Защита блока питания – Мощный блок питания с защитой по току

Мощный блок питания с защитой по току


Каждому человеку, собирающему электронные схемы, необходим универсальный источник питания, позволяющий в широких пределах изменять напряжение на выходе, контролировать ток и при необходимости отключать питаемое устройство. В магазинах подобные лабораторные блоки питания стоят весьма недёшево, но зато собрать такой можно самостоятельно из распространённых радиодеталей. Представленный блок питания включает в себя:
  • Регулировку напряжения до 24 вольт;
  • Максимальный ток, отдаваемый в нагрузку, до 5 ампер;
  • Защиту по току с выбором нескольких фиксированных значений;
  • Активное охлаждение для работы при больших токах;
  • Стрелочные индикаторы тока и напряжения;

Схема регулятора напряжения



Самый простой и доступный вариант регулятора напряжения – схема на специальной микросхеме, называемой стабилизатором напряжения. Наиболее подходящим вариантом является LM338, она обеспечивает максимальный ток в 5 А и минимум пульсаций на выходе. Также сюда подойдут LM350 и LM317, но максимальный ток в этом случае составит 3 А и 1,5 А соответственно. Переменный резистор служит для регулировки напряжения, его номинал зависит от того, какое максимальное напряжение необходимо получить на выходе. Если максимальное выходное требуется 24 вольта – необходим переменный резистор сопротивлением 4,3 кОм. В этом случае нужно взять стандартный потенциометр на 4.7 кОм и соединить параллельно с ним постоянный на 47 кОм, общее сопротивление получится примерно 4.3 кОм. Для питания всей схемы необходим источник постоянного тока с напряжением 24-35 вольт, в моём случае это обычный трансформатор со встроенным выпрямителем. Также можно применять зарядные устройства ноутбуков или другие различные импульсные источники, подходящие по току.
Данный регулятор напряжения является линейным, а значит, вся разница между входным и выходным напряжением приходится на одну микросхему и рассеивается на ней в виде тепла. При больших токах это весьма критично, поэтому микросхема должна быть установлена на большом радиаторе, лучше всего для этого подойдёт радиатор от процессора компьютера, работающий в паре с вентилятором. Для того, чтобы вентилятор не вращался всё время зря, а включался только при нагреве радиатора, необходимо собрать небольшой датчик температуры.

Схема управления вентилятором



В его основе лежит NTC термистор, сопротивление которого меняется в зависимости от температуры - при увеличении температуры сопротивление значительно уменьшается, и наоборот. Операционный усилитель выполняет роль компаратора, регистрируя изменение сопротивление термистора. При достижении порога срабатывания на выходе ОУ появляется напряжение, транзистор отпирается и запускает вентилятор, вместе с которым загорается светодиод. Подстроечный резистор служит для настройки порога срабатывания, его номинал стоит выбирать исходя из сопротивления термистора при комнатной температуре. Допустим, термистор имеет сопротивление 100 кОм, подстроечный резистор в этом случае должен иметь номинал примерно 150-200 кОм. Главное преимущество этой схемы – наличие гистерезиса, т.е. разницы между порогами включения и выключения вентилятора. Благодаря гистерезису не происходит частого включения-выключения вентилятора при температуре, близкой к пороговой. Термистор выводится на проводках непосредственно на радиатор и устанавливается в любое удобное место.



Схема защиты по току

Пожалуй, самая важная часть всего блока питания – защита по току. Работает она следующим образом: падение напряжение на шунте (резистор сопротивлением 0.1 Ом) усиливается до уровня 7-9 вольт и с помощью компаратора сравнивается с эталонным. Эталонное напряжение для сравнения задаётся четырьмя подстроечными резисторами в диапазоне от нуля до 12 вольт, вход операционного усилителя подключается к резисторам через галетный переключатель на 4 положения. Таким образом, меняя положение галетного переключателя мы можем выбирать из 4-х заранее установленных вариантов токов защиты. Например, можно установить следующие значения: 100 мА, 500 мА, 1,5 А, 3 А. При превышении тока, заданного галетным переключателем, сработает защита, напряжение перестанет поступать на выход и загорится светодиод. Для сброса защиты достаточно кратковременно нажать на кнопку, напряжение на выходе появится вновь. Пятый подстроечный резистор необходим для установки коэффициента усиления (чувствительности), его нужно установить так, чтобы при токе через шунт 1 Ампер напряжение на выходе ОУ было примерно 1-2 вольта. Резистор настройки гистерезиса срабатывания защиты отвечает за «чёткость» защёлкивания схемы, его нужно настраивать в том случае, если напряжение на выходе не пропадает полностью.Данная схема хороша тем, что имеет высокую скорость срабатывания, моментально включая защиту при превышении тока.

Блок индикации тока и напряжения


Большинство лабораторных блоков питания оснащено цифровыми вольтметрами и амперметрами, показывающими величины в виде цифр на табло. Такой вариант компактен и обеспечивает неплохую точность показаний, однако совершенно неудобен для восприятия. Именно поэтому для индикации решено использовать стрелочные головки, показания которых легко и приятно воспринимаются. В случае с вольтметром всё просто – он подключается к выходным клеммам блок питания через подстроечный резистор с сопротивлением примерно 1-2 МОм. Для правильной работы амперметра необходим усилитель шунта, схема которого показана ниже.

Подстроечный резистор необходим для настройки коэффициента усиления, в большинстве случаев его достаточно оставить в среднем положении (примерно 20-25 кОм). Стрелочная головка подключается через галетный переключатель, с помощью которого можно выбирать один из трёх подстроечных резисторов, с помощью которых задаётся ток максимального отклонения амперметра. Таким образом, амперметр может работать в трёх диапазонах – до 50 мА, до 500 мА, до 5А, это обеспечивает максимальную точность показаний при любом токе нагрузки.

Сборка платы блока питания


Плата печатная:

Теперь, когда все теоретические аспекты учтены, можно приступать к сборке электронной части конструкции. Все элементы блока питания – регулятор напряжения, датчик температуры радиатора, блок защиты, усилитель шунта для амперметра собираются на одной плате, размеры которой 100х70 мм. Плата выполняется методом ЛУТ, ниже представлены несколько фотографий процесса изготовления.



Силовые дорожки, по которым течёт ток нагрузки, желательно залудить толстым слоем припоя для уменьшения сопротивления. Сперва на плату устанавливаются мелкие детали.

После этого все остальные компоненты. Микросхему 78L12, питающую датчик температуры и кулер, необходимо установить на небольшой радиатор, место для которого предусмотрено на печатной плате. В последнюю очередь на плату запаиваются провода, на которых выводятся вентилятор, термистор, кнопка сброса защиты, галетные переключатели, светодиоды, микросхема LM338, вход и выход напряжения. Вход напряжения удобнее всего подключить через DC разъём, при этом необходимо учитывать, что он должен обеспечивать большой ток. Все силовые провода необходимо использовать соответствующего току сечения, желательно медные. Плюс выхода с печатной платы идёт к выходным клеммам не напрямую, а через тумблер с двумя группами контактов. Вторая группа при этом включает и выключает светодиод, показывающий, подаётся ли на клеммы напряжение.




Сборка корпуса


Корпус можно как найти готовый, так и собрать самостоятельно. Изготовить его можно, например, из фанеры и ДВП, как я и сделал. В первую очередь вырезается прямоугольная передняя панель, на которой будут установлены все органы управления.

Затем изготавливаются стенки и днище ящика, конструкция скрепляется воедино саморезами. Когда готов каркас, можно устанавливать внутрь всю электронику.

Органы управления, стрелочные головки, светодиоды устанавливаются на свои места в передней панели, плата укладывается внутри корпуса, радиатор с вентилятором крепятся на заднюю панель. Для крепления светодиодов используются специальные держатели. Выходные клеммы желательно продублировать, тем более что место позволяет. Размеры корпуса получились 290х200х120 мм, внутри корпуса остаётся ещё много свободного пространства, и туда может уместиться, например, трансформатор для питания всего аппарата.







Настройка


Несмотря на множество подстроечных резисторов, настройка блока питания довольно проста. Первых делом калибруем вольтметр, подключив к выходным клеммам внешний. Вращая подстроечный резистор, включенный последовательно со стрелочной головкой вольтметра добиваемся равенства показаний. Затем подключаем на выход какую-либо нагрузку с амперметром и калибруем усилитель шунта. Вращая каждый и трёх подстрочных резисторов добиваемся совпадений показаний на каждом из трёх диапазонов измерений амперметра – в моём случае это 50 мА, 500 мА и 5А. Далее устанавливаем необходимые токи защиты с помощью четырёх подстроечных резисторов. Сделать это несложно, учитывая, что штатный амперметр уже откалиброван и показывает точный ток. Плавно повышаем напряжение (при этом повышается и ток) и смотрим, при каком токе срабатывает защита. Затем вращаем каждый из резисторов, устанавливая четыре нужных тока защиты, между которыми можно переключаться с помощью галетного переключателя. Теперь осталось лишь установить нужный порог срабатывания датчика температуры радиатора – настройка закончена.

Смотрите видео


sdelaysam-svoimirukami.ru

Защита в блоках питания ATX для компьютеров

Опубликовано 12.11.2018 автор — 0 комментариев

Приветствую вас, друзья! При работе любого электронного устройства могут возникнуть «завихрения», которые при отсутствии страховки, способны вывести его из строя, а в случае с БП в ПК – еще и несколько компонентов в придачу. Тема сегодняшней публикации – защита в блоках питания, с описанием всех необходимых опций. И так начнем.

Power Good

Из‐за специфики конструкции устройства, при включении, напряжение на выходе достигает необходимой величины не мгновенно, а по истечении 0,02 секунд.

Для того, чтобы исключить подачу пониженного напряжения к потребителям энергии, что может негативно сказаться на их работе, и обеспечить необходимые номиналы в 3,3, 5 и 12 Вольт, в блоках ATX выделена специальная линия, которая подает сигнал о нормальной работе БП.

Маркируется такой кабель серым цветом и, как и остальные, подключается к материнской плате. При отсутствии сигнала на линии, компьютер попросту не включится.

Защита от перепадов напряжения

От перенапряжения и его недостатка, компьютер защищает одна и та же схема, отключающая девайс, если напряжение на любой из линий не соответствует номинальному. Обозначается функция английской аббревиатурой UVP / OVP.

Некоторое неудобство в том, что контрольные точки, при достижении которых срабатывает защита, могут находиться на некотором удалении от номинального напряжения, но при этом устройство будет соответствовать спецификации ATX.

Например, допускается подача напряжения до 15 Вольт, однако при длительной работе в таком режиме, комплектующие могут попросту перегореть.

Защита от перегрузки по току

Как мы помним, сила тока – еще одна, не менее важная его характеристика. Согласно международным стандартам оргтехники, один проводник не может передавать более 240 Вольт‐Ампер, то есть 240 Ватт, в случае с постоянным током.

Максимально нагруженная цепь с напряжением 12 Вольт передаст не более 20 Ампер. При таком раскладе создать БП мощностью более 300 Ватт, не получится.

Для обхода этого ограничения, выводы 12 Вольт разбиваются на несколько групп с отдельной защитой по току (OCP) для каждой. При этом некоторые производители откровенно халтурят, используя только одну защитную схему, к которой подключаются все выводы, а срабатывает защита уже при 40 Амперах.

Определить «на глаз», какой именно подход использован, возможно только при разборке устройства и проверке его электрических цепей. Поэтому советую покупать комплектующие только тех брендов, в качестве продукции которых, вы уверены.

Защита от короткого замыкания

От КЗ блок питания защищает простая схема SCP, которая используется уже пару десятков лет. Для активации, достаточно пары транзисторов, при этом вовсе необязательно задействовать систему мониторинга рабочих параметров устройства.

Защита от перегрева

OTP выключает девайс, когда его температура достигает заданного значения. Схема присутствует только в качественных устройствах и базируется на паре термисторов, прикрепленных к радиатору или печатной плате.

Более сложный вариант – когда при превышении температуры, термистор заставляет быстрее вращаться кулер, регулируя рабочие параметры.

Защита по питанию

OPP или OPL – опциональный вид защиты, реализованный, с помощью специального контроллера или мониторинговой микросхемы. Схема контролирует количество тока, потребляемого из сети, и отключает БП при превышении определенного порога.

Найти любые по мощности и прочим характеристикам блоки питания для компьютера, а также все остальные комплектующие, вы можете в этом интернет‐магазине.

Также советую ознакомиться с публикациями «Что значит PFC в блоке питания» и «Сертификаты БП для ПК». Рейтинг лучших устройств вы найдете здесь.

Спасибо за внимание и до следующих встреч на страницах моего блога! Подпишитесь на новостную рассылку, чтобы быть в курсе последних обновлений.

С уважением, автор блога Андрей Андреев

infotechnica.ru

Почему срабатывает защита блока питания?

Теоретически, работа датчиков токовой защиты блока питания могла бы со­сто­ять в измерении падения напряжения на ре­зис­то­рах, включенных по­сле­до­ва­тель­но с на­груз­кой. Та­кой пря­мо­ли­ней­ный под­ход в про­ек­ти­ро­ва­нии це­пей, спо­соб­ных обес­пе­чи­вать то­ки в де­сят­ки ам­пер, при­вел бы к боль­шим по­те­рям. Оче­вид­ный трюк, уже мно­го лет ис­поль­зуме­мый раз­ра­бот­чи­ка­ми им­пуль­с­ных бло­ков пи­та­ния для пер­со­наль­ных ком­пью­те­ров, — за­ме­рять па­­де­­ние на­пря­же­ния на ин­дук­тив­но­стях в це­пи LC-филь­тра вы­ход­ных напряжений +12V, +5V, +3.3V.

Давайте рассмотрим, как реализована защита блока питания от превышения потребляемого тока на примере ис­поль­зо­ва­ния одного из лучших управляющих контроллеров WT7527 от Weltrend Semiconuctor. Этот чип с успехом применяется в серии Prime блоков питания Seasonic, пользующихся заслуженным уважением самых взы­с­ка­тель­ных пользователей.


Рис 1. Фрагмент принципиальной схемы подключения управляющего контроллера Weltrend Semiconuctor WT7527

Как следует из заводской документации, контроллер WT7527 обеспечивает четыре линии токовой защиты: две для линий +12V, и по одной для +3.3V и +5V. В связи с тем, что основной отбор мощности современные системные платы и вы­со­ко­у­ров­не­вые ви­део адап­теры вы­пол­ня­ет по двенадцативольтовой шине, остановимся на тонкостях ре­а­ли­за­ции OCP (Over Current Protection) именно для нее.

Ограничения по току

Если вы думаете, что в цепях питания персонального компьютера возможен любой произвол, с этой мыслью стоит сразу распрощаться. Международный стандарт IEC 60950-1, логотип которого вынесен в заголовок статьи, де­кла­ри­ру­ет предел мощности — не более 240VA по каждой шине. Физический смысл такого ограничения — пред­от­вра­тить ситуацию, при которой аварийная мощность, потребляемая в случае короткого замыкания, может быть вос­при­ня­та схемой токовой защиты как допустимая (потребляемая нагрузкой), что может привести к разрушению эле­мен­тов уст­ройства и даже возгоранию.

В случае с постоянным током можно говорить о 240 Ваттах, что устанавливает для 12-вольтовой линии лимит в 20 ампер. Обойти это ограничение очень просто: достаточно развести напряжения по разным шинам, как это делает, например, Chieftec в блоках питания APS-500C:

Как следует из информации на самом блоке питания по каждой их линий +12V1 и +12V2 подается ток 18А. Обычно, одна из них делегируется для питания процессора, другая используется для накопителей и сопутствующей пе­ри­фе­рии. Каждая из них обслуживается своей схемой токовой защиты: и овцы целы требования IEC 60950-1 со­блю­де­ны, и питание в норме.

В 700-ваттнике от FSP Group также востребован экстенсивный метод: 12-вольтовые линии разнесены на четыре канала, каждый из которых ограничен 18-амперным потреблением тока. При этом общая мощность че­ты­рех­ка­наль­но­го регулятора ограничена величиной 680 Ватт, что формально означает — суммарный ток че­ты­рех 12-вольтовых каналов не должен превышать лимит в 56.6 Ампер. (680W/12V=56.6A). Внимательный читатель заметит, что согласно дополнительному комментарию на этикетке имеют место более строгие ограничения: суммарный ток по линиям +12V не должен превышать 50 Ампер, а общий выходной ток ограничен лимитом в 70 Ампер. Очевидно, что умножение 18 ампер на четыре канала не дает сколько-нибудь полезной информации.

Современные тенденции в архитектуре блоков питания

Разделение нагрузки на примерно равные части является не более, чем трюком, ко­то­рым удачно воспользовались разработчики — питание неделимой нагрузки, потребляющей более 20 ампер по линии +12 вольт невозможно без нарушения норм безопасности. Очевидно, соблюдение этих норм зависит не только от разделения каналов в бло­ке питания, но и разводки силовых цепей в нагрузке.

Если мощный потребитель (например, видео адаптер), к которому подключено более одного разъема до­пол­ни­тель­но­го питания, соединяет их 12-вольтовые цепи в одну точку, либо соединяет 12-вольтовые линии разъема PCI Express и дополнительного питания, то результатом будет не только нарушение спецификации, но и риск создания дисбаланса в таких принудительно коммутируемых каналах. Это значит, что грамотная сборка высокоуровневых платформ и майнинговых ферм невозможна без верификации системы с помощью омметра. Или, перефразируя известного автора, «возможна, если вам не важен результат».

Если требуется питать неразделимую нагрузку большим током, соединение линий из недостатка превращается в преимущество — при раздельных каналах встречаются варианты, когда ток, обеспечиваемый блоком питания по линии дополнительного питания видео карты, недостаточен, хотя он и меньше суммарного тока всех каналов. При одной 100-амперной линии потребитель застрахован от данного типа несовместимости.

Дополнительные минусы единого канала также существуют, ведь потребляемый от линии питания ток является функцией времени. Например, для жесткого диска уровень потребления увеличивается при выполнении по­зи­ци­о­ни­ро­ва­ния, для CPU и GPU изменения могут быть обусловлены циклическим выполнением фрагментов кода, со­зда­ю­ще­го различную вычислительную нагрузку. В результате взаимовлияния компонентов и вследствие уве­ли­че­ния потребления тока может возрасти уровень помех по ли­ни­ям питания. Выведя регулятор громкости на пол­ную мощ­ность и за­пус­тив майнинг, не услышим ли мы в динамиках «звон биткоинов»?

composter.com.ua

cxema.org - Схема защиты блока питания и зарядных устройств

Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания - сетевыми, импульсными и аккумуляторами постоянного тока.
Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.

Силовая часть - мощный полевой транзистор - в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается.
Схема одновременно является защитой от переплюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных.
Шунт можно сделать также из резисторов с мощностью 1-3 ватт.


Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора.

При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным
Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные - IRF3205, IRL3705, IRL2505 и им подобные.


Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.
Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.

С уважением - АКА КАСЬЯН

  • < Назад
  • Вперёд >

vip-cxema.org

Узел защиты импульсного блока питания

РадиоКот >Схемы >Питание >Блоки питания >

Узел защиты импульсного блока питания

            Понадобился мне для трансивера IC-751A блок питания, который при напряжении 13,8В обеспечивал бы ток порядка 15 – 20А. Так ко мне в «пациенты» благодаря Виталию Холостякову UR4QTP попал импульсный блок питания (ИБП) РС АТХ TARGA PТ-400СF с заявленной мощностью в 400Вт. Блок построен на аналоге популярного контроллера ШИМ TL494, а именно КА7500, и супервизоре питания LP7510.

            О модернизации и регулировании напряжения ИБП достаточно много и подробно написано на множестве форумов в Интернете. Поэтому вопросов здесь особых не возникло, и достаточно быстро от блока было получено желаемое количество вольт. А вот с перестройкой узла защиты возникли проблемы.  Супервизор LP7510 при повышенном выходном напряжении не желал нормально работать, что приводило к нестабильному запуску блока даже без внешней нагрузки. «Обман» супервизор с помощью делителя напряжения вернул стабильный запуск с нагрузкой и без нее, но защита от превышения напряжения на выходе ИБП стала срабатывать при 16,8-17,2В, что при желаемом значении в 15В было явно много. В результате всех экспериментов ничего полезного не получилось, а LP7510 пал смертью храбрых. Поиски замены ему за вменяемые деньги ни к чему не привели, и, перечитав множество статей в Интернете, решил я собрать новый узел защиты на популярной микросхеме LM339. С помощью ее 4-х компараторов удалось получить следующий набор защит:

- защита от снижения выходного напряжения ниже 9,6В

- защита от повышения выходного напряжения выше 14,8В

- защита от перегрева радиаторов с силовыми транзисторами и сборкой диодов Шоттки выше температуры 65 - 70°С

- защита от перегрузки

Защита от снижения выходного напряжения ниже 9,6В выполнена на компараторе DA1.1. Напряжение с выхода бока питания попадает через делитель напряжения R4-R6 на инвертирующий вход компаратора. На не инвертирующий вход подается опорное напряжение 1,9В. Подходящего стабилитрона под руками не нашлось, поэтому использовал индикаторный красный светодиод. Конденсатор С5 обеспечивает задержку срабатывания защиты на время, достаточное для запуска блока питания.

Защита от повышения выходного напряжения выше 14,8В выполнена на компараторе DA1.2. Напряжение с выхода бока питания попадает через делитель напряжения R11 – R13 на не инвертирующий вход компаратора. На инвертирующий вход подается опорное напряжение 3,9В от стабилитрона D4. Резистор R10 обеспечивает необходимый режим работы стабилитрона. Задержки срабатывания этой защиты не предусмотрено.

Защита от перегрева радиаторов выполнена на компараторе DA1.3. В качестве датчика температуры S1 используется 2 последовательно соединенных термостата типа KSD301-65 с температурой срабатывания 65°С и нормально замкнутыми контактами. При размыкании контактов хотя бы одного из термостатов напряжение на не инвертирующем входе  компаратора благодаря цепочке R16 – LED3 станет около 2,5-2,7В, что, при опорном напряжении на инвертирующем входе 1,9В, приведет к остановке ИБП. Светодиод выведен на переднюю панель для контроля срабатывания этой защиты.

Защита от перегрузки выполнена на компараторе DA1.4. Величина потребляемого тока контролируется по ширине импульсов тока силовых транзисторов с помощью датчика тока Т1. Диоды Шоттки D6 – D8 выпрямляют напряжение с датчика. Конденсатор С9 обеспечивает некоторую задержку срабатывания защиты. Подстроечный резистор R20 позволяет плавно установить ток срабатывания защиты.

            Диоды D1, D3, D5, D7 образуют схему «монтажного ИЛИ», что обеспечивает  развязку каналов защиты друг от друга.  Транзисторы VT1 – VT2 образуют схему «защелки» и обеспечивают удержание ИБП в отключенном состоянии при срабатывании хотя бы одного из каналов защиты.  Светодиод LED2 красного цвета выведен на переднюю панель и сигнализирует об аварийной остановке ИБП. Диоды D2 обеспечивает удержание «защелки» во включенном состоянии.

            Узел защиты питается напряжением +15В от источника питания дежурного режима через интегральный стабилизатор типа 7805. Мощность, которая выделяется при работе стабилизатора, составляет около  0,7Вт, поэтому его желательно установить на небольшой радиатор.

            Датчик тока Т1 намотан на ферритовом кольце диаметром 10мм (я использовал ферритовое кольцо желтого цвета, снятое со старой материнской платы) проводом 0,25 – 0,33мм в эмалевой изоляции. Всего намотано 25 витков в 2 провода. Далее конец одного провода соединяется с началом другого, в результате получается средняя точка датчика.

            Настройку узла защиты удобно выполнять отдельно по каждому каналу, для этого необходимо временно отключить один из выводов диода D2.

            Настройка защиты от снижении выходного напряжения выполняется подстроечным резистором R4. Для этого на выходе блока питания устанавливается напряжение необходимой величины и вращением оси R4 добиваются срабатывания защиты. После этого подстроечный резистор заменяем постоянным с таким же сопротивлением. Далее возвращаем  D2  на свое место и подбираем емкость конденсатора С5, начиная с меньшей, чем указано, величины, добиваясь устойчивого запуска ИБП с подключенной защитой без нагрузки.

            Настройку защиты от превышения выходного напряжения начинаем с отключения одного из выводов диода D2. На выходе блока питания устанавливается напряжение необходимой величины и вращением оси R11 добиваются срабатывания защиты. После этого подстроечный резистор заменяем постоянным с таким же сопротивлением.

            Канал защиты от перегрева настройки не требует. Достаточно проверить его работу, размыкая цепочку термостатов S1.

            При установке термостатов желательно нанести тонкий слой теплопроводящей пасты на место будущей их установки. Это позволит немного увеличить скорость срабатывания защиты.

            Настройку защиты от перегрузки начинают со снятия зависимости выходного напряжения датчика тока Т1 от тока нагрузки. Зависимость оказалась практически линейной, что позволило достаточно точно определить напряжение на выходе датчика при желаемой величине тока срабатывания. Я решил ограничиться величиной тока в 25А, а расчетное напряжение в моем случае оказалось 10,65В. Впоследствии эту величину пришлось уточнить  - 10,58В. С лабораторного блока питания подается напряжение рассчитанной величины в точку соединения D6 – D8 – C8 – R17 и вращением оси подстроечного резистора R20 добиваются срабатывания защиты. Далее возвращаем на место диод D2 и ИБП нагружается номинальной нагрузкой. Если при этом наблюдается срабатывание защиты от перегрузки то можно в небольших пределах изменить положение оси подстроечного резистора  R20 в сторону вывода, соединенного с общим проводом. Но увлекаться этим нельзя, так как это приведет к сильному загрублению защиты. В этом случае необходимо увеличить емкость конденсатора С9 до получения устойчивого запуска ИБП с подключенной нагрузкой номинальной величины.

            После окончания настройки необходимо проверить подключенное состояние диода D2. Без него «защелка» не будет удерживаться во включенном состоянии.

            Наличие 2-х светодиодов позволяет достаточно точно определить причину аварийной остановки ИБП и принять соответствующие меры.

            Из-за того, что узел защиты питается от источника питания дежурного режима, он совершенно не зависит от наличия или отсутствия напряжения на выходе ИБП. Поэтому при аварийной остановке «защелка» VT1 – VT2 останется во включенном состоянии. Для ее сброса достаточно отключить питание всего ИБП и дождаться потухания «аварийных» светодиодов. Теперь можно повторить запуск блока питания.

            Весь узел защиты собран на макетной плате подходящих размеров (примерно 50х50мм) и установлен вертикально у задней стенки родного металлического корпуса.


Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Схемы защиты в блоке питания

В спецификации качественного блока питания должны быть указаны меры защиты, такие как: UVP, OVP, SCP, OPP, OCP, OTP.

В характеристиках дешевых блоков питания могут быть указаны не все схемы защиты или вообще не указываться. Если производитель не упомянул о схемах защиты, то это не значит, что они отсутствуют. Для того, чтобы узнать какие именно меры защиты используются в вашем блоке питания – придется заглянуть внутрь. Чаще всего используют OPP и SCP – т.е. обычный предохранитель. А такой защиты не всегда может хватить и в случае ЧП, придется заниматься самостоятельным ремонтом материнской платы, блока питания и тд. Почему самостоятельным ремонтом? Вы ведь сэкономили на БП, зачем еще тратить деньги на сервисный центр.

Схемы защиты

Схемы защиты в блоках питания предназначены для отключения основных выходов при сбоях. Определить какие схемы защит установлены в вашем блоке питания можно по спецификации производителя.

Качественные блоки питания оснащены всеми схемами защиты, которые перечислены ниже:

UVP (Under Voltage Protection) — защита от низкого напряжения;
OVP (Over Voltage Protection) — защита от превышения выходных напряжений;
SCP (Short Circuit Protection) — защита от короткого замыкания. Защита обязательна для всех блоков питания стандарта ATX12V;
OPP (Over Power Protection) или OLP — защита от перегрузки по суммарной мощности по всем каналам;
OCP (Over Current Protection) — защищает от скачков тока при перегрузке любого из выходов;
OTP (Over Temperature Protection) — защита от перегрева. Максимальная температура во время работы не должна быть выше +50°С

Если производитель не указал схемы защиты в характеристиках блока питания, то необходимо брать отвертку и снимать крышку блока питания, чтобы увидеть, какие схемы защит установлены.

На этом снимке можно увидеть чип The Weltrend WT7517 IC, который обеспечивает OVP и UVP — защиту от превышения и понижения выходных напряжений всех трех входов напряжения (3,3 В, 5В, 12В)

Обычный предохранитель или OPP или SCP. Такой защиты недостаточно, и без чипа защиты компьютерные комплектующие могут находиться под некоторой угрозой.

hardwareguide.ru

УСТРОЙСТВО ЗАЩИТЫ ДЛЯ ЛЮБОГО БЛОКА ПИТАНИЯ


   Это небольшой блок универсальной защиты от короткого замыкания, что предназначен для использования в сетевых источниках питания. Она специально разработана так, чтобы вписаться в большинство блоков питания без переделки их схемы. Схема, несмотря на наличие микросхемы, очень проста для понимания. Сохраните её на компьютер, чтоб увидеть в лучшем размере.

Схема блока защиты БП

   Чтобы спаять схему вам понадобится:

  1. 1 - TL082 сдвоенный ОУ
  2. 2 - 1n4148 диод
  3. 1 - tip122 транзистор NPN
  4. 1 - BC558 PNP транзистор BC557, BC556
  5. 1 - резистор 2700 ом
  6. 1 - резистор 1000 ом
  7. 1 - резистор 10 ком
  8. 1 - резистор 22 ком
  9. 1 - потенциометр 10 ком
  10. 1 - конденсатор 470 мкф
  11. 1 - конденсатор 1 мкф
  12. 1 - нормально закрытый выключатель
  13. 1 - реле модели Т74 "G5LA-14"

Подключение схемы к БП

   Здесь резистор с низким значением сопротивления соединен последовательно с выходом источника питания. Как только ток начинает течь через него, появится небольшое падение напряжения и мы будем использовать это падение напряжения, чтобы определить, является ли питание результатом перегрузки или короткого замыкания. В основе этой схемы операционный усилитель (ОУ) включенный в качестве компаратора.

  • Если напряжение на неинвертирующем выходе выше, чем на инвертирующем, то на выходе устанавливается "высокий" уровень.
  • Если напряжение на неинвертирующем выход ниже, чем на инвертирующем, то на выходе устанавливается "низкий" уровень.

   Правда это не имеет ничего общего с логическим 5 вольтовым уровнем обычных микросхем. Когда ОУ находится в "высоком уровне", его выход будет очень близким к положительному потенциалу напряжения питания, поэтому, если питание +12 В, "высокий уровень" будет приближаться к +12 В. Когда ОУ находится в "низком уровне", его выход будет почти на минусе напряжения питания, поэтому, близко к 0 В.

   При использовании ОУ в качестве компараторов, мы обычно имеем входной сигнал и опорное напряжение для сравнения этого входного сигнала. Итак, у нас есть резистор с переменным напряжением, которое определяется в соответствии с током, который течет через него и опорным напряжением. Этот резистор является наиболее важной частью схемы. Он подключен последовательно с питанием выходного. Вам необходимо выбрать резистор, падение напряжения на котором составляет примерно 0.5~0.7 вольт при перегрузке тока, проходящего через него. Ток перегрузки появляется в тот момент, когда схема защиты срабатывает и закрывает выход питания для предотвращения повреждений на нем.

   Вы можете выбрать резистор, используя закон Ома. Первое, что нужно определить, является перегрузка током блока питания. Для этого надо знать максимальный допустимый ток блока питания.

   Допустим, ваш блок питания может выдать 3 ампера (при этом напряжение блока питания не имеет значения). Итак, мы получили Р= 0,6 В / 3 А. Р = 0.2 Ом. Следующее, что вы должны сделать, это рассчитать рассеиваемую мощность на этом резисторе по формуле: Р=V*I. Если мы используем наш последний пример, то получим: Р=0.6 В * 3 А. Р = 1,8 Вт - 3 или 5 Вт резистора будет более чем достаточно.

   Чтобы заставить работать схему, вы должны будете подать на неё напряжение, которое может быть от 9 до 15 В. Для калибровки подайте напряжение на инвертирующий вход ОУ и поверните потенциометр. Это напряжение будет увеличиваться или уменьшаться в зависимости от стороны, куда вы поворачиваете его. Значение необходимо скорректировать согласно коэффициента усиления входного каскада 0.6 Вольт (что-то около 2.2 до 3 вольт если ваш усилительного каскада похож на мой). Эта процедура занимает некоторое время, и лучший способ для калибровки это метод научного тыка. Вам может потребоваться настроить более высокое напряжение на потенциометре, так чтоб защита не срабатывала на пиках нагрузки. Скачать файл проекта.


Поделитесь полезными схемами

СХЕМА САМОДЕЛЬНОГО РАДИОЖУЧКА

   Схема простого самодельного жучка, собранного на планарных радиодеталях. Отлично подходит в качестве миниатюрного радиомикрофона на концертах и других мероприятиях.


РАДИОПЕРЕДАТЧИК НА FM

   Схема передатчика малой мощности на диапазон 88-108 мегагерц, собранного с операционным усилителем LM741.




САМОДЕЛЬНАЯ УЛЬТРАЗВУКОВАЯ ПИЩАЛКА

   Данная ультразвуковая пищалка предназначен для тех людей, кого достали шумные соседи. Но обо всем по порядку. Устройство из себя представляет простейший преобразователь напряжения на основе блокинг - генератора.  Излучателем служит пьезоголовка, ее можно достать из калькулятора, старых наручных часов, музыкальной шкатулки или игрушечной машинки, в общем думаю у каждого дома можно найти такую штуку. 


samodelnie.ru

0 comments on “Защита блока питания – Мощный блок питания с защитой по току

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *