изменении
заряда: ,
аналогично случаю с катушкой амплитуда
колебаний силы тока равна .
Величина, равная отношению амплитуды
к силе тока, называется емкостным
сопротивлением .

АКТИВНОЕ
СОПРОТИВЛЕНИЕ.  ДЕЙСТВУЮЩИЕ ЗНАЧЕНИЯ
СИЛЫ ТОКА И НАПРЯЖЕНИЯ

Перейдем
к более детальному рассмотрению
процессов, которые происходят в цепи,
подключенной к источнику переменного
напряжения.

Сила
тока в цени с резистором.
 Пусть
цепь состоит из соединительных проводов
и нагрузки с малой индуктивностью и
большим сопротивлением R (рис. 4.10). Эту
величину, которую мы до сих пор называли
электрическим сопротивлением или просто
сопротивлением, теперь будем называть
активным сопротивлением.
 
Сопротивление R
называется активным, потому что при
наличии нагрузки, обладающей этим
сопротивлением, цепь поглощает энергию,
поступающую от  генератора. Эта
энергия превращается во внутреннюю
энергию проводников — они  нагреваются.  
Будем  считать, что напряжение на
зажимах цепи меняется по гармоническому
закону:

u = Um cos t.

Как
и в случае постоянного тока, мгновенное
значение силы тока прямо пропорционально
мгновенному значению напряжения. Поэтому
для нахождения мгновенного значения
силы тока можно применить закон
Ома
:

 
В
проводнике с активным сопротивлением
колебания силы тока совпадают по фазе
с колебаниями напряже ния (рис. 4.11), а
амплитуда силы тока определяется
равенством

Мощность
в цепи с резистором.
 В
цепи переменного тока промышленной
частоты (v = 50 Гц) сила тока и напряжение
изменяются сравнительно быстро. Поэтому
при прохождении тока по проводнику,
например по нити электрической лампочки,
количество выделенной энергии также
будет быстро меняться со временем. Но
этих быстрых изменений мы не замечаем.

Как
правило, нам нужно бывает знать среднюю
мощ ностъ тока на участке цепи за большой
промежуток времени, включающий много
периодов. Для этого достаточно найчи
среднюю мощность за один период. Под
средней за период, мощностью переменного
тока понимают отношение суммарной энергии,
поступающей в цепь за период, к периоду.

Мощность
в цепи постоянного тока на участке с
сопротивлением R определяется формулой

P
= I2R.      
(4.18)

На протяжении очень малого
интервала времени переменный ток можно
считать практически постоянным. 

Поэтому
мгновенная моoность в цепи переменного
тока на участке, имеющем активное
сопротивление R, определяется формулой

P
= i2R.                                        
     (4.19)

Найдем среднее
значение мощности за период. Для этого
сначала преобразуем формулу (4.19),
подставляя в нее выражение (4.16) для силы
тока и используя известное из математики
соотношение 

График
зависимости мгновенной мощности от
времени изображен на рисунке 4.12, а.
Согласно графику (рис. 4.12, б.), на протяжении
одной восьмой периода, когда ,
мощность в любой момент времени больше,
чем  . 
Зато на протяжении следующей восьмой
части периода, когда cos 2t
< 0, мощность в любой момент времени
меньше    чем  .
Среднее за период значение cos 2t
равно нулю, а значит равно нулю второе
слагаемое в уравнении (4.20).

Средняя
мощность  равна,
таким образом, первому члену в формуле
(4.20):


Действующие
значения силы тока и
 напряжения. Из
формулы (4.21) видно, что величина  
есть среднее за период значение квадрата
силы тока:
 

 
Величина,
равная квадратному корню из среднего
значения квадрата силы тока, называется
действующим значением силы неременного
тока. Действующее зртачепие силы
неременного тока обозначается через
I:

Действующее
значение силы переменного тока
 равно
силе такого постоянного тока, при котором
в проводнике выделяется то же
количество теплоты,
что и при переменном токе за то же время.

Действующее
значение переменного напряжения
определяется аналогично действующему
значению силы тока:

Заменяя
в формуле (4.17) амплитудные значения силы
тока и напряжения на их действующие
значения, получаем
Это
закон Ома для участка цепи переменного
тока с резистором.

Как
и при механических колебаниях, в случае
электрических колебаний обычно нас не
интересуют значения силы тока, напряжения
и других величин в каждый момент времени.
Важны общие характеристики колебаний,
такие, как амплитуда, период, частота,
действующие значения силы тока и
напряжения, средняя мощность. Именно
действующие значения силы тока и
напряжения регистрируют амперметры
ивольтметры переменного
тока.

Кроме
того, действующие значения удобнее
мгновенных значений еще и потому, что
именно они непосредственно определяют
среднее значение мощности Р переменного
тока:

P
= I
2R
= UI.

Колебания
силы тока в цепи с резистором совпадают
по фазе с колебаниями напряжения, а
мощность определяется действующими
значениями силы тока и напряжения.

Переменный
ток оценивается его действием,
эквивалентной действия постоянного
тока.

Активным
сопротивлением
 называют
такое сопротивление проводника, в
котором электрическая энергия необратимо
превращается во внутреннюю. Пусть
напряжение в цепи переменного тока
изменяется по гармоничным законом. Под
действием переменного электрического
поля в проводнике возникает переменный
ток, частота и фаза колебаний которого
совпадает с частотой и фазой колебания
напряжения. Амплитудное значение силы
тока равна отношению амплитудного
значения напряжения к сопротивлению
проводника. Мощность тока равна
произведению силы тока и напряжения.
Тогда активное сопротивление можно
определить как отношение мощности
переменного тока на участке цепи к
квадрату действующей силы тока.

Действующим
значением силы
 тока
называется сила постоянного тока,
благодаря которой в проводнике выделяется
за одинаковое время такое же количество
теплоты, что и переменным током. Найти
действующее значение силы тока можно
как отношение амплитудного значения
силы тока до квадратного корня из
двух.

Действующее
значение напряжения также в корень из
двух меньше его амплитудного значения.

При
изучении вынужденных механических
колебаний мы ознакомились с
явлением резонанса.
Резонанс наблюдается в том случае, когда
собственная частота колебаний системы
совпадает с частотой изменения внешней
силы. Если трение мало, то амплитуда
установившихся вынужденных колебаний
при резонансе резко увеличивается.
Совпадение вида уравнений для описания
механических и электромагнитных
колебаний (позволяет сделать заключение
о возможности резонанса также и в
электрической цепи, если эта цепь
представляет собой колебательный
контур, обладающий определенной
собственной частотой колебаний.

При
механических колебаниях резонанс
выражен отчетливо при малых значениях
коэфициента трения .
В электрической цепи роль коэффициента
трения выполняет ее активное сопротивление
R. Ведь именно наличие этого сопротивления
в цепи приводит к превращению энергии
тока но внутреннюю энергию проводника
(проводник нагревается). Поэтому резонанс
в электрическом колебательном кон-lype
должен быть выражен отчетливо при малом
активном сопротивлении R.

Мы
с вами уже знаем, что если активное
сопротивление мало, то собственная
циклическая частота колебаний в контуре
определяется формулой

Сила
тока при вынужденных
колебаниях
 должна
достигать максимальных значений, когда
частота переменного напряжения,
приложенного к контуру, равна собственной
частоте колебательного контура:

Резонансом
в электрическом колебательном
контуре
 называется
явление резкого возрастания амплитуды
вынужденных колебаний силы тока при
совпадении частоты внегннего переменного
напряжения с собственной частотой
колебательного контура.

Амплитуда
силы тока при резонансе.
 Как
и в случае механического резонанса, при
резонансе в колебательном контуре
создаются оптимальные условия для
поступления энергии от внешнего источника
в контур. Мощность в контуре максимальна
в том случае, когда сила тока совпадает
по фазе с напряжением. Здесь наблюдается
полная аналогия с механическими
колебаниями: при резонансе в механической
колебательной системе внешняя сила
(аналог напряжения в цепи) совпадает по
фазе со скоростью (аналог силы тока).

Не
сразу после включения внешнего переменного
напряжения в цепи устанавливается
резонансное значение силы тока. Амплитуда
колебаний силы тока нарастает постепенно
— до тех пор, пока энергия, выделяющаяся
за период на резисторе, не сравняется
с энергией,
поступающей в контур за это же
время:

 Отсюда
амплитуда установившихся колебаний
силы тока при резонансе определяется
уравнением
 
 При
R  0
резонансное значение силы тока
неограниченно возрастает: (Im)рез  .
Наоборот, с увеличением R максимальное
значение силы тока уменьшается, и при
больших R говорить о резонансе уже не
имеет смысла. Зависимость амплитуды
силы тока от частоты при различных
сопротивлениях (R1 <
R2 <
R3)
показана на рисунке 4.19.

Одновременно
с увеличением силы тока при резонансе
резко возрастают напряжения на
конденсаторе и катушке индуктивности.
Эти напряжения при ма.пом активном
сопротивлении во много раз превышают
внешнее напряжение.

Использование
резонанса в радиосвязи.
 Явление
электрического резонанса широко
используется при осуществлении
радиосвязи. Радиоволны от различных
передающих станций возбуждают в антенне
радиоприемника переменные токи различных
частот, так как каждая передающая
радиостанция работает на своей частоте.
С антенной индуктивно связан колебательный
контур (рис. 4.20). Вследствие электромагнитной
индукции в контурной катушке возникают
переменные ЭДС соответствующих частот
и вынужденные колебания силы тока тех
же частот. Но только при резонансе
колебания силы тока в контуре и напряжения
в нем будут значительными, т. е. из
колебаний различных частот, возбуждаемых
в антенне, контур выделяет только те,
частота которых равна его собственной
частоте. Настройка контура на нужную
частоту  обычно
осуществляется путем изменения
емкости конденсатора.
В этом обычно состоит настройка
радиоприемника на определенную
радиостанцию.

Необходимость
учета возможности резонанса в электрической
цепи. В некоторых случаях резонанс в
электрической цепи может принести
большой вред. Если цепь не рассчитана
на работу в условиях резонанса, то его
возникновеие может привести к аварии.

Чрезмерно
большие токи могут перегреть провода.
Большие напряжения приводят к пробою
изоляции.

Такого
рода аварии нередко случались еще
сравнительно недавно, когда плохо
представляли себе законы электрических
колебаний и не умели правильно
рассчитывать электрические
цепи
.

При
вынужденных электромагнитных колебаниях
возможен резонанс — резкое возрастание
амплитуды колебаний силы тока и напряжения
при совпадении частоты внешнего
переменного напряжения с собственной
частотой колебаний. На явлении резонанса
основана вся радиосвязь.

Изучение
цепей переменного тока с активным,
емкостным и индуктивным сопротивлениями
происходит в следующей логической
последовательности: сначала дается
понятие о том или ином виде сопротивлений
в цепи переменного тока (сравнение с
его поведением в цепи постоянного тока),
затем фазовые соотношения, формула
соответствующего сопротивления,
преобразования энергии в цепи, содержащей
только активное, емкостное или индуктивное
сопротивление.

Последовательность
изучения сопротивлений в цепи переменного
тока может быть и несколько иной. 

Понятие
действующего значения силы тока и
напряжения можно ввести так: вначале
выводят выражение для расчета мгновенных
значений мощности на активном
сопротивлении, отсюда находят среднее
значение мощности за период и выясняют,
что  есть
среднее значение квадрата силы тока за
период. Вводят определение: корень
квадратный из этой величины называют
действующим значением переменного
тока. Название связано с тем, что при
прохождении такого тока по участку с
активным сопротивлением выделяется
мощность

Такая
же мощность выделяется в цепи постоянного
тока, величина которого равна действующему
значению переменного тока. Итак,
действующим значением переменного тока
является такое значение постоянного
тока, которое в резисторе R выделяет
такое же количество теплоты, что и
переменный ток.

Очень
важно отметить, что шкалы электроизмерительных
приборов, для измерения переменных силы
тока и напряжения градуируют именно в
действующих значениях этих
величин.

Рассмотрение
цепи переменного тока со смешанным
сопротивлением начинают с эксперимента
— измеряют напряжение на каждом из
последовательно включенных элементов
цепи (лампе, катушке и батарее
конденсаторов), подключенных к источнику
переменного напряжения. Обращают
внимание на следующие опытные факты:

1.
Общее напряжение не равно сумме напряжений
на отдельных участках, как это имело
место для цепей постоянного тока.

2.
Напряжение на участке, включающем в
себя катушку и конденсатор, равно не
сумме, а разности напряжений на каждом
из них в отдельности. Объяснить этот
результат можно предложить самим
учащимся; им известно, что на индуктивности
напряжение опережает ток на π/2, а на
электроемкости отстает от него на ту
же величину. Так как мгновенное значение
силы тока в цепи всюду одно и то же, то
ясно, что колебания напряжения на
индуктивности и электроемкости происходят
со сдвигом фаз, равным π, т. е. их фазы
противоположны.

3.
Полное сопротивление цепи меньше суммы
всех включенных в нее сопротивлений
(активного, индуктивного и емкостного).
Учащихся нужно убедить, что чем меньше
сдвиг фаз между током и напряжением,
тем большую часть мощности, подводимой
к цепи, используют полезно, необратимо
превращая в другие виды энергии.

Далее
рассматривают устройство и работу
трансформатора. На примере однофазного
трансформатора показывают его действие
(повышение и понижение напряжения) и
устройство. Вначале рассматривают режим
холостого хода, а затем нагруженного
трансформатора. В качестве нагрузки
целесообразно использовать реостат,
так как им проще изменять нагрузку.
Показывают, что при увеличении нагрузки
возрастает сила
тока как во вторичной, так и в первичной
обмотке трансформатора. Учащимся
предлагают самим с энергетических
позиций объяснить возрастание силы
тока в первичной цепи (увеличение
потребления энергии на нагрузке
естественно должно сопровождаться
увеличением потребления энергии
первичной обмоткой от генератора).

Для
изучения электромагнитных колебаний
широко используется школьный прибор-
звуковой генератор школьный ГЗШ. Он
перекрывает диапазон генерируемых
частот синусоидальных колебаний от 20
до 20000 Гц с диапазонами: «X1» (от 20 до 200
Гц), «X10» (от 200 до 2000 Гц), «X100» ( от 2000 до
20000 Гц), питается от сети переменного
тока напряжением 220 В. На лицевую панель
генератора выведены тумблёр включения
генератора в сеть, сигнальная лампочка,
переключатель поддиапазонов на три
фиксированных положения, отмеченных
«X1», «X10», «X100», диск с неравномерной
шкалой деления (от 20 до 200) ручка переменного
резистора, позволяющая менять амплитуду
выходного сигнала, выходные зажимы,
рассчитанные на подключение цепей с
разным сопротивлением (5, 600, 5000 Ом). Если
для опытов необходимы частоты 20 – 200
Гц, то переключатель устанавливают в
положение «X1» если 200 – 2000 Гц – в положение
«X10», а для частот 2000 – 20000 Гц используют
положение «X100». Плавную регулировку
частоты осуществляют поворотом
диска. 

Так
же широко используются выпрямители
ВУП-1 и ВУП-2

ВУП-2
предназначен для обеспечения питанием
демонстрационных установок в опытах
по электричеству.

Технические
данные: Прибор позволяет получить на
выходных зажимах: выпрямленное напряжение
350В при максимальной силе тока
220мА;

постоянное
отфильтрованное напряжение 250В при
максимальной нагрузке 50мА; регулируемое
напряжение от 0 до 250В постоянного тока
до 50мА; регулируемое напряжение от 0 до
+100В и от 0 до-100В постоянного тока до
10мА; напряжение 6.3В переменного тока до
3А.

Еще
один источник питания без которого
практически невозможно осуществлять
многие опыты по электричеству
РНШ.

Регулятор
напряжения школьный предназначен для
плавного регулирования напряжения
однофазного переменного тока с частотой
50 Гц, при проведении лабораторных и
демонстрационных опытов в физических
кабинетах школ. Прибор присоединяется
к сети выводным шнуром. Прибор можно
включить в сеть напряжением 127 и 220В.
Рабочее напряжение снимается с зажимов,
обозначенных «Выходное напряжение».

В
целях правильной эксплуатации регулятора
напряжения в паспорте прибора приведена
таблица допустимых значений электрической
мощности нагрузки регулятора при разных
напряжениях, подаваемых на нагрузку, и
при сетевых напряжениях 127 и
220В.

Установленный
в регуляторе напряжения вольтметр имеет
неравномерную шкалу. Достоверный отсчет
можно вести только при 50В. В случае
необходимости снимать с регулятора
более низкие напряжения нужно параллельно
выходным зажимам подключать дополнительный
вольтметр с соответствующим пределом
измерения.

Регулятор
напряжения может быть использован как
для повышения, так и для понижения
напряжений переменного тока, при разных
демонстрационных и лабораторных
опытах

Для
наглядного отображения электромагнитных
колебаний применяют школьные осциллографы
ОДШ-2 и ОЭШ-70. 

Наиболее
широко при­меняют осциллографы для
исследования периодических процессов,
а также для изучения вольтамперных
характеристик диода и трио­да, петли
гистерезиса и др. В простейшем случае
осциллограф состоит из четырех блоков:
блока электронно-лучевой трубки ЭЛТ,
генератора развертки ГР, усилителя
исследуемого сигнала УС и блока питания
БП . Основным элементом первого блока
является электронно-лучевая трубка, на
экране которой формируется картина
исследуемого сиг­нала (осциллограмма).
Нить накала НН подогревает ка­тод К,
с поверхности которого вылетают
элект­роны. Электроны, пролетев через
отверстия уп­равляющего электрода,
фокусирующего ци­линдра ФЦ и анода
А, а также между пласти­нами XX и УУ,
попадают на экран и вызывают его свечение.
Изменением разности потенциалов между
катодом и управляющим электродом мож­но
менять число электронов в пучке, а это
по­зволяет регулировать яркость
изображения на экране. Чем больше по
модулю отрицательный потенциал на
управляющем электроде относи­тельно
катода, тем меньше электронов пройдет
через управляющий электрод и достигнет
анода. Осциллограф снабжен ручкой
«яркость» для уп­равления потоком
электронов в пучке.

Электрическое
поле между фокусирующим цилиндром и
анодом способно фокусировать рас­ходящийся
электронный пучок. Обычно на передней
стенке смонтированы выключатель сети,
сигнальная лампочка, за­жимы «Вход
У», «Вход X» и делитель входного сигнала.
На боко­вую панель выведены ручки
управления электронным пучком,
«Синхронизация», «Внутр. — от сети —
внешн.», «Уси­ление», ручки развертки,
«Диапазоны 0, 30, 150, 500 Гц, 2, 8, 16 кГц»,
«Частота плавно», а также ручки усиления
сигнала «Уси­ление У», «Усиление X».
Осциллограф ОДШ-2 отличается от ОЭШ-70
конструктивно и внешним оформлением.
На переднюю панель выведен не только
экран электронно-лучевой трубки, но и
основные ручки уп­равления. Верхний
ряд ручек предназначен для управления
элек­тронным пучком: «Яркость»,
«Фокус», «Вверх-вниз», «Влево-вправо».
Во втором ряду сверху смонтированы
ручки управления уси­лителем «Усиление
У» и делитель напряжения 1:1, 1:10, 1:30, 1:1OO,
1:1000, а также выключатель сети с сигнальной
лампоч­кой. В третьем ряду сверху
расположены ручки и кнопки генера­тора
развертки: «Частота плавно», «Вкл. 1, 2,
3, 4», «Усиление X». Кнопочный переключатель
позволяет менять пилообразное напря­жение
частотой от 20 Гц до 20 кГц. Генератор
развертки рабо­тает только при нажатой
кнопке «Вкл». В нижнем ряду располо­жены
зажимы «Вход У», «Вход X», «Внешн. синхр»,
кнопки син­хронизации «Внешн.»,
«Внутр.» и ручка синхронизации.

На
боковую панель осциллографа ОДШ-2
выведены ручки уп­равления двухканальным
коммутатором с двумя входами. Комму­татор
позволяет наблюдать на экране осциллографа
одновремен­но сигналы от двух источников
переменного тока. Если частоты источников
одинаковы, то по полученным осциллограммам
мож­но судить о сдвиге фаз поданных
сигналов. Например, на один вход можно
подать сигнал, пропорциональный
напряжению на конденсаторе, а на другой
— пропорциональный силе тока, текущего
через конденсатор. Тогда на экране
осциллографа можно наблю­дать две
синусоиды, сдвинутые по фазе на 90°.
Применяя комму­татор, можно сравнивать
частоту исследуемого сигнала со
стан­дартной частотой, если эти сигналы
отличаются по частоте. На задней стенке
осциллографов ОДШ-2 и ОЭШ-70 смонтиро­ваны
гнезда, позволяющие подавать исследуемый
сигнал непосред­ственно на пластины
электронно-лучевой трубки. Возможность
подавать исследуемый сигнал непосредственно
на пластины позво­ляет применить
осциллограф и для цепей постоянного
тока. По­давая сигнал постоянного
напряжения на пластины XX (или УУ) при
отключенной развертке, можно наблюдать
смещение светя­щейся точки по
горизонтали (или вертикали), причем
отклонение этой точки пропорционально
приложенному напряжению. Следо­вательно,
осциллограф можно применить как вольтметр
с боль­шим внутренним сопротивлением.

Для
усиления электромагнитных колебаний
применяют усилители низкой частоты.
Усилитель низкой частоты 
электронный прибор. Предназначенный
для усиления электрических колебаний
звуковой частоты от 20 Гц до 20 кГц. Обычно
усилитель состоит из нескольких блоков:
предварительного усилителя напряжения,
усилителя мощности, согласующего
выходного трансформатора и блока
питания. Для школ выпускаются усилители
разной конструкции и отличающиеся по
внешнему виду.

Усилитель
УНЧ-3 на
лицевой панели имеет ручку регулятора
громкости и сигнальную лампочку. Ручкой
регулятора громкости производят также
включение и выключение сети. В крайнем
левом положении ручки при повороте
против часовой стрелки прибор отключен.
Включение осуществляют поворотом ручки
по часовой стрелке после щелчка. Так
как усилитель собран на электронных
лампах, то он начинает работать после
их прогрева. 

На
боковой стенке смонтированы три входных
гнезда: для подключения М – микрофона,
АД – адаптера, Л – линии. Нижние гнёзда
соединены с корпусом прибора. На задней
стенке имеются две пары гнёзд: Гр – для
подключения громкоговорителя (низкоомный
выход) и Л – высокоомный выход. Здесь
же имеются вывод сетевого шнура с вилкой
и октальная панель, в которую вставлена
специальная вилка с предохранителем
(на 0,5 А) для сети с напряжением 220 В. Вилку
можно устанавливать в двух положениях:
«220 В» и «127 В».

Усилитель
УНЧ-5 собран на транзисторах. На лицевой
панели усилителя смонтирован выключатель
сети с индикаторной лампочкой, гнезда
выхода, гнезда входа для микрофона и
звукоснимателя, разъем для подключения
микрофона, ручки регулировки тембра по
низкой и высокой частоте, ручка регулировки
уровня сигнала, индикатор перегрузки.
На задней стенке имеются вывод сетевого
шнура с вилкой и предохранитель (на 0,5
А).

На
вход усилителя могут подаваться сигналы
не только с микрофона и звукоснимателя,
но и от других датчиков электрических
колебаний напряжением от нескольких
милливольт до вольт (сигналы с элементов
цепи переменного тока, звукового
генератора и т.д.). К выходу усилителя
можно подключить не только громкоговоритель,
но и другие приборы: осциллограф,
измерительные приборы переменного
тока, головные телефоны и пр. Потребляемая
усилителем мощность не более 40 Вт,
выходная – около 5 Вт.

Запрещается
при эксплуатации усилителя менять
предохранитель, разбирать и ремонтировать
прибор, включенный в сеть.

Усилитель
на вертикальной панели входит в комплект
демонстрационных приборов по радиотехнике.
Слева смонтированы универсальные зажимы
входа усилителя. Первая лампа работает
в режиме усиления напряжения, вторая –
как усилитель мощности. В анодную цепь
второй лампы включен согласующий
трансформатор, вторичная обмотка
которого соединена с зажимами низкого
и высокого выходного напряжения. Три
нижних зажима служат для подключения
питания от ВУП –2, на два нижних зажима
подаётся напряжение переменного тока
6,3 В для питания накала ламп, а на средний
и третий снизу – напряжение постоянного
тока 250 В для анодной цепи ламп, причём
на третий снизу зажим подаётся
положительный потенциал. Подключение
блока питания и сборку установок с
усилителем на панели запрещается
выполнять при включённом в сеть
выпрямителе ВУП-2.

В
демонстрационных установках предпочтение
следует отдавать усилителю УНЧ-5.

studfiles.net

формулы, составляющие и особенности применения

В быту, как правило, применяются такие словосочетания, как потребляемая мощность или просто электрическая мощность. Всегда актуален вопрос о том, как много электроэнергии потребляет тот или другой прибор. Но в физике понятие мощности переменного тока трактуется несколько шире.

Особенности переменного тока

Формула мощности для тока, который меняется во времени по силе, напряжению и направлению, не совпадает с простой формулой для постоянного электротока. Она может примяться исключительно для вычисления мгновенного значения этой физической величины, но на практике для нахождения мощности меняющегося тока бесполезна. Рассчитывая её усреднённую величину напрямую, применяют интегрирование по такому параметру, как время. То есть интегрируется мгновенное значение на протяжении определённого периода.

Такой подход применяется для тех электрических цепей, в которых напряжение и сила электротока меняются циклически. В основном рассчитывается мощность в цепях с изменениями электрического напряжения и силы электротока по синусоиде.

В электродинамике различают связанные друг с другом понятия реактивной, активной и полной мощности.

Активная величина Real Power

Активная мощность Р измеряется в ваттах. Сокращённые варианты единицы измерения: Вт (русское обозначение) или W (международное). Само понятие этой мощностной величины означает среднее значение мгновенных показателей этой характеристики за промежуток времени Т (период). Общая формула в этом случае выглядит следующим образом:

Для электрических цепей с одной фазой изменяющегося по синусоиде тока формула выглядит так:

.

В этом выражении Ι и U являются значениями силы электротока и напряжения в среднеквадратичном представлении. А угол φ показывает, на сколько сдвинуты фазы между этими физическими величинами.

Активная мощность указывает, как быстро превращается электрическая энергия в другие типы: тепловую или электромагнитную.

Она может выражаться как через силу тока и активное сопротивление цепи r, так и через напряжение и проводимость g по формуле:

.

В любых электрических цепях этот вид мощности равняется сумме значений на отдельных элементах. В трёхфазном варианте суммируются показатели для каждой отдельной фазы.

Реактивная характеристика

Реактивная мощность Q охарактеризовывает нагрузки, создаваемые в электроустройствах периодическими изменениями энергии электромагнитного поля в цепи с переменным током, который меняется во времени по синусоидальному принципу.

Численно она равняется умножению среднеквадратичных U (напряжения), I (силы) и синуса φ (угла сдвига фаз):

.

Измеряется в вольт-амперах реактивных (русское сокращение: вар, а международное — var).

Реактивная Q даёт характеристику энергии, передающейся от источника питания к реактивным элементам и возвращающуюся обратно за временной промежуток, численно равный одному периоду колебаний. К элементам реактивного типа относят катушки индуктивности, конденсаторы, обмотки. Этот вид мощностной характеристики тока принимает:

  • отрицательное значение, если нагрузка активно-ёмкостная;
  • положительное — в случае активно-индуктивного характера нагрузочных элементов.

Принято считать, что устройства с положительной Q потребляют энергию, а с отрицательной, наоборот, производят. Но это условные обозначения. Реактивная мощность по факту не принимает участия в работе электротока. Синхронные генераторы, которые функционируют на электростанциях, в зависимости от численного значения тока возбуждения в обмотке могут и вырабатывать, и потреблять эту реактивную характеристику тока.

Такую особенность синхронных электрических машин используют для регулирования определённого значения напряжения сети. Чтобы устранять перегрузки либо увеличение мощностного коэффициента, осуществляют компенсацию реактивной составляющей.

Полная мощность

Полная мощность S представляется в единицах измерения с названием вольт-амперы и вычисляется через умножение действующих значений I в цепи и напряжения U на её окончаниях:

.

Этот вид электрической характеристики на практике описывает нагрузки, которые по факту налагаются потребителем на части электросети, обеспечивающей подвод электроэнергии (кабели разных видов, трансформирующие устройства и линии для передачи электрической энергии на большие расстояния).

Данные нагрузки находятся в зависимости исключительно от потребляемого тока, а не от энергии, которую по факту использует потребитель. Этот момент является причиной того, что полная мощность устройств, обеспечивающих трансформацию электрической энергии, а также распределительных щитов, измеряют в вольт-амперах, а не в ваттах.

Все виды мощностных характеристик переменного тока связываются между собой следующими математическими выражениями:

Эти формулы позволяют производить расчёты для цепей переменного тока любой конфигурации:

  1. Полная, выраженная через активную и реактивную.
  2. Активная — через полную и угол сдвига фаз.
  3. Реактивная — через полную и активную.

Знания этих нюансов важны при подборе оборудования и построения систем энергообеспечения различных объектов. Учёт электрических параметров устройств даёт возможность сделать правильный выбор электрических устройств и построить экономически оптимальную схему энергетического обеспечения.


220v.guru

Переменного тока формулы. Расчетные формулы для цепей переменного тока

Генераторы переменного тока | Формулы и расчеты онлайн

Если для получения электрического напряжения используется прополочная рамка, вращающаяся в магнитном поле, то напряжение индукции не постоянно, а зависит от мгновенного положения рамки в магнитном поле.

Генераторы переменного тока

В соответствии с формулой №1 напряжение индукции пропорционально скорости изменения магнитного потока. Согласно выражению

\[ Φ = BS \]

, магнитный поток пропорционален площади сечении магнитного поля, пересекающего рамку, т.е.

\[ Φ = B · S · \cos(φ) \]

Аналогичное выражение справедливо для вращающейся катушки.

Если

u

Um

φ = ωt

S

N

T

f

t

мгновенное значение напряжения индукции, Вольт
амплитуда напряжения, т.е. максимальное напряжение, возникающее дважды за оборот катушки, Вольт
угол поворота катушки, отсчитываемый, от начального положения, перпендикулярного направлению магнитного поля, радиан
площадь витка, метр2
число витков катушки, штук
период вращения катушки, секунд
частота вращения, Герц
время, секунд

то

\[ u= — N \frac{dФ}{dt} \]

\[ u= — \frac{d(NBS \cos(φ))}{dt} \]

\[ u= — \frac{d(NBS \cos(ωt))}{dt} \]

откуда

Переменное напряжение

\[ u = NBS ω \sin(ωt) \]

Переменное напряжение Напряжение индукции меняется во времени по синусоидальному закону. В течение периода оно дважды меняет знак. Поэтому его называют переменным напряжением.

Амплитуда, или максимальное значение напряжения индукции, определяется формулой

\[ U_{m}= NBSω \]

Тогда для мгновенного напряжения имеем

\[ u = U_{m} \sin(ωt) \]

\[ u = U_{m} \sin(2πft) \]

\[ u = U_{m} \sin(2π\frac{t}{T}) \]

Величина ω=2πf называется угловой частотой.

Частота переменного тока промышленной сети f = 50 Гц, и соответственно ω = 100π 1/с.

Переменный ток

Если к клеммам вращающейся катушки присоединить внешнюю электрическую цепь, то в ней возникает электрический ток, сила которого изменяется по синусоидальному закону во времени и меняет свой знак (направление) дважды за период. Такой ток называется переменным током.

Если

i

Im

ω=2πf

мгновенное значение силы тока, Ампер
амплитуда тока, Ампер
угловая частота, радиан/секунда

то

то по аналогии получаем

\[ i = I_{m} \sin(ωt) \]

\[ i = I_{m} \sin(2πft) \]

\[ i = I_{m} \sin(2π \frac{t}{T}) \]

График зависимости напряжения u от времени t (или от φ = ωt) представляет собой синусоиду.

Переменное напряжение

В любом генераторе переменного тока имеются магнит, создающий требуемое магнитное поле (чаще всего электромагнит; в генераторах малой мощности используются постоянные магниты), вращающиеся обмотки и контактные кольца. Для получения достаточно высокого напряжения применяют обмотки с большим числом витков и железные сердечники.

Вращающаяся часть генератора называется ротором, неподвижная часть — статором.

генератор переменного тока

В генераторах большой мощности обмотки, в которых индуцируется напряжение, располагаются на статоре, а магниты — на роторе (машина с внутренними полюсами). При этом контактные кольца служат лишь для подвода небольшой мощности к электромагнитам.

В помощь студенту

Генераторы переменного тока

стр. 672

www.fxyz.ru

Расчетные формулы для цепей переменного тока

Расчет цепей переменного тока. В таблице ниже представлены основные расчетные формулы цепей переменного тока. Формулы для переменного тока.

Вид нагрузки

Схема

Векторная диаграмма

Полное сопротивление

цепи

Активное сопротивление

Индуктивное сопротивление

 

Емкостное сопротивление

 

Последовательное соединение

Активное и индуктивное сопротивления

или

Активное и емкостное

сопротивления

или

Активное, индуктивное и емк

10i5.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о