Сток исток – Полевой транзистор — Википедия

Полевой транзистор — Википедия

Мощный полевой транзистор с каналом N-типа

Полево́й (униполя́рный) транзи́стор — полупроводниковый прибор, принцип действия которого основан на управлении электрическим сопротивлением токопроводящего канала поперечным электрическим полем, создаваемым приложенным к затвору напряжением.

Область, из которой носители заряда уходят в канал, называется истоком, область, в которую они входят из канала, называется стоком, электрод, на который подается управляющее напряжение, называется затвором.

История создания полевых транзисторов[править | править код]

Схема полевого транзистора

В 1953 году Дейки и Росс предложили и реализовали конструкцию полевого транзистора — с управляющим p-n-переходом.

Впервые идея регулировки потока основных носителей электрическим полем в транзисторе с изолированным затвором была предложена Лилиенфельдом в 1926—1928 годах. Однако трудности в реализации этой идеи на практике позволили создать первый работающий прибор только в 1960 году. В 1966 году Карвер Мид (англ.)русск. усовершенствовал эту конструкцию, шунтировав электроды такого прибора диодом Шоттки.

В 1977 году Джеймс Маккаллахем из Bell Labs установил, что использование полевых транзисторов может существенно увеличить производительность существующих вычислительных систем.

Полевые транзисторы классифицируют на приборы с управляющим p-n-переходом и с изолированным затвором, так называемые МДП («металл-диэлектрик-полупроводник»)-транзисторы, которые также называют МОП («металл-оксид-полупроводник»)-транзисторами, причём последние подразделяют на транзисторы со встроенным каналом и приборы с индуцированным каналом.

К основным параметрам полевых транзисторов причисляют: входное сопротивление, внутреннее сопротивление транзистора, также называемое выходным, крутизну стокозатворной характеристики, напряжение отсечки и некоторые другие.

Транзисторы с управляющим p-n-переходом[править | править код]

Рис. 1. Конструкция полевого транзистора с управляющим p-n-переходом и каналом n-типа
а) с затвором со стороны подложки;
b) с диффузионным затвором.

Полевой транзистор с управляющим p-n-переходом[1] (JFET) — это полевой транзистор, в котором пластина из полупроводника, например p-типа (Рис. 1), имеет на противоположных концах электроды (исток и сток), с помощью которых она включена в управляемую цепь. Управляющая цепь подключается к третьему электроду (затвору) и образуется областью с другим типом проводимости, в примере на рисунке — n-типом.

Источник постоянного смещения, включенный во входную цепь, создаёт на единственном p-n-переходе обратное (запирающее) напряжение. Во входную цепь также включается и источник усиливаемого сигнала. При изменении входного напряжения изменяется обратное напряжение на p-n-переходе, в связи с чем меняется толщина обедненного слоя, то есть изменяется площадь поперечного сечения области в криcталле, через которую проходит поток основных носителей заряда. Эта область называется каналом.

Электроды полевого транзистора называются:

  • исток (англ. source) — электрод, из которого в канал входят основные носители заряда;
  • сток (англ. drain) — электрод, через который из канала уходят основные носители заряда;
  • затвор (англ. gate) — электрод, служащий для регулирования поперечного сечения канала.

Тип полупроводниковой проводимости канала может быть как n-, так и p-типа. По типу проводимости канала различают полевые транзисторы с n-каналом и р-каналом. Полярности напряжений смещения, подаваемых на электроды транзисторов с n- и с p-каналом, противоположны.

Управление током и напряжением на нагрузке, включённой последовательно к каналу полевого транзистора и источнику питания, осуществляется изменением входного напряжения, вследствие чего изменяется обратное напряжение на p-n-переходе, что ведёт к изменению толщины запирающего (обеднённого) слоя. При некотором запирающем напряжении VP{\displaystyle V_{P}} площадь поперечного сечения канала станет равной нулю и ток через канал транзистора станет весьма малым.

Так как обратный ток p-n-перехода весьма мал, в статическом режиме или при низких рабочих частотах мощность, отбираемая от источника сигнала ничтожно мала. При высоких частотах ток, отбираемый от источника сигнала может быть значительным и идет на перезаряд входной ёмкости транзистора.

Таким образом, полевой транзистор по принципу управления током аналогичен электровакуумной лампе — триоду, но по виду сток-истоковых вольт-амперных характеристик близок к электровакуумному пентоду. При такой аналогии исток в полевом транзисторе подобен катоду вакуумного триода, затвор — сетке, сток — аноду. При этом существуют и отличия, например:

  • в транзисторе отсутствует катод, который требует подогрева;
  • любую из функций истока и стока может выполнять любой из этих электродов;
  • существуют полевые транзисторы как с n-каналом, так и с p-каналом, что используется при производстве комплементарных пар транзисторов.

От биполярного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением p-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы обладают низким уровнем шума (особенно на низких частотах) по сравнению с биполярными транзисторами, так как в полевых транзисторах нет инжекции неосновных носителей заряда и канал полевого транзистора может быть выполнен внутри полупроводникового кристалла. Процессы рекомбинации носителей в p-n-переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника порождают низкочастотные шумы.

Транзисторы с изолированным затвором (МДП-транзисторы)[править | править код]

Рис. 2. Устройство полевого транзистора с изолированным затвором.
a) — с индуцированным каналом, b) — со встроенным каналом

Полевой транзистор с изолированным затвором (MOSFET) — это полевой транзистор, затвор которого электрически изолирован от канала слоем диэлектрика.

В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильно легированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой диоксида кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.

Входное сопротивление МДП-транзисторов может достигать 1010…1014 Ом (у полевых транзисторов с управляющим p-n-переходом 107…109), что является преимуществом при построении высокоточных устройств.

Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.

В МДП-транзисторах с индуцированным каналом (рис. 2, а) проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (UЗИпор).

В МДП-транзисторах со встроенным каналом (рис. 2, б) у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой — канал, который соединяет исток со стоком.

Изображённые на рис. 2 структуры полевых транзисторов с изолированным затвором имеют подложку с электропроводностью n-типа. Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа.

МДП-транзисторы с индуцированным каналом[править | править код]

При напряжении на затворе относительно истока, равном нулю, и при подаче напряжения на сток, — ток стока оказывается ничтожно малым. Он представляет собой обратный ток p-n-перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе (для структуры, показанной на рис. 2, а) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе (меньших UЗИпор) у поверхности полупроводника под затвором возникает обеднённый основными носителями слой эффект поля и область объёмного заряда, состоящая из ионизированных нескомпенсированных примесных атомов. При напряжениях на затворе, больших

UЗИпор, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом p-типа, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, то есть ток в цепи нагрузки и относительно мощного источника питания. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.

В связи с тем, что затвор отделён от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.

Принцип усиления мощности в МДП-транзисторах можно рассматривать с точки зрения передачи носителями заряда энергии постоянного электрического поля (энергии источника питания в выходной цепи) переменному электрическому полю. В МДП-транзисторе до возникновения канала почти всё напряжение источника питания в цепи стока падало на полупроводнике между истоком и стоком, создавая относительно большую постоянную составляющую напряжённости электрического поля. Под действием напряжения на затворе в полупроводнике под затвором возникает канал, по которому от истока к стоку движутся носители заряда — дырки. Дырки, двигаясь по направлению постоянной составляющей электрического поля, разгоняются этим полем и их энергия увеличивается за счёт энергии источника питания, в цепи стока. Одновременно с возникновением канала и появлением в нём подвижных носителей заряда уменьшается напряжение на стоке, то есть мгновенное значение переменной составляющей электрического поля в канале направлено противоположно постоянной составляющей. Поэтому дырки тормозятся переменным электрическим полем, отдавая ему часть своей энергии.

МДП-транзисторы со встроенным каналом[править | править код]
Рис. 3. Выходные статические характеристики (a) и сток-затворная характеристика (b) МДП-транзистора со встроенным каналом. В данной схеме в качестве нелинейного элемента используется МДП транзистор с изолированным затвором и индуцированным каналом.

В связи с наличием встроенного канала в таком МДП-транзисторе (рис. 2, b), при подаче напряжения на сток, ток стока оказывается значительным даже при нулевом напряжении на затворе (рис. 3, b). Поперечное сечение и проводимость канала будут изменяться при изменении напряжения на затворе как отрицательной, так и положительной полярности. Таким образом, МДП-транзистор со встроенным каналом может работать в двух режимах: в режиме обогащения и в режиме обеднения канала носителями заряда. Эта особенность МДП-транзисторов со встроенным каналом отражается и на смещении выходных статических характеристик при изменении напряжения на затворе и его полярности (рис. 3).

Статические характеристики передачи (рис. 3, b) выходят из точки на оси абсцисс, соответствующей напряжению отсечки UЗИотс, то есть напряжению между затвором и истоком МДП-транзистора со встроенным каналом, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения.

Формулы расчёта Ic{\displaystyle I_{c}} в зависимости от напряжения UЗИ

1. Транзистор закрыт U3u<Unop{\displaystyle U_{3u}<U_{nop}}

Ic=0{\displaystyle I_{c}=0}

Пороговое значение напряжения МДП транзистора Unop=1.5B{\displaystyle U_{nop}=1.5B}

2. Параболический участок. U3u>Unop{\displaystyle U_{3u}>U_{nop}}

Ic=Kn[(U3u−Unop)Ucu−Ucu22]{\displaystyle I_{c}=K_{n}[(U_{3u}-U_{nop})U_{cu}-{\frac {U_{cu}^{2}}{2}}]}

Kn{\displaystyle K_{n}}-удельная крутизна передаточной характеристики транзистора.

3. Дальнейшее увеличение U3u{\displaystyle U_{3u}} приводит к переходу на пологий уровень.

Ic=Kn2[U3u−Unop]2{\displaystyle I_{c}={\frac {K_{n}}{2}}[U_{3u}-U_{nop}]^{2}} — Уравнение Ховстайна.
МДП-структуры специального назначения[править | править код]

В структурах типа металл-нитрид-оксид-полупроводник (МНОП) диэлектрик под затвором выполняется двухслойным: слой оксида SiO2 и толстый слой нитрида Si3N4. Между слоями образуются ловушки электронов, которые при подаче на затвор МНОП-структуры положительного напряжения (28—30 В) захватывают туннелирующие через тонкий слой SiO2 электроны. Образующиеся отрицательно заряженные ионы повышают пороговое напряжение, причём их заряд может храниться до нескольких лет при отсутствии питания, так как слой SiO2 предотвращает утечку заряда. При подаче на затвор большого отрицательного напряжения (28…30 В), накопленный заряд рассасывается, что существенно уменьшает пороговое напряжение.

Структуры типа металл-оксид-полупроводник (МОП) с плавающим затвором и лавинной инжекцией (ЛИЗМОП) имеют затвор, выполненный из поликристаллического кремния, изолированный от других частей структуры. Лавинный пробой p-n-перехода подложки и стока или истока, на которые подаётся высокое напряжение, позволяет электронам проникнуть через слой окисла на затвор, вследствие чего на нём появляется отрицательный заряд. Изолирующие свойства диэлектрика позволяют сохранять этот заряд десятки лет. Удаление электрического заряда с затвора осуществляется с помощью ионизирующего ультрафиолетового облучения кварцевыми лампами, при этом фототок позволяет электронам рекомбинировать с дырками.

В дальнейшем были разработаны структуры запоминающих полевых транзисторов с двойным затвором. Встроенный в диэлектрик затвор используется для хранения заряда, определяющего состояние прибора, а внешний (обычный) затвор, управляемый разнополярными импульсами для ввода или удаления заряда на встроенном (внутреннем) затворе. Так появились ячейки, а затем и микросхемы флэш-памяти, получившие в наши дни большую популярность и составившие заметную конкуренцию жестким дискам в компьютерах.

Для реализации сверхбольших интегральных схем (СБИС) были созданы сверхминиатюрные полевые микротранзисторы. Они делаются с применением нанотехнологий с геометрическим разрешением менее 100 нм. У таких приборов толщина подзатворного диэлектрика доходит до нескольких атомных слоев. Используются различные, в том числе трехзатворные структуры. Приборы работают в микромощном режиме. В современных микропроцессорах корпорации Intel число приборов составляет от десятков миллионов до 2 миллиардов. Новейшие полевые микротранзисторы выполняются на напряженном кремнии, имеют металлический затвор и используют новый запатентованный материал для подзатворного диэлектрика на основе соединений гафния[2].

В последние четверть века бурное развитие получили мощные полевые транзисторы, в основном МДП-типа. Они состоят из множества маломощных структур или из структур с разветвлённой конфигурацией затвора. Такие ВЧ и СВЧ приборы впервые были созданы в СССР специалистами НИИ «Пульсар» Бачуриным В. В. (кремниевые приборы) и Ваксембургом В. Я. (арсенид-галлиевые приборы) Исследование их импульсных свойств было выполнено научной школой проф. Дьяконова В. П. (Смоленский филиал МЭИ). Это открыло область разработки мощных ключевых (импульсных) полевых транзисторов со специальными структурами, имеющих высокие рабочие напряжения и токи (раздельно до 500—1000 В и 50-100 А). Такие приборы нередко управляются малыми (до 5 В) напряжениями, имеют малое сопротивление в открытом состоянии (до 0,01 Ом) у сильноточных приборов, высокую крутизну и малые (в единицы-десятки нс) времена переключения. У них отсутствует явление накопления носителей в структуре и явление насыщения, присущее биполярным транзисторам. Благодаря этому мощные полевые транзисторы успешно вытесняют мощные биполярные транзисторы в области силовой электроники малой и средней мощности[3][4].

За рубежом в последние десятилетия стремительно развивается технология транзисторов на высокоподвижных электронах (ТВПЭ), которые широко используются в СВЧ устройствах связи и радионаблюдения. На основе ТВПЭ создаются как гибридные, так и монолитные микроволновые интегральные схемы. В основе действия ТВПЭ лежит управление каналом с помощью двумерного электронного газа, область которого создаётся под контактом затвора благодаря применению гетероперехода и очень тонкого диэлектрического слоя — спейсера[5].

Схемы включения полевых транзисторов[править | править код]

Полевой транзистор в каскаде усиления сигнала можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).

Схема включения полевого транзистора с управляющим p-n-переходом с общим истоком Схема включения полевого транзистора с управляющим p-n-переходом с общим стоком Схема включения полевого транзистора с управляющим p-n-переходом с общим затвором

На практике в усилительных каскадах чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с общим эмиттером (ОЭ). Каскад с общим истоком даёт большое усиление по мощности. Но, с другой стороны, этот каскад наиболее низкочастотный из-за вредного влияния эффекта Миллера и существенной входной ёмкости затвор-исток (Сзи).

Схема с ОЗ аналогична схеме с общей базой (ОБ). В этой схеме ток стока равен току истока, поэтому она не даёт усиления по току, и усиление по мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет специфическое практическое применение в усилительной технике. Преимущество такого включения — практически полное подавление эффекта Миллера, что позволяет увеличить максимальную частоту усиления и такие каскады часто применяются при усилении СВЧ.

Каскад с ОС аналогичен каскаду с общим коллектором (ОК) для биполярного транзистора — эмиттерным повторителем. Такой каскад часто называют истоковым повторителем. Коэффициент усиления по напряжению в этой схеме всегда немного меньше 1, а коэффициент усиления по мощности занимает промежуточное значение между ОЗ и ОИ. Преимущество этого каскада — очень низкая входная паразитная ёмкость и его часто используют в качестве буферного разделительного каскада между высокоомным источником сигнала, например, пьезодатчиком и последующими каскадами усиления. По широкополосным свойствам этот каскад также занимает промежуточное положение между ОЗ и ОИ.

Области применения полевых транзисторов[править | править код]

КМОП-структуры, строящиеся из комплементарной пары полевых транзисторов с каналами разного (p- и n-) типа, широко используются в цифровых и аналоговых интегральных схемах.

За счёт того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энергии, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов).

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.

В настоящее время полевые транзисторы находят всё более широкое применение в различных радиоустройствах, где с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью. Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где с успехом заменяют биполярные транзисторы и электронные лампы. Биполярные транзисторы с изолированным затвором (IGBT) — приборы, сочетающие биполярные и полевые транзисторы, — находят применение в устройствах большой мощности, например в устройствах плавного пуска, где успешно вытесняют тиристоры.

  1. И. П. Жеребцов. Основы электроники. Изд. 5-е. — Л., 1989. — С. 114.
  2. ↑ Дьяконов, 2004.
  3. ↑ Бачурин, Ваксембург, Дьяконов и др., 1994.
  4. ↑ Дьяконов, Максимчук, Ремнев, Смердов, 2002.
  5. ↑ Li, 2006.
  • Дьяконов В. П. Intel. Новейшие информационные технологии. Достижения и люди. — М.: СОЛОН-Пресс, 2004. — 416 с. — ISBN 5980031499.
  • Бачурин В. В., Ваксембург В. Я., Дьяконов В. П. и др. Схемотехника устройств на мощных полевых транзисторах: Справочник / Дьяконов В. П.. — М.: Радио и связь, 1994. — 280 с.
  • Дьяконов В. П., Максимчук А. А., Ремнев А. М., Смердов В. Ю. Энциклопедия устройств на полевых транзисторах / Дьяконов В. П.. — М.: СОЛОН-Р, 2002. — 512 с.
  • Li, Sheng S. Semiconductor Physical Electronics. — Second Edition. — Springer, 2006. — 708 с. — ISBN 978-0-387-28893-2.

ru.wikipedia.org

Полевой транзистор с управляющим PN-переходом

Полевой транзистор с управляющим PN-переходом – это очень мутная тема для многих начинающих электронщиков.

Введение

Как вы знаете, поле бывает разным. Бывает такое:

А бывает и такое))

Но речь пойдет совсем о других полях: невидимых… Мы их не видим, не слышим, но можем почувствовать. Например, гравитационное поле Земли тянет нас к центру Земли, хотим мы этого или нет. Некоторые виды полей без специальных приборов мы даже и не заметим. Это электрическое и магнитное поле. В данной статье мы с вами разберем электрическое поле.

Электрическое поле

Представьте себе, что мы взяли пару металлических пластинок. На одну из них мы подаем плюс питания, а на другую – минус.

В результате, они заряжаются, и между этими двумя пластинами создается однородное электрическое поле, которое характеризуется таким параметром, как напряженность. По идее, чем больше мы подадим напряжения между пластинами, тем напряженнее стает поле между этими пластинами.  Физика, 7-8 класс 😉

Но самое интересное, что это поле может влиять непосредственно на электроны. Если электрон пролетит между этими двумя пластинами, плюсовая пластина  начнет притягивать его к себе и траектория полета электрона будет уже искривлена. Чем больше напряженность поля, тем больше оно будет влиять на траекторию движения электрона. На этом принципе основана работа кинескопных телевизоров.

Какой вывод можно сделать из всего этого? Электрическое поле влияет на электроны и не только на электроны, но и на другие частицы, обладающие положительным, либо отрицательным зарядом. Это утверждение запомним. Оно нам еще пригодится.

Также вы со школы должны помнить еще одно утверждение: одноименные заряды отталкиваются, а разноименные  притягиваются:

Взаимодействие полупроводников

Мы с вами  знаем из статьи Биполярный транзистор, что есть два типа искусственных легированных полупроводников. Это полупроводник N-типа и полупроводник P-типа. Как вы помните, в полупроводнике N-типа у нас избыток электронов (там их ОЧЕНЬ много):

А в полупроводнике P-типа избыток дырок:

Если вы не забыли, электроны у нас обладают отрицательным зарядом ( – ), а дырки – положительным зарядом ( + ). Поэтому, на картинках мы заполнили наши бруски полупроводников соответствующими зарядами.

А что будет, если соединить их друг с другом?

Так как электроны и дырки постоянно находятся в хаотическом движении, на границе соединения P и N полупроводников начнется диффузия. Что такое диффузия? Как говорит нам Википедия, диффузия – это процесс взаимного проникновения молекул или атомов одного вещества между молекулами или атомами другого вещества.

Пример:

Если пустить шептуна на парах, то в этом случае ваши вонючие молекулы из пукана будут смешиваться с молекулами воздуха и сосед через парту учует ваш запах пельменей, которые вы съели на ужин.

На границе полупроводников происходит то же самое! Электроны и дырки начинают смешиваться.

Но если ваши вонючие молекулы, выпущенные из пукана, могут спокойно смешиваться с воздухом пока не займут все пространство кабинета, то на границе P-N перехода есть камень преткновения. И он заключается в том, что электроны и дырки обладают зарядом и начинают взаимодействовать с друг другом. Начинает работать правило, одноименные заряды отталкиваются, а разноименные притягиваются. Так как электроны и дырки разноименных зарядов, они начинают притягиваться к друг другу. То есть с одной стороны идет диффузия, а с другой стороны взаимодействие зарядов. Когда все это устаканивается, получается вот такая картинка:

Запирающий слой

Область, которая возникает между этими зарядами, называется запирающим слоем. Его также называют обедненным, от слова “бедный”, так как в нем нет основных носителей. Как вы помните, основные носители в N полупроводнике – это электроны, а в P полупроводнике – дырки. А раз нет свободных зарядов, то и электрический ток течь не может, так как электрический ток – это не что иное, как упорядоченное движение заряженных частиц в одном направлении. Получается, эта область по сути стает  диэлектриком , то есть областью, которая не проводит электрический ток.

Ну а теперь самое интересное. Оказывается, мы можем управлять толщиной этого запирающего слоя! Для этого достаточно увеличить напряженность электрического поля с помощью источника питания, то есть увеличить подаваемое напряжение, соблюдая необходимую полярность. Плюс источника напряжения подаем на N полупроводник, а минус источника – на P полупроводник.

Вот что у нас получится:

Электроны стремятся всей толпой к плюсовой клемме батареи, а дырки – к минусовой. В результате этого, запирающий слой стает намного шире. Это равносильно тому, что мы подаем обратное смещение на P-N переход. Чем больше напряжения мы подаем на P и N полупроводник, тем больше ширина запирающего слоя. Все элементарно и просто 😉

Если бы мы подали на P полупроводник  плюс, а на N  – минус, то у нас бы запирающий слой равнялся бы нулю и электрический ток прошел бы беспрепятственно через P-N переход. Как вы помните, это называется прямым включением P-N перехода. Но в этом случае мы должны подать напряжение больше, чем контактная разность потенциалов на границе переходов. Она равняется 0,6-0,7 Вольт, если используется материал кремний. Как только напряжение стает больше, чем 0,6-0,7 Вольт, начинается движение электрических зарядов. Диффузия усиливается еще тем, что электроны бегут к плюсовой клемме, а дырки – к минусовой.

Применение запирающего слоя

Но где же можно применить свойство “изменение толщины диэлектрика под воздействием напряженности электрического поля”? А давайте рассмотрим небольшой пример. Может быть вам потом станет ясно, где можно применить это свойство 😉

Итак, провинциальный городок X. Обычный будний день. Поток людей спешит по своим делам. Около тротуара стоит лавка с хот-догами. Пока что она еще не открылась, так как продавец сладко спит,  поэтому все проходят мимо этой лавки:

Но вот она открывается, и первые зеваки начинают “тусить” возле нее, чтобы отведать позавчерашних холодных протухших хот-догов)).

Продавец видит, что дела идут в гору и начинает еще быстрее обслуживать клиентов. То есть он вкладывает всю свою энергию, чтобы выдержать темп. Он начинает работать напряженнее. Чем напряженнее он обслуживает клиентов, тем их становиться больше. Зевакам ведь интересно, что за тусовка там намечается. А раз все покупают, то и они тоже хотят. Народу становится чуток больше.

Народ тихонько подваливает и продавец, чтобы не упустить выгоду, начинает работать изо всех сил. Наш бедный продавец работает, как белка в колесе. Тут уже не расслабишься, иначе народ уйдет к продавцу пончиков. На лбу у него выступил пот, напряжен так, что вот-вот уже лопнет от усталости! Но гляньте на тротуар… Движение ПЕРЕКРЫЛИ зеваки, которые жить не быть хотят купить эти протухшие хот-доги.

Мораль сей басни такова:

Коль хочешь жрать, готовь с утра).

Теперь давайте представим, что тротуар – это проводник. Люди – это электроны. Продавец – это какой-либо заряд, который если захочет, может работать либо напряженнее, либо вообще закрыть лавку.

Итак, что у нас тогда получается. Пока лавка закрыта, толпа зевак спокойно идет по своим делам в одном направлении. Продавца нет на месте. То есть заряд ноль. Это значит, что в данном направлении у нас спокойно течет электрический ток,  так как упорядоченное движение заряженных частиц – это и есть электрический ток

Как только продавец открыл лавку и стал работать,  некоторые зеваки стали толпиться у лавки. Но эта кучка зевак теперь мешается на тротуаре людям, которые действительно куда-то спешат по делам. То есть эта кучка зевает оказывает сопротивление потоку людей, спешащим по делам. Уже интереснее. Раз мешаются, значит меньше людей сможет пройти ниже толпы зевак за какое-то время. А что у нас значит этот параметр? Не силу тока ли случайно? Вот именно! Сила тока стала меньше!

Итак, теперь главный вопрос: от чего зависит поток людей? Да от продавца, мать его за ногу!

Как только он начинает орать: “Свежие хот-доги, бери, налетай, теще покупай!”, народу стает больше. То есть как только он начинает работать напряженнее, так и толпа зевак начинает больше заграждать тротуар. И все может закончится тем, что движение на тротуаре встанет колом. И да, кстати. Стоящая толпа зевак – это уже не электроны. Это обедненный слой, диэлектрик)

И вот ученые инженеры, которые поняли, что можно менять силу тока, управляя напряженностью электрического поля, создали радиоэлемент, который назвали в честь электрического поля, и имя его полевой транзистор.

Принцип работы транзистора

Схема полевого транзистора

В нашем примере мы тоже будем использовать вместо “тротуара” полупроводник N-типа. То есть мы имеем какой-либо брусочек из N полупроводника. В нем преобладают электроны. Конечно, их не так много, как в проводниках, но все же их достаточно, чтобы через этот брусок  мало-мальски тёк электрический ток.

Что будет, если на него подать напряжение? Как я уже сказал, хотя в  N полупроводнике избыток электронов, но их все равно не так много, как в проводниках. Поэтому через этот кусок N полупроводника побежит электрический ток, если мы приложим к нему постоянное или переменное напряжение.

Вы ведь не забыли, что хотя электроны и бегут к плюсу, но за направление электрического тока  во всем мире принято движение от плюса к минусу источника напряжения?

А теперь давайте впаяем в этот брусок полупроводник P-типа. Получится что-то типа этого:

Можно сказать, что у нас уже получился полевой транзистор.

На границе касания теперь образовался PN-переход с небольшим запирающим слоем!

Итого, у нас получился “кирпич” с тремя выводами.

Сток, исток, затвор

Полевой транзистор имеет три вывода. Вывод, с которого начинают свой путь электроны (основные носители) называется ИСТОКОМ. От слова “источник”. В разговорной речи мы источником называем родник, из которого бьет чистая вода. Поэтому нетрудно будет запомнить, что ИСТОК – это тот вывод, откуда начинают свой путь основные носители заряда. В данном случае это электроны. Место, куда они стекаются, называются СТОКОМ.

Эти два понятия нетрудно будет запомнить, если вспомнить водосточную систему с крыш ваших домов.

Истоком будет труба, которая собирает всю капли дождя с шифера или профнастила

А стоком будет конец  трубы, из которой вся дождевая вода будет выбегать на землю:

Но опять же, не забывайте, что мы говорим об электронах! А электроны бегут к плюсу. То есть по-нашенски получается что на СТОК мы подаем плюс, а на ИСТОК – минус.

А для чего нужен третий вывод?

Так, а давайте по приколу где-нибудь обрежем нашу водосточную трубу и воткнем туда вот такой прибамбас:

Называется он дисковым затвором. Чего бы мы добились, если бы воткнули этот дисковый затвор в нашу водосточную трубу? Да покрутив за баранку, мы могли бы регулировать поток воды! Мы можем вообще полностью перекрыть трубу, тогда в этом случае на стоке не стоит ждать дождевую водичку. А можем открыть наполовину, и регулировать поток воды со стока, чтобы при ливне у нас поток воды не смыл грядки и не сделал большую яму в земле. Удобно? Удобно.

Так вот, третий вывод полевого транзистора, который соединяется с P полупроводником называется тоже ЗАТВОРОМ и служит как раз для того, чтобы регулировать силу тока в бруске, через который бежит электрический ток 😉 Для этого достаточно подать на него напряжение, чтобы P-N переход был включен в обратном направлении, то есть в нашем случае подать МИНУС относительно ИСТОКА. Вся картина в целом будет выглядеть как-то вот так:

Канал транзистора

В этом случае, как вы видите на рисунке выше, запрещенный слой увеличивается в глубину бруска и начинает перекрывать дорогу электронам. В результате получается, что ширина “тротуара” для электронов стает меньше, и только некоторые электроны могут достичь назначенной цели, то есть СТОКА. Этот “тротуар” в полевом транзисторе называют каналом.

Так как у нас брусок сделан из N-полупроводника, следовательно и канал тоже у нас N-проводимости. Следовательно, такой  полевой транзистор называется N-канальным полевым транзистором с управляющим P-N переходом. На буржуйский манер это звучит как Junction Field-Effect-Transistors или просто JFET. Также неплохо было бы запомнить английские название выводов: Drain – сток, Source – исток, Gate – затвор.

А что будет, если на Bat2 мы еще больше добавим напряжения? То есть мы сделаем так, чтобы U2>U1. В этом случае у нас запирающий слой еще больше уйдет в брусок. Канал станет еще тоньше. Следовательно, увеличится сопротивление канала, что в свою очередь вызовет уменьшение силы тока через канал:

Если мы еще увеличим напряжение (U3>U2), то заметим, что при каком-то напряжении U3 у нас вообще перестанет течь ток через канал. Запирающий слой ПОЛНОСТЬЮ его перекроет:

Все, приехали… В этом случае мы ПОЛНОСТЬЮ перекрыли канал для дальнейшего движения электронов. А раз движуха электронов закончилась, то  откуда взяться электрическому току?  Ведь электрический ток – упорядоченное движение заряженных частиц, не так ли? Поэтому через исток-сток электрический бежать не будет.

Работа на практике

Ну что же, приступаем к практике.

В гостях у нас полевой N-канальный полевой транзистор с управляющим P-N переходом 2N5485:

Его распиновка будет выглядеть вот так:

В живую он выглядит вот так:

Для того, чтобы проверить писанину, которую вы прочитали,  соберем  вот такую схемку по рисункам выше:

Для удобства восприятия я нарисовал полевой транзистор, как он выглядит визуально.

Какие же напряжения допускаются при его эксплуатации? Если кому интересно, вот  на него даташит . Оттуда я взял безопасное напряжение для его проверки 15 Вольт, поэтому на Bat1 выставляю напряжение в 15 Вольт:

На Bat2 пока что устанавливаю 0 Вольт.

То есть это значит, что напряжение на Затвор-Истоке UЗИ=0 Вольт. А раз 0 Вольт, то канал у нас полностью открыт и электрончики в N полупроводнике спокойно бегут в одном направлении по своим делам. Но опять же, N полупроводник считается плохим проводником, так как в нем мало электронов. Поэтому, сила тока полностью открытого канала у нас будет 6,2 мА при напряжении в 15 Вольт. Сейчас даже можно вычислить сопротивление канала из закона Ома. R=U/I=15/6,2×10-3=2,42 КилоОма.

Если сравнивать эту ситуацию с продавцом хот-догов, то у нас это аналогично моменту, когда продавец еще дрыхнет дома:

А давайте добавим напряжение на Bat2 до полувольта.

Смотрим на миллиамперметр

Видели да? Сила тока через сток-исток уменьшилась!

Этот момент аналогичен тому, когда продавец только открыл свою лавку, и первые зеваки начинают тусить возле нее

А давайте еще добавим напряжение на Bat2 до 1 вольта:

Что мы видим на миллиамперметре?

Сила тока через Сток-Исток стала еще меньше! Но почему она стает меньше? Да дело в том, что запирающий слой стает все более толще от напряжения, тем самым уменьшая токопроводящий канал.

Это аналогично, когда продавец начинает уже тихонька напрягаться:

Давайте еще добавим полвольта на Bat2:

Смотрим на миллиамперметр:

Сила тока через канал стала еще меньше!

До какого же значения можно добавлять напряжение на Bat2? Уже при напряжении 2,3 Вольта

Электрический ток через канал полностью перестает бежать.

Канал стает полностью перекрытым.

Ну а этот момент аналогичен, когда продавец настолько напрягся, что перекрыл весь тротуар зеваками:

Дальнейшее увеличение напряжения на Bat2 уже ни к чему не приведет. Всегда можно подобрать такое обратное напряжение на ЗАТВОРЕ, при котором токопроводящий канал СТОК-ИСТОК будет полностью перекрыт.

Минуточку внимания. Все, что написано выше, мы применяли к N-канальному транзистору. Почему N-канальный, я думаю, вы уже догадались. Его внутреннее строение, как вы уже читали выше в статье, выглядит вот так:

И на схемах такой транзистор изображается вот так:

Р-канальный транзистор

Но есть также и P-канальный полевой транзистор с управляющим P-N переходом. Как вы уже догадались из названия, его канал сделан и полупроводника P-типа. Его внутреннее строение выглядит вот так:

На схемах обозначается так:

Обратите внимания на стрелочку по сравнению с N-канальным транзистором.

Принцип его действия точно такой же, просто основными носителями заряда будут являться уже дырки. Следовательно, все напряжения в схеме  меняем на противоположные:

Также не забываем, что вывод, откуда начинают движение основные носители (как вы помните в P полупроводнике это дырки), называется ИСТОКОМ.

Заключение

P-канальный транзистор используется еще реже, чем N-канальный. Да и вообще, полевой транзистор с PN- переходом давно уже канул в лету, но все таки кое-где до сих пор применяются. На смену им пришли полевые транзисторы (MOSFET, МОП) , о которых я поведу речь в следующих статьях.

Читайте далее: как проверить полевой транзистор с управляющим PN-переходом.

www.ruselectronic.com

Полевой МОП транзистор | Практическая электроника

Что такое MOS, MOSFET, МОП транзистор?

Как часто вы слышали название МОП, MOSFET, MOS, полевик, МДП-транзистор, транзистор с изолированным затвором? Да-да… это все слова синонимы и относятся они к одному и тому же радиоэлементу.

Полное название такого радиоэлемента на английский манер звучит как Metal Oxide Semiconductor Field Effect Transistors (MOSFET), что в дословном переводе звучит как Металл Оксид Полупроводник Поле Влияние Транзистор. Если преобразовать на наш могучий русский язык, то получается как полевой транзистор со структурой Металл Оксид Полупроводник или просто МОП-транзистор ;-). Почему МОП-транзистор также называют МДП-транзистором и транзистором с изолированным затвором? С чем это связано? Об этих и других вещах вы узнаете в нашей статье. Не переключайтесь на другую вкладку! 😉

Виды МОП-транзисторов

В семействе МОП-транзисторов в основном выделяют 4 вида:

1) N-канальный с индуцированным каналом

2) P-канальный с индуцированным каналом

3) N-канальный со встроенным каналом

4) P-канальный со встроенным каналом

Как вы могли заметить, разница только в обозначении самого канала. С индуцированным каналом он обозначается штриховой линией, а со встроенным каналом – сплошной.

В современном мире МОП-транзисторы со встроенным каналом используются все реже и реже, поэтому в наших статьям мы их затрагивать не будем, а будем рассматривать только N и P – канальные транзисторы с индуцированным каналом.

Откуда пошло название “МОП”

Начнем наш цикл статей про МОП-транзисторы именно с самого распространенного N-канального МОП-транзистора с индуцированным каналом. Go!

Если взять тонкий-тонкий нож и разрезать МОП-транзистор вдоль, то можно увидеть вот такую картину:

Если рассмотреть с точки зрения еды на вашем столе, то МОП-транзистор будет больше похож на бутерброд. Полупроводник P-типа – толстый кусок хлеба, диэлектрик – тонкий кусок колбасы, а сверху кладем еще слой металла – тонкую пластинку сыра. И у нас получается вот такой бутерброд:

А как  будет строение транзистора сверху-вниз? Сыр – металл, колбаса – диэлектрик, хлеб – полупроводник. Следовательно получаем Металл-Диэлектрик-Полупроводник. А если взять первые буквы с каждого названия, то получается МДП – Металл-Диэлектрик-Полупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором ;-). А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO2), можно сказать что почти стекло, то и вместо названия “диэлектрик” взяли название “оксид, окисел”, и получилось Металл-Окисел-Полупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места 😉

Строение МОП-транзистора

Давайте еще раз рассмотрим структуру нашего МОП-транзистора:

Имеем “кирпич” полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому их концентрация в данном материале намного больше, чем электронов. Но электроны тоже есть в P-полупроводнике. Как вы помните, электроны в P-полупроводнике –  это неосновные носители и их концентрация очень мала, по сравнению с дырками. “Кирпич” P-полупроводника носит название Подложки. Она является основой МОП-транзистора, так как на ней создаются другие слои. От подложки выходит вывод с таким же названием.

Другие слои – это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От  полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток.

Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод и называется Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором.

Подложка МОП-транзистора

Итак, смотря на рисунок выше, мы видим, что МОП-транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор, Подложка), а в реальности только 3. В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:

Поэтому, требуется соблюдать цоколевку при подключении МОП-транзистора в схему.

Принцип работы МОП-транзистора

Тут все то же самое как и в полевом транзисторе с управляющим PN-переходом. Исток – это вывод, откуда начинают свой путь основные носители заряда, Сток – это вывод, куда они притекают, а Затвор – это вывод, с помощью которого мы контролируем поток основных носителей.

Пусть Затвор у нас пока что никуда не подключен. Для того, чтобы устроить движуху электронов через Исток-Сток, нам потребуется источник питания Bat:

Если рассмотреть наш транзистор с точки зрения P-N переходов и диодов на их основе, то можно нарисовать эквивалентную схемку для нашего рисунка. Она будет выглядеть вот так:

где

И-исток, П-Подложка, С-Сток.

Как вы видите, диод VD2 включен в обратном направлении, так что электрический ток никуда не потечет.

Значит, в этой схеме

никакой движухи электрического тока не намечается.

НО…

Индуцирование канала в МОП-транзисторе

Если подать определенное напряжение на Затвор, в подложке начинаются волшебные превращения. В ней начинает индуцироваться канал.

Индукция, индуцирование – это буквально означает “наведение”, “влияние”. Под этим термином понимают возбуждение в объекте какого-либо свойства или активности в присутствии возбуждающего субъекта (индуктора), но без непосредственного контакта (например, через электрическое поле). Последнее выражение для нас имеет более глубокий смысл: “через электрическое поле”.

Также нам не помешает вспомнить, как ведут себя заряды различных знаков. Те, кто не играл на физике на последней парте в  морской бой и не плевал через корпус шариковой ручки бумажными шариками в одноклассниц, тот наверняка вспомнит, что одноименные заряды отталкиваются, а разноименные – притягиваются:

На основе этого принципа еще в начале ХХ века ученые сообразили, где все это можно применить и создали гениальный радиоэлемент. Оказывается, достаточно подать на Затвор положительное напряжение относительно Истока, как сразу под Затвором возникает электрическое поле. А раз  подаем на Затвор положительное напряжение, значит он будет заряжаться положительно не так ли?

Так как у нас слой диэлектрика очень тонкий, следовательно, электрическое поле будет также влиять и на подложку, в которой дырок намного больше, чем электронов. А раз и на Затворе положительный потенциал и дырки обладают положительным зарядом, следовательно, одноименные заряды отталкиваются, а разноименные  – притягиваются. Картина будет выглядеть следующим образом пока что без источника питания между Истоком и Стоком:

Дырки обращаются в бегство подальше от Затвора и поближе к выводу Подложки, так как одноименные заряды отталкиваются, а электроны наоборот пытаются пробиться к металлической пластинке затвора, но им мешает диэлектрик, который не дает им воссоединиться с Затвором и уравнять потенциал до нуля. Поэтому электронам ничего другого не остается, как просто создать вавилонское столпотворение около слоя диэлектрика.

В результате, картина будет выглядеть следующим образом:

Видели да? Исток и Сток соединились тонким каналом из электронов! Говорят, что такой канал индуцировался из-за электрического поля, которое создал Затвор транзистора.

Так как этот канал соединяет Исток и Сток, которые сделаны из N+ полупроводника, следовательно у нас получился N-канал. А  такой транзистор уже будет называться N-канальным МОП-транзистором. Если вы читали статью проводники и диэлектрики, то наверняка помните, что в проводнике очень много свободных электронов. Так как Сток и Исток соединились мостиком из большого количества электронов, следовательно этот канал стал проводником для электрического тока. Проще говоря, между Истоком и Стоком образовался “проводок”, по которому может бежать электрический ток.

Получается, если подать напряжение между Стоком и Истоком при индуцированном канале, то мы можем увидеть вот такую картину:

Как вы видите, цепь стает замкнутой и в цепи начинает спокойно протекать электрический ток.

Но это еще не все! Чем сильнее электрическое поле, тем больше концентрация электронов, тем толще получается канал. А как сделать поле сильнее? Достаточно подать побольше напряжения на Затвор 😉 Подавая бОльшее напряжение на Затвор с помощью Bat2, мы  увеличиваем толщину канала, а значит и его проводимость! Или простыми словами, мы можем менять сопротивление канала, “играя” напряжением на затворе 😉 Ну гениальнее некуда!

Работа P-канального МОП-транзистора

В нашей статье мы разобрали N-канальный МОП транзистор с индуцированным каналом. Также есть еще и P-канальный  МОП-транзистор с индуцированным каналом. P-канальный работает точно также, как и N-канальный, но вся разница в том, что основными носителями будут являться уже дырки. В этом случае все напряжения в схеме меняем на инверсные, в отличие от N-канального транзистора:

На ютубе нашел очень неплохое видео, поясняющее работу полевого МОП-транзистора. Рекомендую к просмотру (не реклама):

А вот и  продолжение

www.ruselectronic.com

Сток исток затвор по английски

Полевым транзисторомназывается полупроводниковый усилительный прибор, сопротивление которого может изменяться под действием электрического поля. Изменение сопротивления достигается изменением удельного электрического сопротивления слоя полупроводника или изменением объема полупроводника, по которому проходит электрический ток.

В работе полевых транзисторов используются различные эффекты, такие, как изменение объема рп-перехода при изменении действующего на нем запирающего напряжения; эффекты обеднения, обогащения носителями зарядов или инверсии типа проводимости в приповерхностном слое полупроводника. Полевые транзисторы иногда называют униполярными, потому что ток, протекающий через них, обусловлен носителями только одного знака. Полевые транзисторы еще называют канальными транзисторами, поскольку управляющее работой транзистора электрическое поле проникает в полупроводник относительно неглубоко, и все процессы протекают в тонком слое, называемом каналом.

Управляющая цепь полевого транзистора практически не потребляет ток и мощность. Это позволяет усиливать сигналы от источников, обладающих очень большим внутренним сопротивлением и малой мощностью. Кроме того, это дает возможность размещать сотни тысяч транзисторов на одном кристалле микросхемы.

Полевые транзисторы с управляющим р-п-переходом

Рис. 5.1. Структурные схемы полевых транзисторов с

управляющим р-п-переходом с п‑ и р-каналами и их

условные графические обозначения.

Полевой транзистор может быть изготовлен в виде пластинки полупроводника (с п- или р-проводимостью), в одну из поверхностей которой вплавлен слой металла, называемый затвором, образующий плоский р-п-переход (рис. 5.1). К нижнему и верхнему торцам пластинки присоединяются выводы, называемые соответственно истоком и стоком. Если на затвор подается напряжение запирающей полярности (положительное на п-затвор и отрицательное на р-затвор), то в зависимости от его значения в канале (р-п-переходе) возникает обедненный носителями заряда слой, являющийся практически изолятором.

Изменяя напряжение на затворе от нуля до некоторого достаточно большого напряжения, называемого напряжением отсечки (напряжением запирания, или пороговым напряжением, см. рис. 5.6), можно так расширить объем полупроводника, занимаемого р-п-переходом, что он займет весь канал и перемещение носителей заряда между истоком и стоком станет невозможным. Транзистор полностью закроется (рис. 5.2).

В отличие от биполярных транзисторов, управляемых током, полевые транзисторы управляются напряжением, и, поскольку это напряжение приложено к управляющему р-п-переходу в обратной (запирающей) полярности, то ток в цепи управления практически не протекает (при напряжении 5 В ток управления не превышает 10 -10 А).

Полевые транзисторы с изолированным затвором

полевые транзисторы с индуцированным каналом

Рис. 5.3. Устройство и условные обозначения МОП-транзисторов с индуцированным каналом.

На рис. 5.3 показано устройство полевого транзистора с изолированным затвором, называемого МДП-транзистором. Это название обусловлено конструкцией: затвор выполнен из металла (М) и отделен тонким слоем диэлектрика (Д) от полупроводника (П), из которого сделан транзистор. Если транзистор изготовлен из кремния, то в качестве диэлектрика используется тонкая пленка оксида кремния. В этом случае на­звание изменяется на МОП-транзистор (металл-оксид-полупроводник).

Показанный на рис. 5.3 слева транзистор изготовлен на основе пластинки (подложки, или основания) из кремния с р-проводимостью. На поверхности пластинки диффузионным способом получены две области с п-проводимостью (исток и сток), разделенные областью п-канала, имеющей преобладающую р-проводимость. Вследствие этого при подаче на транзистор напряжения ток между истоком и стоком протекать не будет, ибо переходы сток-основание и исток-основание образуют два встречно включенных р‑п‑перехода, один из которых будет закрыт при любой полярности приложенного напряжения.

Однако, если на поверхностный слой р-полупроводника подействовать достаточно сильным электрическим полем, приложив между затвором и основанием напряжение положительной полярности, то между истоком и стоком начнет протекать ток. Это объясняется тем, что из приповерхностного слоя полупроводника, расположенного под затвором, электрическим полем будут оттесняться дырки и собираться электроны, образуя канал (с п-проводимостью, показанный на рис. 5.3 пунктирной линией), вследствие чего р‑п‑переходы исток-канал и канал-исток перестанут существовать. Проводимость п‑канала будет тем больше, чем больше напряжение, приложенное между затвором и основанием.

Транзистор рассмотренной конструкции называется МДП-транзистором с индуцированным каналом.

Основание обычно соединяется с истоком, но иногда напряжение на него подается отдельно, и тогда основание играет роль дополнительного затвора.

Если основание выполнено из п-кремния, исток и сток образованы сильно легированными областями с р‑проводимостями, а в качестве изолятора используется оксид кремния, то получается МОП-транзистор с индуцированным р‑каналом (с проводимостью р) (рис. 5.3 справа).

полевые транзисторы со встроенным каналом

МОП-транзисторы могут быть выполнены со встроенным каналом. Например, на рис. 5.4 слева приведена схема устройства такого транзистора с п-каналом. Основание выполнено из р-кремния, а исток и сток имеют п-проводимость и получены диффузионным способом. Исток и сток соединены сравнительно тонким каналом с незначительной р‑проводимостью.

Если основание сделано из п-кремния, а исток и сток из р-кремния, то транзистор имеет встроенный р-канал (рис. 5.4 справа).

Рис. 5.4. Устройство и условные обозначения МОП-транзисторов со встроенным каналом.

Работу п-канального МОП-транзистора можно пояснить так. Если на затвор подано отрицательное (относительно основания) напряжение, то электроны проводимости вытесняются из п-канала в основание, и проводимость канала уменьшается, вплоть до полного обеднения и запирания канала.

При подаче на затвор положительного напряжения п-канал обогащается электронами, и проводимость его увеличивается (рис.5.6).

Классификация и характеристики полевых транзисторов

Рис. 5.5. Классификация полевых транзисторов.

Рис. 5.6. Зависимость тока стока

от напряжения затвор-исток для

при постоянном напряжении

Полевые транзисторы бывают обедненного и обогащенного типа. К первым относятся все транзисторы с р‑п-переходом и п-канальные МОП-транзисторы обедненного типа. МОП-транзисторы обогащенного типа бывают как п-канальными, так и р-канальными (рис. 5.5).

Транзисторы обогащенного и обедненного типа отличаются только значением так называемого порогового напряжения, получаемого экстраполяцией прямолинейного участка характеристики (рис. 5.6.).

Выходными характеристиками полевого транзистора называются зависимости тока стока от напряжения сток-исток для различных значений напряжения затвор-исток.

Рис. 5.7. Выходные характеристики полевых транзисторов.

Часть 2. Полевой транзистор с изолированным затвором MOSFET

Полевой транзистор с изолированным затвором – это транзистор, затвор которого электрически изолирован от проводящего канала полупроводника слоем диэлектрика. Благодаря этому, у транзистора очень высокое входное сопротивление (у некоторых моделей оно достигает 10 17 Ом).

Принцип работы этого типа полевого транзистора, как и полевого транзистора с управляющим PN-переходом, основан на влиянии внешнего электрического поля на проводимость прибора.

В соответствии со своей физической структурой, полевой транзистор с изолированным затвором носит название МОП-транзистор (Металл-Оксид-Полупроводник), или МДП-транзистор (Металл-Диэлектрик-Полупроводник). Международное название прибора – MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

МДП-транзисторы делятся на два типа – со встроенным каналом и с индуцированным каналом. В каждом из типов есть транзисторы с N–каналом и P-каналом.

Устройство МДП-транзистора (MOSFET) с индуцированным каналом.

На основании (подложке) полупроводника с электропроводностью P-типа (для транзистора с N-каналом) созданы две зоны с повышенной электропроводностью N + -типа. Все это покрывается тонким слоем диэлектрика, обычно диоксида кремния SiO2. Сквозь диэлектрический слой проходят металлические выводы от областей N + -типа, называемые стоком и истоком. Над диэлектриком находится металлический слой затвора. Иногда от подложки также идет вывод, который закорачивают с истоком

Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.

Подключим напряжение любой полярности между стоком и истоком. В этом случае электрический ток не пойдет, поскольку между зонами N + находиться область P, не пропускающая электроны. Далее, если подать на затвор положительное напряжение относительно истока Uзи, возникнет электрическое поле. Оно будет выталкивать положительные ионы (дырки) из зоны P в сторону подложки. В результате под затвором концентрация дырок начнет уменьшаться, и их место займут электроны, притягиваемые положительным напряжением на затворе.

Когда Uзи достигнет своего порогового значения, концентрация электронов в области затвора превысит концентрацию дырок. Между стоком и истоком сформируется тонкий канал с электропроводностью N-типа, по которому пойдет ток Iси. Чем выше напряжение на затворе транзистора Uзи, тем шире канал и, следовательно, больше сила тока. Такой режим работы полевого транзистора называется режимом обогащения.

Принцип работы МДП-транзистора с каналом P–типа такой же, только на затвор нужно подавать отрицательное напряжение относительно истока.

Вольт-амперные характеристики (ВАХ) МДП-транзистора с индуцированным каналом.

ВАХ полевого транзистора с изолированным затвором похожи на ВАХ полевого транзистора с управляющим PN-переходом. Как видно на графике а), вначале ток Iси растет прямопропорционально росту напряжения Uси. Этот участок называют омическая область (действует закон Ома), или область насыщения (канал транзистора насыщается носителями заряда ). Потом, когда канал расширяется почти до максимума, ток Iси практически не растет. Этот участок называют активная область.

Когда Uси превышает определенное пороговое значение (напряжение пробоя PN-перехода), структура полупроводника разрушается, и транзистор превращается в обычный проводник. Данный процесс не восстановим, и прибор приходит в негодность.

Устройство МДП-транзистора (MOSFET) со встроенным каналом.

Физическое устройство МДП-транзистора со встроенным каналом отличается от типа с индуцированным каналом наличием между стоком и истоком проводящего канала.

Работа МДП-транзистора (MOSFET) со встроенным каналом N-типа.

Подключим к транзистору напряжение между стоком и истоком Uси любой полярности. Оставим затвор отключенным (Uзи = 0). В результате через канал пойдет ток Iси, представляющий собой поток электронов.

Далее, подключим к затвору отрицательное напряжение относительно истока. В канале возникнет поперечное электрическое поле, которое начнет выталкивать электроны из зоны канала в сторону подложки. Количество электронов в канале уменьшиться, его сопротивление увеличится, и ток Iси уменьшиться. При повышении отрицательного напряжения на затворе, уменьшается сила тока. Такое состояние работы транзистора называется режимом обеднения.

Если подключить к затвору положительное напряжение, возникшее электрическое поле будет притягивать электроны из областей стока, истока и подложки. Канал расшириться, его проводимость повыситься, и ток Iси увеличиться. Транзистор войдет в режим обогащения.

Как мы видим, МДП-транзистор со встроенным каналом способен работать в двух режимах — в режиме обеднения и в режиме обогащения.

Вольт-амперные характеристики (ВАХ) МДП-транзистора со встроенным каналом.

Преимущества и недостатки полевых транзисторов перед биполярными.

Полевые транзисторы практически вытеснили биполярные в ряде применений. Самое широкое распространение они получили в интегральных схемах в качестве ключей (электронных переключателей)

Главные преимущества полевых транзисторов

  • Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.
  • Усиление по току у полевых транзисторов намного выше, чем у биполярных.
  • Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.
  • У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.

Главные недостатки полевых транзисторов

  • У полевых транзисторов большее падение напряжения из-за высокого сопротивления между стоком и истоком, когда прибор находится в открытом состоянии.
  • Структура полевых транзисторов начинает разрушаться при меньшей температуре (150С), чем структура биполярных транзисторов (200С).
  • Несмотря на то, что полевые транзисторы потребляют намного меньше энергии, по сравнению с биполярными транзисторами, при работе на высоких частотах ситуация кардинально меняется. На частотах выше, примерно, чем 1.5 GHz, потребление энергии у МОП-транзисторов начинает возрастать по экспоненте. Поэтому скорость процессоров перестала так стремительно расти, и их производители перешли на стратегию «многоядерности».

При изготовлении мощных МОП-транзисторов, в их структуре возникает «паразитный» биполярный транзистор. Для того, чтобы нейтрализовать его влияние, подложку закорачивают с истоком. Это эквивалентно закорачиванию базы и эмиттера паразитного транзистора. В результате напряжение между базой и эмиттером биполярного транзистора никогда на достигнет необходимого, чтобы он открылся (около 0.6В необходимо, чтобы PN-переход внутри прибора начал проводить).

Однако, при быстром скачке напряжения между стоком и истоком полевого транзистора, паразитный транзистор может случайно открыться, в результате чего, вся схема может выйти из строя.

Важнейшим недостатком полевых транзисторов является их чувствительность к статическому электричеству. Поскольку изоляционный слой диэлектрика на затворе чрезвычайно тонкий, иногда даже относительно невысокого напряжения бывает достаточно, чтоб его разрушить. А разряды статического электричества, присутствующего практически в каждой среде, могут достигать несколько тысяч вольт.

Поэтому внешние корпуса полевых транзисторов стараются создавать таким образом, чтоб минимизировать возможность возникновения нежелательного напряжения между электродами прибора. Одним из таких методов является закорачивание истока с подложкой и их заземление. Также в некоторых моделях используют специально встроенный диод между стоком и истоком. При работе с интегральными схемами (чипами), состоящими преимущественно из полевых транзисторов, желательно использовать заземленные антистатические браслеты. При транспортировке интегральных схем используют вакуумные антистатические упаковки

Arduino, DIY и немного этих ваших линуксов.

Транзистор — полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.

Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:

Биполярный транзистор

Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:

Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как hfe (в английской литературе называется gain).

Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор->эмиттер. Превышение этих значений ведёт к перегреву и выходу из строя транзистора.

Работа биполярного транзистора

NPN и PNP биполярные транзисторы

Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.

От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P:

Обозначение NPN (слева) и PNP (справа) транзисторов на схеме

NPN транзисторы более распространены в электронике, потому что являются более эффективными.

Полевый транзистор

Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название — полевой.

Полевые транзисторы имеют как минимум 3 вывода:

Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.

N канальные и P канальные полевые транзисторы

Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме

Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.

Транзистор Дарлингтона

Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.

Схема составного транзистора дарлингтона

Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:

Подключение мощного мотора с помощью транзистора

На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (hfe).

ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.

При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.

mytooling.ru

Транзистор полевой

В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от "электрическое поле". Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. "Полевики" по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода: исток, сток, затвор.

исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания.

сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания.

затвор (gate) —  управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs.

Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис.1  изображены типы полевых транзисторов и их обозначения на схемах.

Рис.1. Типы полевых транзисторов и их схематическое обозначение. 

"Полевик" с изолированным затвором и индуцированным каналом

Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: "полевик", "мосфет", "ключ".

Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.

Обратный диод

Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях.

Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой.

В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору.

Рис.2. Паразитные элементы в составе полевого транзистора. 

 Основные преимущества MOSFET 

  • меньшее потребление, высокий КПД. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
  • простая схема управления.  Схемы управления напряжением более просты, чем схемы управления током.
  • высокая скорость переключения. Отсутствуют неосновные носители. Следовательно не тратится время на их рассасывание. Частота работы сотни и тысячи килогерц
  • повышеная теплоустойчивость. С ростом температуры растет сопротивление канала, следовательно понижается ток, а это приводит к понижению температуры. Происходит саморегуляция.

Основные характеристики MOSFET

  • Vds(max) – максимальное напряжение сток-исток в закрытом состоянии транзистора
  • Rds(on) – активное сопротивление канала в открытом состоянии транзистора. Этот параметр указывают для определенных значений Vgs 10В или 4.5В  или 2.5 В при которых сопротивление становится минимальным.
  • Vgs(th) –  пороговое напряжение при котором транзистор начнет открываться. 
  • Ids – максимальный постоянный ток через транзистор.
  • Ids(Imp) – импульсный (кратковременный) ток, который выдерживает транзистор.
  • Ciss, Crss, Coss – емкость затвор-исток (input), затвор-сток (reverse), сток-исток(output).
  • Qg – заряд который необходимо передать затвору для переключения.
  • Vgs(max) – максимальное допустимое напряжение затвор-исток.
  • t(on), t(of) – время переключения транзистора.
  • характеристики обратного диода сток-исток ( максимальный ток, падение напряжения, время восстановление)

Что еще нужно знать про полевой транзистор?

P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте. 

МОП транзистор — потенциальный прибор и управляется напряжением (потенциалом), затвор отделен слоем диэлектрика , по сути это конденсатор и через него не протекает постоянный ток, поэтому он не потребляет ток управления в статике, но во время переключения требуется приличный ток для заряда-разряда емкости.

МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.

Vgs – управляющее напряжение, Vg-Vs. Если измерять относительно общего минуса, то: для n канального Vgs>0, для p канального Vgs<0 (красный провод вольтметра на затвор, черный на исток). У силовых транзисторов управляющее напряжение, при котором будет минимальное сопротивление – 10 вольт и больше. У низковольтных "полевиков", которые управляются логическими уровнями микросхем, оно составляет 4.5 вольт или 2.5В , для разных транзисторов. Общее правило: чем выше напряжение – тем транзистор лучше откроется, но это напряжение не должно превышать масимально допустимого Vgs(max).

Схема включения MOSFET

Традиционная, классическая схема включения "мосфет", работающего в режиме ключа (открыт-закрыт), приведена на рис 3. Это схема, с общим истоком. Она наиболее распространена, легка в реализации и имеет самый простой способ управления транзистором. 

Нагрузку включают в цепь стока. Встроенный диод, оказывается включенным в обратном направлении и ток через него не протекает.  

Для n-канального: исток на землю, сток через нагрузку к плюсу. Тогда для его открытия, на  затвор нужно подать положительное напряжение, подтянуть к плюсу питания. При работе от ШИМ (широтно импульсный модулятор), открывать его будет положительный импульс. 

Для p-канального: исток на плюс питания, сток через нагрузку на землю. Тогда для его открытия, на затвор нужно подать отрицательное напряжение, подтянуть к минусу питания (земле). При управлении от ШИМ, открывающим будет – отрицательный импульс (отсутствие импульса).

Рис. 3. Классическая схема включения MOSFET в ключевом режиме.

МОП транзистор, в открытом состоянии, будет пропускать ток как от истока к стоку, так и от стока к истоку. Также и нагрузку можно включать как в цепь стока, так и истока. Но при «нестандартном» включении, усложняется управление транзистором, так для n-канального может потребоваться, напряжение выше питания, а для p-канального – отрицательное напряжение ниже земли (двухполярное питание).

МОП транзисторы, используемые в цифровой электронике, делятся на два типа. 

  1. Мощные силовые – используются в импульсных преобразователях напряжения и в цепях питания. 
  2. Транзисторы логического уровня – используются как ключи, коммутируют различные сигналы и управляются микросхемами.

Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора.

www.macmachine.ru

Что такое полевой транзистор и как его проверить

Добрый день, друзья!

Недавно мы с вами начали плотнее знакомились с тем, как устроено компьютерное «железо». И познакомились одним из его «кирпичиков» — полупроводниковым диодом. Компьютер – это сложная система, состоящая из отдельных частей. Разбирая, как работают эти отдельные части (большие и малые), мы приобретаем знание.

Обретая знание, мы получаем шанс помочь своему железному другу-компьютеру, если он вдруг забарахлит. Мы же ведь в ответе за тех, кого приручили, не правда ли?

Сегодня мы продолжим это интересное дело, и попробуем разобраться, как работает самый, пожалуй, главный «кирпичик» электроники – транзистор. Из всех видов транзисторов (их немало) мы ограничимся сейчас рассмотрением работы полевых транзисторов.

Почему транзистор – полевой?

Слово «транзистор» образовано от двух английских слов translate и resistor, то есть, иными словами, это преобразователь сопротивления.

Среди всего многообразия транзисторов есть и полевые, т.е. такие, которые управляются электрическим полем.

Электрическое поле создается напряжением. Таким образом, полевой транзистор – это полупроводниковый прибор, управляемый напряжением.

В англоязычной литературе используется термин MOSFET (MOS Field Effect Transistor). Есть другие типы полупроводниковых транзисторов, в частности, биполярные, которые управляются током. При этом на управление затрачивается и некоторая мощность, так как к входным электродам необходимо прикладывать некоторое напряжение.

Канал полевого транзистора может быть открыт только напряжением, без протекания тока через входные электроды (за исключением очень небольшого тока утечки). Т.е. мощность на управление не затрачивается. На практике, однако, полевые транзисторы используются большей частью не в статическом режиме, а переключаются с некоторой частотой.

Конструкция полевого транзистора обуславливает наличие в нем внутренней переходной емкости, через которую при переключении протекает некоторый ток, зависящий от частоты (чем больше частота, тем больше ток). Так что, строго говоря, некоторая мощность на управление все-таки затрачивается.

Где используются полевые транзисторы?

Настоящий уровень технологии позволяет сделать сопротивление открытого канала мощного полевого транзистора (ПТ) достаточно малым – в несколько сотых или тысячных долей Ома!

И это является большим преимуществом, так как при протекании тока даже в десяток ампер рассеиваемая на ПТ мощность не превысит десятых или сотых долей Ватта.

Таким образом, можно отказаться от громоздких радиаторов или сильно уменьшить их размеры.

ПТ широко используются в компьютерных блоках питания и низковольтных импульсных стабилизаторах на материнской плате компьютера.

Из всего многообразия типов ПТ для этих целей используются ПТ с индуцированным каналом.

Как работает полевой транзистор?

ПТ с индуцированным каналом содержит три электрода — исток (source), сток (drain), и затвор (gate). 

Принцип работы ПТ наполовину понятен из графического обозначения и названия электродов.

Канал ПТ – это «водяная труба», в которую втекает «вода» (поток заряженных частиц, образующих электрический ток) через «источник» (исток).

«Вода» вытекает из другого конца «трубы» через «слив» (сток). Затвор – это «кран», который открывает или перекрывает поток. Чтобы «вода» пошла по «трубе», надо создать в ней «давление», т.е. приложить напряжение между стоком и истоком.

Если напряжение не приложено («давления в системе нет»), тока в канале не будет.

Если приложено напряжение, то «открыть кран» можно подачей напряжения на затвор относительно истока.

Чем большее подано напряжение, тем сильнее открыт «кран», больше ток в канале «сток-исток» и меньше сопротивление канала.

В источниках питания ПТ используется в ключевом режиме, т.е. канал или полностью открыт, или полностью закрыт.

Честно сказать, принципы действия ПТ гораздо более сложны, он может работать не только в ключевом режиме. Его работа описывается многими заумными формулами, но мы не будем здесь все это описывать, а ограничимся этими простыми аналогиями.

Скажем только, что ПТ могут быть с n-каналом (при этом ток в канале создается отрицательно заряженными частицами) и p-каналом (ток создается положительно заряженными частицами). На графическом изображении у ПТ с n-каналом стрелка направлена внутрь, у ПТ с p-каналом – наружу.

Собственно, «труба» — это кусочек полупроводника (чаще всего – кремния) с примесями химических элементов различного типа, что обуславливает наличие положительных или отрицательных зарядов в канале.

Теперь переходим к практике и поговорим о том,

Как проверить полевой транзистор?

В норме сопротивление между любыми выводами ПТ бесконечно велико.

И, если тестер показывает какое-то небольшое сопротивление, то ПТ, скорее всего, пробит и подлежит замене.

Во многих ПТ имеется встроенный диод между стоком и истоком для защиты канала от обратного напряжения (напряжения обратной полярности).

Таким образом, если поставить «+» тестера (красный щуп, соединенный с «красным» входом тестера) на исток, а «-» (черный щуп, соединенный с черным входом тестера) на сток, то канал будет «звониться», как обычный диод в прямом направлении.

Это справедливо для ПТ с n-каналом. Для ПТ с p-каналом полярность щупов будет обратной.

Как проверить диод с помощью цифрового тестера, описано в соответствующей статье. Т.е. на участке «сток — исток» будет падать напряжение 500-600 мВ.

Если поменять полярность щупов, к диоду будет приложено обратное напряжение, он будет закрыт и тестер это зафиксирует.

Однако исправность защитного диода еще не говорит об исправности транзистора в целом. Более того, если «прозванивать» ПТ, не выпаивая из схемы, то из-за параллельно подключенных цепей не всегда можно сделать однозначный вывод даже об исправности защитного диода.

В таких случаях можно выпаять транзистор, и, используя небольшую схему для тестирования, однозначно ответить на вопрос – исправен ли ПТ или нет.

В исходном состоянии кнопка S1 разомкнута, напряжение на затворе относительно стока равно нулю. ПТ закрыт, и светодиод HL1 не светится.

При замыкании кнопки на резисторе R3 появляется падение напряжения (около 4 В), приложенное между истоком и затвором. ПТ открывается, и светодиод HL1 светится.

Эту схему можно собрать в виде модуля с разъемом для ПТ. Транзисторы в корпусе D2 pack (который предназначен для монтажа на печатную плату) в разъем не вставишь, но можно припаять к его электродам проводники, и уже их вставить в разъем. Для проверки ПТ с p-каналом полярность питания и светодиода нужно изменить на обратную.

Иногда полупроводниковые приборы выходят из строя бурно, с пиротехническими, дымовыми и световыми эффектами.

В этом случае на корпусе образуются дыры, он трескается или разлетается на куски. И можно сделать однозначный вывод об их неисправности, не прибегая к приборам.

В заключение скажем, что буквы MOS в аббревиатуре MOSFET расшифровываются как Metal — Oxide — Semiconductor (металл – оксид – полупроводник). Такова структура ПТ – металлический затвор («кран») отделен от канала из полупроводника слоем диэлектрика (оксида кремния).

Надеюсь, с «трубами», «кранами» и прочей «сантехникой» вы сегодня разобрались.

Однако, теория, как известно, без практики мертва! Надо обязательно поэкспериментировать с полевиками, поковыряться, повозиться с их проверкой, пощупать, так сказать.

Кстати, купить полевые транзисторы можно вот здесь.


vsbot.ru

Как работает МОП-транзистор | Практическая электроника

В этой статье мы рассмотрим работу МОП-транзистора.

Виды МОП-транзисторов

Здесь работает правило два по два (2х2). В каждом семействе по два вида:

Из всех этих 4 разновидностей, наверное не ошибусь, если скажу, что самый употребимый транзистор считается именно N-канальный с индуцированным каналом:

Именно с него мы и начнем наш путь в мир современной электроники.

Режим отсечки

Давайте познакомимся с нашим героем. У нас в гостях N-канальный МОП-транзистор с индуцированным каналом:

Судя по гравировке, звать его IRFZ44N. Выводы слева-направо: Затвор, Сток и Исток.

Что будем делать с этим куском кремния? Раз уж он есть, то давайте заставим его пахать. Для начала соберем вот такую простенькую схемку ключа:

Напряжение на крокодилы идет с блока питания Bat, но лампочка не горит. Следовательно, в данный момент никакого движения электрического тока через канал Стока и Истока нет.

Это аналогично этому рисунку (только тут без лампочки):

Ток не бежит, потому что у нас там эквивалентный диод VD2, который препятствует протеканию тока.

Об этом я еще говорил в прошлой статье.

На амперметре блока питания также по нулям, что говорит о том, что тока вообще нет никакого.

Почему Затвор у нас висит без дела? Не порядок. Надо его тоже задействовать. Чем у нас занимается Затвор в полевых транзисторах? Управляет потоком основных носителей. А что такое поток заряженных частиц, которые движутся в одном направлении? Да, все верно – это электрический ток ;-).

В опыте выше на Затворе сейчас почти ноль. Почему почти? Да потому что он все равно пытается ловить какие-то наводки, но это все равно не сказывается на работе схемы. В реальных схемах Затвор никогда нельзя оставлять без дела болтаться в воздухе. Он всегда должен быть соединен с чем-нибудь.

Так, что нам теперь надо сделать, чтобы начать управлять шириной канала Сток-Исток, а следовательно и менять сопротивление этого канала? Как мы помним из прошлой статьи, достаточно подать положительное напряжение относительно Истока на Затвор;-) Для этого возьмем второй блок питания и будем с помощью него менять напряжение на Затворе нашего транзистора. Сделаем все по такой схеме:

Вот так выглядит мой блок питания, который в схеме называется Bat2. С помощью него мы будем регулировать напряжение вручную от нуля и больше.

Так выглядит вся схема в реале, которую я нарисовал выше. Так как вольтметр на блоке питания стрелочный и неточный, поэтому напряжение будем мерять с помощью мультиметра, который я цепанул параллельно щупам Bat2:

Хоть я и сделал крутилку на ноль на Bat2, все равно он выдает каких-то 22 миллиВольта. На этот опыт эти доли милливольта никак не повлияют.

Ну что, поехали?

Устанавливаю 1 Вольт на Bat2:

Лампочка не горит, сила тока в цепи ноль Ампер:

Так ладно. Добавляем еще 1 Вольт, итого получаем 2 Вольта:

Лампочка не горит, на амперметре опять по нулям:

Ну ладно. Раз такое дело добавляем еще 1 Вольт. Итого 3 Вольта:

Да опять лампочка не зажглась!

Активный режим работы транзистора

И вот уже при каких-то 3,5 Вольт

Через лампочку начинает течь ток силой около 10 мА, но лампочка, естественно, пока что не горит. Ток слабоват.

Во! Запомните этот момент! При этом напряжении транзистор начинает ОТКРЫВАТЬСЯ.  Это значение у разных видов транзисторов разное. В основном от 0,5 и до 5 вольт.  В даташите этот параметр называется как Gate threshold voltage, в переводе с англ. яз.  –  пороговое напряжение на Затворе для включения транзистора. В даташите этот параметр указывается как VGS(th), а в некоторых даташитах как VGS(to) . В даташите на мой транзистор это напряжение варьируется от 2 и до 4 Вольт при каких-то условиях (conditions):

(картинка кликабельна)

Как вы видите, диапазон открытия этого транзистора может быть от 2 Вольт и до 4 Вольт. Но опять же, это при токе Стока от 250 мкА, как указано в даташите, а я замерял от 10 мА. Здесь также в условиях говорится, что напряжение между Истоком и Затвором должно быть такое же, как и напряжение между Стоком и Истоком. Так как мы не пытались замерить точное напряжение 5-ым знаком после запятой, для нас эти условия не имеют значения. Как вы помните, у биполярных транзисторов транзистор начинал открываться только при напряжении на базе-эмиттере более 0,6-0,7 Вольт для кремниевых видов.

Неужели мы сегодня так и не зажжем лампочку? Зажжем, да еще как! Для того, чтобы чуток накалить нить лампы, мы просто добавляем напряжение на Затвор, покрутив крутилку блока питания Bat2.

Вуа-ля! Нить лампы стала слабенько гореть.

На амперметре видим значение около 1 Ампера:

При этом стал очень сильно греться сам транзистор. Почему? Давайте разберемся…

Почему греется транзистор

Итак, раз мы с помощью Затвора стали управлять сопротивлением канала Сток-Исток, то грубо говоря, это у нас получился резистор R. Это и есть сопротивление канала Сток-Исток. При напряжении на Затворе в 0 Вольт, сопротивление этого резистора достигает очень большого значения, а следовательно, сила тока, протекающего через него, будет вообще микроАмперы. Закон Ома.

Так как резистор R включен последовательно в цепь, то вспоминаем правило шунта: на бОльшем сопротивлении падает бОльшее напряжение, а на меньшем сопротивлении падает меньшее напряжение. Также не забываем, что нить лампы тоже обладает сопротивлением, поэтому рисунок у нас примет вот такой вид:

В первом случае у нас на Затвор ничего не подавалось и транзистор был в закрытом состоянии. Как только мы стали подавать напругу на Затвор, то у нас сопротивление канала стало меняться, а следовательно и падение напряжение на резисторе R и проходящий через него ток. Получился типичный делитель напряжения. В этом случае на резисторе R падает какое-то напряжение и через него течет приличная сила тока. В нашем случае почти 1 Ампер. Значит, мощность, рассеиваемая на транзисторе, будет равняться падению напряжения на Сток-Истоке  помноженной на силу тока через Сток-Исток или просто на ток Стока или буквами:

P= I2R 

где R – это сопротивление канала Сток-Исток

I– ток, проходящий через канал (ток Стока)

А что такое мощность, рассеиваемая на радиоэлементе? Это и есть тепло. Поэтому в нашем случае транзистор нагрелся очень сильно. Опыт пришлось приостановить.

Значит, самые щадящие режимы для МОП-транзистора – это когда канал полностью открыт. В этом случае у нас сопротивление канала достигает сотые доли Ома. Либо когда канал полностью закрыт. В этом случае сила тока, проходящая через канал, будет достигать тока утечки между Стоком и Истоком. А это микроАмперы. В этих двух случаях транзистор будет холодным, как айсберг в океане. Поэтому такой транзистор предназначен в основном для работы в ключевом режиме, где как раз и используются эти два режима.

Режим насыщения МОП-транзистора

Для того, чтобы полностью открыть транзистор, достаточно будет просто подать чуть больше напряжения для полного открытия канала. В моем случае это составило 4,2 Вольта и выше:

Как вы видите, лампочка горит в полный накал. Сопротивление канала в этом случае минимальное.

Лампа ест свои честные 1,69 Ампер:

Умножайте силу тока на напряжение и получаем потребляемую мощность лампочки. Итого P=IU=12 Вх1,69 А=20,28 Ватт

А на лампочке написано 21 Ватт:

Ладно, спишем на погрешность и на то, что лампа еще не раскочегарилась. Транзистор в этом случае остается холодным и ни капельки не греется.

Предельные параметры и графические зависимости

Раз уж транзистор полностью открылся, то можно ли еще подавать напряжение на Затвор? Можно. Но при этом лампочка уже ярче светить не будет. Оно и понятно, так как лампочка итак горит уже на всю мощь, а сопротивление канала достигло уже почти нуля. Какое максимальное напряжение можно подать на Затвор? Смотрим даташит и находим что-то типа максимальных параметров (Absolute Maximum Ratings)

Находим параметр VGS , что обозначает напряжение между Затвором и Истоком. В нашем случае это напряжение на Bat2.  Смотрим на даташит и видим, что максимальное напряжение, которое можно подать – это +-20 Вольт.  Напряжение более 20 Вольт в обе стороны пробьет тончайший слой диэлектрика, в нашем случае это оксид кремния, и транзистору придет жопа. Значит, мы можем спокойно подавать от 0 и до 20 Вольт на Затвор, не боясь что транзистор уйдет на тот свет.

Также для нас могут представлять интерес такие параметры, как максимальная сила тока, которая может течь через канал Сток-Исток. В даташите такой параметр обозначается как ID (ток Стока).

(картинка кликабельна)

Как мы видим, транзистор в легкую может протащить через себя 49 Ампер!!!

Но это при температуре кристалла 25 градусов по Цельсию. А так номинальная сила тока 35 Ампер при температуе кристалла 100 градусов, что чаще всего происходит на практике.

Так как транзистор с индуцированным каналом в основном используется в импульсном и ключевом режиме, поэтому нам важен такой параметр как сопротивление канала полностью открытого транзистора. В даташите он указывается как RDS(on)

Как мы видим всего 17,5 миллиОм. Или 0,017 Ом. Тысячные доли Ома! Давайте предположим, что мы пропускаем через открытый транзистор максимальный ток в 49 Ампер. Какая мощность будет рассеиваться на транзисторе в этом случае? Формула мощности через силу тока и сопротивление выглядит вот так: P=I2R= 492 x 0,017 = 41 Ватт.

А максимальная мощность, которую может рассеять транзистор – это 94 Ватта.

Основные параметры полевых МОП-транзисторов указываются в основном сразу на первой страничке даташита в отдельной рамке.

Также различные зависимости одних параметров от других можно увидеть в даташите. Очень информативно и наглядно.

Например, ниже на графике приводится зависимость тока Стока от напряжения Стока-Истока при каких-то фиксированных значениях напряжения на Затворе при температуре кристалла (подложки) 25 градусов Цельсия (комнатная температура). Верхняя линия графика приводится для напряжения 15 Вольт на Затворе. Другие линии в порядке очереди по табличке вверху слева:

Также есть интересная зависимость сопротивления канала  полностью открытого транзистора от температуры кристалла:

Если посмотреть на график, то можно увидеть, что при температуре кристалла в 140 градусов по Цельсию у нас сопротивление канала увеличивается вдвое. А при отрицательных температурах наоборот уменьшается.

Интересное свойство МОП-транзистора

А давайте немного изменим схему и уберем из нее Bat2. Вместо него поставим переключатель, а напряжение на Затвор будем брать от Bat1:

Для наглядности вместо переключателя я использовал проводок от макетной платы.

В данном случае лампочка не горит. А с чего ей гореть то? На Затворе то у нас голимый ноль, поэтому канал закрыт.

На фото ниже показан этот случай.

Но стоит только перекинуть выключатель в другое положение, как у нас лампочка сразу же загорается на всю мощь:

Даже не надо ни о чем заморачиваться! Тупо подаем на Затвор напряжение питания и все! Разумеется, если оно не превышает максимальное напряжение на Затворе, прописанное в даташите. Не повредит ли напряжение питания Затвору? Так как Затвор у нас имеет очень большое входное сопротивление (он ведь отделен слоем диэлектрика от всех выводов), то и сила тока в цепи Затвора будет копейки.

Лампочка горит на всю мощь. В этом случае можно сказать, что потенциал на Стоке стал равен почти как и на Истоке, то есть нулю, поэтому весь ток побежал от плюса питания к Стоку, “захватив” по пути лампочку накаливания, которая не прочь была покушать электрический ток, излучая кучу фотонов в пространство и на мой стол.

Даже если откинуть проводок от Затвора, все равно лампочка продолжает гореть как ни в чем не бывало!

Почему так происходит? Здесь надо вспомнить внутреннее строение самого МОПа.

 Вот эта часть вам ничего не напоминает?

Так это же конденсатор! А раз мы его зарядили, то с чего он будет разряжаться? Разрядиться то ему некуда! Вот он и держит заряд электронов в канале, пока мы не разрядим вывод Затвора. Для того, чтобы убрать потенциал Затвора и заткнуть канал, нам опять же надо уравнять его с нулем, замкнув Затвор на Исток. Лампочка сразу же потухнет:

Как вы видели в опыте выше,  если мы отключаем напряжение на Затворе, то обязательно должны притянуть Затвор к минусу, иначе канал останется открытым. Поэтому обязательное условие в схемах – Затвор должен всегда чем то управляться и с чем то соединяться. Ему нельзя давать висеть в воздухе. Об этом я еще говорил в начале статьи.

Ключ на МОП транзисторе

А почему бы Затвор автоматически не притягивать к нулю при отключении подачи напряжения на Затвор? Поэтому, эту схему можно доработать и сделать самый простейший ключ на МОП-транзисторе:

При включении выключателя S цепь стает замкнутой и лампочка загорается

Как только я убираю красный проводок от Затвора (разомкну выключатель),  лампочка сразу тухнет:

Красота! То есть как только я убрал напряжение от Затвора, Затвор притянуло к минусу через резистор и на нем стал нулевой потенциал. А раз на Затворе ноль, то и канал Сток-Исток закрыт. Если снова подам напряжение на Затвор, то у нас на мегаомном резисторе упадет напряжение питания, которое будет все оседать на Затворе и транзистор снова откроется. На бОльшем сопротивлении падает бОльшее напряжение ;-). Не забываем золотое правило. Резистор в основном берут от 100 КилоОм и до 1 МегаОма (можно и больше).

Так как МОП-транзисторы с индуцированным каналом в основном используются в цифровой и импульсной технике, из них получаются отличные  транзисторные ключи, в отличие от ключа на биполярном транзисторе.

Чего боится МОП-транзистор

Все полевые транзисторы, будь это полевой транзистор с управляющим P-N переходом, либо МОП-транзистор, очень чувствительны к электрическим перегрузкам на Затворе. Особенно это касается электростатического заряда, который накапливается на теле человека и на измерительных приборах. Опасные значения электростатического заряда для МОП-транзисторов составляют 50-100 Вольт, а для транзисторов с управляющим P-N переходом – 250 Вольт. Поэтому самое важное правило при работе с такими транзисторами – это заземлить себя через антистатический браслет, или взяться за голую батарею ДО касания полевых транзисторов.

Также в некоторых экземплярах полевых транзисторов встраивают защитные стабилитроны между Истоком и Затвором, которые вроде как спасают от электростатики, но лучше все-таки перестраховаться лишний раз и не испытывать судьбу транзистор на прочность. Также не помешало бы заземлить всю паяльную и измерительную аппаратуру. В настоящее время это все делается уже автоматически через евро розетки, у которых имеются в наличии заземляющий проводник.

Читайте также следующую статью: как проверить МОП-транзистор.

www.ruselectronic.com

Оставить комментарий

avatar
  Подписаться  
Уведомление о