Принцип работы переменного тока – Принцип работы, отличия постоянного от переменного электрического тока

Принцип работы, отличия постоянного от переменного электрического тока

Электрический ток— это направленное или упорядоченное движение заряженных частиц: электронов в металлах, в электролитах — ионов, а в газах — электронов и ионов. Электрический ток может быть как постоянным, так и переменным.

Определение постоянного электрического тока, его источники

Постоянный ток ( DC, по-английски Direct Current) — это электрический ток, у которого  свойства и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Постоянный ток используется в автомобилях и в домах, в многочисленных электронных приборах: ноутбуки, компьютеры, телевизоры и т. д. Перемеренный электрический ток  из розетки преобразуется в постоянный при помощи блока питания или трансформатора напряжения с выпрямителем.

Любой электроинструмент, устройство или прибор, работающие от батареек так же являются потребителями постоянного тока , потому что батарея или аккумулятор- это исключительно источники постоянного тока, который при необходимости преобразуется  в переменный с использованием специальных преобразователей (инверторов).

Принцип работы переменного тока

Переменный ток  (AC по-английски Alternating Current)- это электрический ток, который изменяется по величине и направлению с течением времени. На электроприборах условно обозначается отрезком синусоиды « ~ ».
Иногда после синусоиды могут указываться характеристики переменного тока — частота, напряжение, число фаз.

Переменный ток может быть как одно- , так и  трёхфазным, для которого мгновенные значения тока и напряжения меняются по гармоническому закону.

Основные характеристики переменного тока — действующее значение напряжения и частота.

Обратите внимание, как на левом графике для однофазного тока меняется направление и величина напряжения с переходом в ноль за период времени Т, а на втором графике для трехфазного тока существует смещение трех синусоид на одну третью периода. На правом графике 1 фаза обозначена буквой «а», а вторая буквой «б». Хорошо известно, что в домашней розетке 220 Вольт. Но мало кто знает, что это действующие значение переменного напряжения, но амплитудное или максимальное значение будет больше на корень из двух, т.е будет равно 311 Вольт.

Таким образом, если у постоянного тока величина напряжения и направление не изменяются в течении времени, то у переменного тока- напряжение постоянно меняется по величине и направлению (график ниже нуля это обратное направление).

И так мы подошли к понятию частота— это отношение числа полных циклов  (периодов) к единице времени периодически меняющегося  электрического тока. Измеряется в Герцах. У нас и в Европе частота равна 50 Герцам, в США- 60 Гц.

Что означает частота 50 Герц? Она означает, что у нас переменный ток меняет свое направление на противоположное и обратно (отрезок Т- на графике) 50 раз за секунду!

Источниками переменного тока являются все розетки в доме и все то, что подключено напрямую проводами или кабелями  к электрощиту. У многих возникает вопрос: а почему  в розетке не постоянный ток? Ответ прост. В сетях переменного тока легко и с минимальными потерями преобразовывается величина напряжения до необходимого уровня при помощи трансформатора в любых объемах. Напряжение необходимо увеличивать для возможности передачи электроэнергии на большие расстояния с наименьшими потерями в промышленных масштабах.  С электростанции, где стоят мощные электрогенераторы, выходит напряжение величиной 330 000-220 000 Вольт, далее возле нашего дома на трансформаторной подстанции оно преобразуется с величины 10 000 Вольт в трехфазное напряжение 380 Вольт, которое и приходит в многоквартирный дом, а к нам в квартиру приходит однофазное напряжение, т. к. между фазой и нулем или землей напряжение равняется 220 В, а между разноименными фазами в электрощите 380 Вольт.

И еще одним из важных достоинств переменного напряжения является то, что асинхронные электродвигатели переменного тока конструктивно проще и работают значительно надежнее, чем двигатели постоянного тока.

Как переменный ток сделать постоянным

Для потребителей, работающих на постоянном токе- переменный преобразуется при помощи  выпрямителей.

  1. Первоначальный этап преобразования— это подключение диодного моста, состоящего из 4 диодов достаточной мощности (на рисунке ниже), который срезает верхние границы переменных синусоид или делает ток однонаправленным.
  2. Второй этап— это подключение параллельно на выход с диодного мостика конденсатора или сглаживающего фильтра, который исправляет провалы между пиками синусоид. Обратите внимание, как выглядит синусоида после прохождения через диодный мост (на рисунке выделена зеленным цветом).

    И как уменьшаются пульсации (изменения напряжения) после подключения конденсатора- на рисунке выделено синим цветом.

  3. Далее при необходимости для уменьшения уровня пульсаций,  дополнительно могут применяются стабилизаторы тока или  напряжения.

Преобразователь постоянного тока в переменный

Если с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор — это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.

Инвертор технически сложное устройство, поэтому и цены на него не маленькие. Стоимость зависит напрямую от выходной максимальной мощности переменного тока.

Как правило, преобразование постоянного тока требуется в редких случаях. Например, для подключения от бортовой электросети автомобиля домашних электроприборов, инструмента и т. п. в походе, на даче и т. д.

Что такое фаза, ноль, заземление читайте в следующей нашей статье.

jelektro.ru

Переменный ток: получение и применение

Переменный ток – род тока, направление протекания которого непрерывно меняется. Становится возможным, благодаря наличию разницы потенциалов, подчиняющейся закону. В повседневном понимании форма переменного тока напоминает синусоиду. Постоянный способен изменяться по амплитуде, направление прежнее. В противном случае получаем переменный ток. Трактовка радиотехников противоположна школьной. Ученикам говорят — постоянный ток одной амплитуды.

Создание переменного тока

Как образуется переменный ток

Начало переменному току положил Майкл Фарадей, читатели подробнее узнают ниже по тексту. Показано: электрическое и магнитное поля связаны. Ток становится следствием взаимодействия. Современные генераторы работают за счет изменения величины магнитного потока через площадь, охватываемую контуром медной проволоки. Проводник может быть любым. Медь выбрана из критериев максимальной пригодности при минимальной стоимости.

Статический заряд преимущественно образуется трением (не единственный путь), переменный ток возникает в результате незаметных глазу процессов. Величина пропорциональна скорости изменения магнитного потока через площадь, охваченную контуром.

История открытия переменного тока

Впервые переменным токам стали уделять внимание ввиду коммерческой ценности после появления на свет изобретений, созданных Николой Тесла. Материальный конфликт с Эдисоном отметил сильным отпечатком судьбы обоих. Когда американский предприниматель забрал назад обещания перед Николой Тесла, потерял немалую выгоду. Выдающемуся ученому не понравилось вольное обращение, серб выдумал двигатель переменного тока промышленного типа (изобретение сделал намного раньше). Предприятия пользовались исключительно постоянным. Эдисон продвигал указанный вид.

Тесла впервые показал: переменным напряжением можно достичь гораздо больших результатов. В особенности, когда энергию приходится передавать на большие расстояния. Использование трансформаторов без труда позволяет повысить напряжение, резко снижая потери на активном сопротивлении. Приемная сторона параметры вновь возвращает к исходным. Неплохо сэкономите на толщине проводов.

Сегодня показано: передача постоянного тока экономически выгоднее. Тесла изменил ход истории. Придумай ученый преобразователи постоянного тока, мир выглядел бы иначе.

Начало активному использованию переменного тока положил Никола Тесла, создав двухфазный двигатель. Опыты передачи энергии на значительные расстояния расставили факты по своим местам: неудобно переносить производство в район Ниагарского водопада, гораздо проще проложить линию до места назначения.

Школьный вариант трактовки переменного и постоянного тока

Переменный ток демонстрирует ряд свойств, отличающих явление от постоянного. Вначале обратимся к истории открытия явления. Родоначальником переменного тока в обиходе человечества считают Отто фон Герике. Первым заметил: заряды природные двух знаков. Ток способен протекать в разном направлении. Касательно Тесла, инженер больше интересовался практической частью, авторские лекции упоминают двух экспериментаторов британского происхождения:

  1. Вильям Споттисвуд лишен странички русскоязычной Википедии, национальная часть — замалчивает работы с переменным током. Подобно Георгу Ому, ученый — талантливый математик, остается сожалеть, что с трудом можно узнать, чем именно занимался муж науки.
  2. Джеймс Эдвард Генри Гордон намного ближе практической части вопроса применения электричества. Много экспериментировал с генераторами, разработал прибор собственной конструкции мощностью 350 кВт. Много внимания уделял освещению, снабжению энергией заводов, фабрик.

Считается, первые генераторы переменного тока созданы в 30-е годы XIX века. Майкл Фарадей экспериментально исследовал магнитные поля. Опыты вызывали ревность сэра Хемфри Дэви, критиковавшего ученика за плагиат. Сложно потомкам выяснить правоту, факт остается фактом: переменный ток полвека просуществовал невостребованным. В первой половине XIX-го века выдуман электрический двигатель (авторство Майкла Фарадея). Работал, питаемый постоянным током.

Никола Тесла впервые догадался реализовать теорию Араго о вращающемся магнитном поле. Понадобились две фазы переменного тока (сдвиг 90 градусов). Попутно Тесла отметил: возможны более сложные конфигурации (текст патента). Позднее изобретатель трехфазного двигателя, Доливо-Добровольский, тщетно силился запатентовать детище плодотворного ума.

Продолжительное время переменный ток оставался невостребованным. Эдисон противился внедрению явления в обиход. Промышленник боялся крупных финансовых потерь.

Никола Тесла изучал электрические машины

Почему переменный ток используется чаще постоянного

Ученые доказали недавно: передавать постоянный ток выгоднее. Снижаются потери излучения линии. Никола Тесла перевернул ход развития истории, правда восторжествовала.

Никола Тесла: вопросы безопасности и эффективности

Никола Тесла посетил конкурирующую с эдисоновской компанию, продвигая новое явление. Увлекся, часто ставил эксперименты на себе. В противовес сэру Хемфри Дэви, который укоротил жизнь, вдыхая различные газы, Тесла добился немалого успеха: покорил рубеж 86 лет. Ученый обнаружил: изменение направления течения тока со скоростью выше 700 раз в секунду делает процесс безопасным для человека.

Во время лекций Тесла брал руками лампочку с платиновой нитью накала, демонстрировал свечение прибора, пропуская через собственное тело токи высокой частоты. Утверждал: явление безвредно, даже приносит пользу здоровью. Ток, протекая по поверхности кожи, одновременно очищает. Тесла говорил, экспериментаторы прежних дней (смотрите выше) пропускали удивительные явления по указанным причинам:

  • Несовершенные генераторы механического типа. Вращающееся поле использовалось в прямом смысле: при помощи двигателя раскручивался ротор. Подобный принцип бессилен выдать токи высокой частоты. Сегодня проблематично, невзирая на нынешний уровень развития технологии.
  • В простейшем случае применялись ручные размыкатели. Вовсе нечего говорить о высоких частотах.

Сам Тесла использовал явление заряда и разряда конденсатора. Подразумеваем RC-цепочку. Будучи заряжен до определённого уровня, конденсатор начинает разряжаться через сопротивление. Параметров элементов определяют скорость процесса, протекающего согласно экспоненциальному закону. Тесла лишен возможности использовать методы управления контуров полупроводниковыми ключами. Термионные диоды были известны. Рискнем предположить, Тесла мог использовать изделия, имитируя стабилитроны, оперируя с обратимым пробоем.

Однако вопросы безопасности лишены почетного первого места. Частоту 60 Гц (общепринятая США) предложил Никола Тесла, как оптимальную для функционирования двигателей собственной конструкции. Сильно отличается от безопасного диапазона. Проще сконструировать генератор. Переменный ток в обоих смыслах выигрывает у постоянного.

Через эфир

Поныне безуспешно ведутся споры, касаемо первооткрывателя радио. Прохождение волны через эфир обнаружил Герц, описав законы движения, показав, сродство оптическим. Сегодня известно: переменное поле бороздит пространстве. Явление Попов (1895 год) использовал, передавая первое Земное сообщение «Генрих Герц».

Видим, ученые мужи дружны между собой. Сколько уважения демонстрирует первое сообщение. Дата остается спорной, каждое государство первенство хочет присвоить безраздельно. Переменный ток создает поле, распространяющееся через эфир.

Сегодня общеизвестны диапазоны вещания, окна, стены атмосферы, различных сред (вода, газы). Важное место отводится частоте. Установлено, каждый сигнал можно представить суммой элементарных колебаний-синусоид (согласно теоремам Фурье). Спектральный анализ оперирует простейшими гармониками. Суммарный эффект рассматривается, как равнодействующая элементарных составляющих. Произвольный сигнал раскладывается преобразованием Фурье.

Окна атмосферы определяются аналогичным образом. Увидим частоты, проходящие сквозь толщу хорошо и плохо. Не всегда последнее оказывается негативным эффектом. Микроволновые печи используют частоты 2,4 ГГц, ударно поглощаемые парами воды. Для связи волны бесполезны, зато хороши кулинарными способностями!

Новичков тревожит вопрос распространения волны через эфир. Обсудим подробнее неразрешенную поныне учеными загадку.

Диполь антенна Герца

Вибратор Герца, эфир, электромагнитная волна

Взаимосвязь электрического, магнитного полей впервые продемонстрировал в 1821 году Майкл Фарадей. Чуть позднее показали: конденсатор пригоден для создания колебаний. Нельзя сказать, чтобы связь двух событий немедленно осознали. Феликс Савари разряжал лейденскую банку через дроссель, сердечником которому служила стальная игла.

Неизвестно доподлинно, чего добивался астроном, результат оказался любопытным. Иногда игла оказывалась намагниченной в одном направлении, иногда — противоположном. Ток генератора одного знака. Ученый правильно сделал вывод: затухающий колебательный процесс. Толком не зная индуктивных, емкостных реактивных сопротивлений.

Теорию процесс подвели позже. Опыты повторены Джозефом Генри, Вильямом Томпсоном, определившим резонансную частоту: где процесс продолжался максимальный период времени. Явление позволило количественно описать зависимости характеристик цепи от элементов составляющих (индуктивность и емкость). В 1861 году Максвелл вывел знаменитые уравнения, одно следствие особенно важно: «Переменное электрическое поле порождает магнитное и наоборот».

Возникает волна, векторы индукции взаимно перпендикулярны. Пространственно повторяют форму породившего процесса. Волна бороздит эфир. Явление использовал Генрих Герц, развернув обкладки конденсатора в пространстве, плоскости стали излучателями. Попов догадался закладывать информацию в электромагнитную волну (модулировать), что используется сегодня повсеместно. Причем в эфире и внутри полупроводниковой техники.

Где используется переменный ток

Переменный ток лежит в основе принципа действия большинства известных сегодня приборов. Проще сказать, где применяется постоянный, читатели сделают выводы:

  1. Постоянный ток применяется в аккумуляторах. Переменный порождает движение – не может храниться современными устройствами. Потом в приборе электричество преобразуется в нужную форму.
  2. КПД коллекторных двигателей постоянного тока выше. По этой причине выгодно применять указанные разновидности.
  3. При помощи постоянного тока действуют магниты. К примеру, домофонов.
  4. Постоянное напряжение применяется электроникой. Потребляемый ток варьируется в некоторых пределах. В промышленности носит название постоянного.
  5. Постоянное напряжение применяется кинескопами для создания потенциала, увеличения эмиссии катода. Случаи назовем аналогами блоков питания полупроводниковой техники, хотя иногда различие значительно.

В остальных случаях переменный ток выказывает весомое преимущество. Трансформаторы — неотъемлемая составляющая техники. Даже в сварке далеко не всегда господствует постоянный ток, но в любом современном оборудовании этого типа имеется инвертор. Так гораздо проще и удобнее получить достойные технические характеристики.

Хотя исторически первыми получены были статические заряды. Вспомним шерсть и янтарь, с которыми работал Фалес Милетский.

vashtehnik.ru

Устройство генератора переменного тока — принцип работы и общее назначение

Конструктивно, электрогенератор состоит из:

  1. Токопроводящей рамки.
  2. Магнитов.

Работает он следующим образом:

  1. Токопроводящая рамка помещается в магнитное поле, созданное между полюсами магнитов. Ее концы снабжают контактными кольцами, которые также способны вращаться.
  2. С помощью упругих токопроводящих пластинок (щеток), кольца соединяют с электрической лампочкой.
  3. Рамка, вращаясь в магнитном поле, постоянно пересекает своими сторонами магнитные силовые линии.
  4. Пересечение рамкой магнитных силовых линий вызывает возникновение ЭДС и получение индукционного тока.
  5. Под действием полученного индукционного тока, лампочка начинает светиться. Свечение лампочки продолжается до тех пор, пока вращается рамка.

Один полный оборот рамки внутри магнитного поля приводит к тому, что возникающая ЭДС, дважды меняет свое направление, причем ее величина дважды увеличивается до максимального значения (проводники проходили под полюсами магнитов) и дважды была равна нулю (проводники двигались вдоль силовых линий магнитного поля).

Такое изменение ЭДС в процессе непрерывного вращения рамки вызывает в замкнутой электрической цепи постоянно изменяющийся по направлению и величине синусоидальный электрический ток, который в настоящее время называют переменным.

В современной энергетике используются индукционные генераторы переменного тока различного типа. При этом, принцип их действия одинаков и базируется на принципе электромагнитной индукции.

В общем виде, такие устройства представляют собой достаточно сложное изделие, состоящее из медной проволоки, и большого количества изоляционных и конструктивных материалов.

Устройство и принцип работы

Устройство

Любой генератор переменного тока состоит из:

  1. Постоянного тока или электромагнита, который создает магнитное поле. С целью получения мощного магнитного потока, в генераторах устанавливают специальные магнитные системы из двух сердечников, которые изготавливаются из электротехнической стали.
  2. Обмотки, в которой возникает переменная ЭДС. Обмотки, создающие магнитное поле, размещают в специальных пазах одного сердечника, а обмотки, в которых возникает ЭДС – в пазах другого.
  3. Для подвода питающего напряжения и съема полученного переменного тока, используются контактные кольца и щетки. Эти детали изготавливаются из токопроводящих материалов. Сила тока в обмотках электромагнита, создающего магнитное поле значительно меньше той, которую генератор отдает во внешнюю цепь, поэтому генерируемое напряжение удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить маломощное питающее напряжение.

В маломощных устройствах щетки и кольца используются значительно реже, так как в их конструкциях можно использовать вращающиеся постоянные магниты, которым подвод питающего напряжения не нужен.

Как правило:

  1. Внутренний сердечник (ротор) вместе с обмоткой вращается вокруг своей оси.
  2. Внешний сердечник (статор) неподвижен.
  3. Зазор между ротором и статором должен быть минимальным – только тогда мощность потока магнитной индукции максимальна. При этом, магнитное поле создает неподвижный магнит, а обмотки, в которых создается ЭДС, вращаются.

Однако, в больших промышленных генераторах, внешний сердечник, создающий магнитное поле, вращается вокруг внутреннего, а обмотки, в которых индуцируется ЭДС, остаются неподвижными.

Во время работы, в обмотке ротора возникает ЭДС, амплитуда которой пропорциональна количеству витков. Кроме того, она пропорциональна и амплитуде переменного магнитного потока (через виток).

Принцип работы синхронного генератора:

Область применения

Повседневную жизнь человеческого общества невозможно представить без переменного тока. Его широкое использование связано с тем, что он обладает огромными преимуществами перед постоянным.

При этом, главным преимуществом является то, что напряжение и силу переменного тока можно легко и практически без потерь преобразовать в достаточно широких пределах.

Особенно, такое преобразование необходимо в случае передачи электроэнергии на большие расстояния. Электроэнергия обладает большими преимуществами перед другими видами энергии.

Ее можно передавать на большие расстояния с малыми потерями и достаточно легко распределять между потребителями. Кроме того, электроэнергия просто превращается в другие виды энергии (световая, тепловая, механическая и пр.).

Именно поэтому, генераторы переменного тока в современных условиях получили очень широкое применение. С их помощью вырабатывается электроэнергия, которая затем используется во всех отраслях промышленности, а также в быту и на всех видах транспорта.

Классификация

В связи с большим разнообразием генераторов, выпускаемых промышленностью различных стран, была разработана и достаточно обширная система их классификации.

Так, генераторы переменного тока различают по:

  1. Виду.
  2. Конструкции.
  3. Способу возбуждения.
  4. Количеству фаз.
  5. Соединению фазных обмоток.

Электрогенераторы переменного тока бывают:

  1. Асинхронными. Изделия, в которых на вращающемся валу имеются пазы, предназначенные для размещения обмоток. Они генерируют электрический ток с небольшими искажениями, величина которого не превышает номинального значения. Изделия этого типа используются для электропитания бытовой техники.
  2. Синхронными. Изделия, в которых катушки индуктивности размещены непосредственно на роторе. Они способны выдавать ток, который обладает высокой пусковой мощностью.

Генератор с неподвижным ротором

Конструктивно различают генераторы:

  1. С неподвижным ротором.
  2. С неподвижным статором

Конструкции с неподвижным статором получили наибольшее распространение благодаря тому, что отпадает необходимость в использовании контактных колец и плавающих щеток.

По способу возбуждения электрогенераторы бывают:

  1. С независимым возбуждением (питающее напряжение подается на обмотку возбуждения от отдельного источника постоянного тока).
  2. С самовозбуждением (обмотки возбуждения питаются выпрямленным (постоянным) током, получаемым от самого генератора).
  3. С обмотками возбуждения, питание которых осуществляется от стороннего генератора постоянного тока малой мощности, “сидящего” на одном валу с ним.
  4. С возбуждением от постоянного магнита.

По количеству фаз различают электрогенераторы:

  1. Однофазные.
  2. Двухфазные.
  3. Трехфазные.

Наибольшее распространение получили трехфазные генераторы.

Это связано с наличием некоторых преимуществ, среди которых нужно отметить возможность беспроблемного получения:

  1. Вращающегося кругового магнитного поля, что способствует экономичности их изготовления.
  2. Уравновешенной системы, что существенно повышает срок службы энергоустановок.
  3. Одновременно двух рабочих напряжений (фазного и линейного) в одной системе.
  4. Высоких экономических показателей – значительно уменьшается материалоемкость силовых кабелей и трансформаторов, а также упрощается процесс передачи электроэнергии на большие расстояния.

Трехфазные генераторы отличаются электрическими схемами соединения фазных обмоток.

Бывает, что фазные обмотки соединяются:

  1. “Звездой”.
  2. “Треугольником”.

Описание схем

Для получения связанной трехфазной системы, обмотки электрогенератора нужно соединить между собой одним из двух способов:

“Звезда”

Соединение “звездой” предусматривает электрическое соединение концов всех обмоток в одной точке. Точка соединения называется “нулем”. При таком соединении нагрузка к генератору может быть подключена 3 или 4 проводами.

Провода, идущие от начала обмоток называются линейными, а провод, идущий от нулевой точки – нулевым. Напряжение между линейными проводами называют линейным.

Линейное напряжение больше фазного в 1,73 раза.

Напряжение между нулевым и любым из линейных проводов называется фазным. Фазные напряжения равны между собой и сдвинуты друг относительно друга на угол, который равен 120 градусов.

Особенностью схемы является также равенство линейных и фазных токов.

Наиболее распространена 4 проводная схема – соединение “звездой” с нейтральным проводом. Она позволяет избежать перекоса фаз в случае подключения несимметричной нагрузки, например, на одной фазе – включена активная нагрузка, а на другой – емкостная или реактивная. При этом, обеспечивается сохранность включенных электроприборов.

“Треугольник”

Соединение “треугольником” – это последовательное соединение обмоток трехфазного генератора: конец первой обмотки соединяется с началом второй, ее конец – с началом третьей, а конец последней – с началом первой.

В этом случае, линейные провода отводятся от точек соединения обмоток. При этом, линейное напряжение равно фазному, а величина линейного тока в 1,73 раза больше фазного.

Все упомянутые зависимости справедливы только при равномерной нагрузке фаз. При неравномерной нагрузке фаз, их необходимо пересчитывать аналитическими или графическими методами.

Практическое применение

Индукционные генераторы находят свое применение практически во всех областях жизнедеятельности человеческого общества.

Причем в любом случае, для получения переменного тока используется энергия вращения вала генератора.

Это касается:

  1. Крупных гидро-, тепло-, и атомных электростанций.
  2. Промышленных электрогенераторов.
  3. Бытовых электрогенераторов.

Генераторы, устанавливаемые на электростанциях, вырабатывают большое количество электроэнергии, которая затем передается на огромные расстояния.

Они разрабатываются под конкретные, узкоспециализированные задачи и представляют собой сложнейшие устройства, для установки которых необходимо строить отдельные здания и сооружения. Кроме того, их работа обеспечивается специально организованной инфраструктурой.

Промышленные генераторы используются для обеспечения электроэнергией объектов, в работе которых не должно быть перебоев с подачей напряжения.

Кроме того, их используют для обеспечения электроэнергией строительных площадок, вахтовых поселков, удаленных ферм и буровых установок, находящихся в местах, где подводка стационарных линий электропередач невозможна или экономически нецелесообразна.

Как правило, для работы они используют дизельное топливо, вырабатывая при этом переменный ток большой мощности (220 или 380 В). Используются для этого синхронные генераторы, которые способны обеспечить работу промышленного оборудования большой мощности.

В дизельных установках, вал генератора вращается с помощью двигателя внутреннего сгорания (ДВС).

Электрогенератор на шасси

Все комплектующие изделия, входящие в состав промышленного генератора, монтируются на высокопрочных стальных шасси, которое при необходимости устанавливается:

  1. Теплоизолированным контейнером.
  2. Передвижным шасси (колесное, на полозьях).

Бытовые электрогенераторы приобрели большую популярность сравнительно недавно.

Они используются для электрификации небольших коттеджей, загородных домов и дач, а также помогают решить ряд проблем, связанных с некорректной работой централизованной электросети и часто применяются в качестве аварийных источников переменного тока на ранее электрифицированных объектах подобного типа.

В устройствах этого типа для вращения вала генератора используют как бензиновые, так и дизельные ДВС. Они вырабатывают переменный ток небольшой мощности (от 0,5 до 15 кВт) и отличаются:

  1. Экономичностью.
  2. Небольшими размерами.
  3. Низким уровнем шума.

При выборе бытового генератора переменного тока, потенциальному потребителю необходимо обращать внимание на:

  1. Тип ДВС (бензиновый или дизельный).
  2. Заявленную в сопроводительной документации мощность.
  3. Тип генератора (синхронный или асинхронный).
  4. Фазность.
  5. Блок управления.
  6. Уровень шума.

househill.ru

Генератор переменного тока: устройство, принцип работы, назначение

Электрический ток является основным видом энергии, совершающим полезную работу во всех сферах человеческой жизни. Он приводит в движение разные механизмы, дает свет, обогревает дома и оживляет целое множество устройств, которые обеспечивают наше комфортное существование на планете. Поистине, этот вид энергии универсален. Из нее можно получить все что угодно, и даже большие разрушения при неумелом использовании.

Но было время, когда электрические эффекты все так же присутствовали в природе, но никак не помогали человеку. Что же изменилось с тех пор? Люди стали изучать физические явления и придумали интересные машины – преобразователи, которые, в общем, и сделали революционный скачок нашей цивилизации, позволив человеку получать одну энергию из другой.

Так люди научились вырабатывать электричество из обычного металла, магнитов и механического движения – только и всего. Были построены генераторы, способные выдавать колоссальные по мощности потоки энергии, исчисляемые мегаваттами. Но интересно, что принцип действия этих машин не так уж сложен и вполне может быть понятен даже подростку. Что же такое генератор электрического тока? Попробуем разобраться в этом вопросе.

Эффект электромагнитной индукции

Основой появления в проводнике электрического тока является электродвижущая сила — ЭДС. Она способна заставить перемещаться заряженные частицы, которых много в любом металле. Эта сила появляется только в случае, если проводник испытывает на себе изменение интенсивности магнитного поля. Сам эффект получил название электромагнитной индукции. ЭДС тем больше, чем больше скорость изменения потока магнитных волн. То есть, можно возле постоянного магнита перемещать проводник, или на неподвижный провод влиять полем электромагнита, меняя его силу, эффект будет один и тот же – в проводнике появится электрический ток.

Над этим вопросом в первой половине XIX века работали ученые Эрстед и Фарадей. Они же и открыли это физическое явление. В последствии на основе электромагнитной индукции были созданы генераторы тока и электродвигатели. Интересно, что эти машины легко могут быть преобразованы друг в друга.

Как работают генераторы постоянного и переменного тока

Понятно, что генератор электрического тока – это электромеханическая машина, вырабатывающая ток. Но на самом деле она есть преобразователь энергии: ветра, воды, тепла, чего угодно в ЭДС, которая уже вызывает ток в проводнике. Устройство любого генератора принципиально ничем не отличается от замкнутого проводящего контура, который вращается между полюсами магнита, как в первых опытах ученых. Только намного больше величина магнитного потока, создаваемого мощными постоянными или чаще электрическими магнитами. Замкнутый контур имеет вид многовитковой обмотки, которых в современном генераторе не одна, а минимум три. Все это сделано для того, чтобы получить как можно большую ЭДС.

Стандартный электрический генератор переменного тока (или постоянного) состоит из:

  • Корпуса. Выполняет функцию рамы, внутри которой крепят статор с полюсами электромагнита. В нем установлены подшипники качения роторного вала. Его изготавливают из металла, он также защищает всю внутреннюю начинку машины.
  • Статора с магнитными полюсами. На нем закреплена обмотка возбуждения магнитного потока. Его выполняют из ферромагнитной стали.
  • Ротора или якоря. Это подвижная часть генератора, вал которой приводит во вращательное движение посторонняя сила. На сердечнике якоря располагают обмотку самовозбуждения, где и образуется электрический ток.
  • Узла коммутации. Этот элемент конструкции служит для отведения электричества с подвижного вала ротора. Он включает в себя проводящие кольца, которые подвижно соединены с графитовыми токосъемными контактами.

Создание постоянного тока

В генераторе, продуцирующем постоянный ток, проводящий контур вращается в пространстве магнитной насыщенности. Причем за определенный момент вращения каждая половина контура оказывается вблизи того или иного полюсника. Заряд в проводнике за этот полуоборот движется в одном направлении.

Чтобы получить съем частиц, сделан механизм отвода энергии. Его особенность в том, что каждая половина обмотки (рамки) соединена с токопроводящим полукольцом. Полукольца между собой не замкнуты, а закреплены на диэлектрическом материале. За период, когда одна часть обмотки начинает проходить определенный полюс, полукольцо замыкается в электрическую схему щеточными контактными группами. Получается, на каждую клемму приходит только одного вида потенциал.

Правильнее назвать энергию не постоянной, а пульсирующей, с неизменной полярностью. Пульсация вызвана тем, что магнитный поток на проводник при вращении оказывает как максимальное, так и минимальное влияние. Чтобы эту пульсацию выровнять, применяют несколько обмоток на роторе и мощные конденсаторы на входе схемы. Для уменьшения потерь магнитного потока зазор между якорем и статором делают минимальным.

Схема генератора переменного тока

Когда происходит вращение подвижной части генерирующего ток устройства, в проводниках рамки также наводится ЭДС, как и в генераторе постоянного тока. Но небольшая особенность – генератор переменного тока устройство коллекторного узла имеет другое. В нем каждый вывод соединен со своим токопроводящим кольцом.

Принцип работы генератора переменного тока следующий: когда половина обмотки проходит возле одного полюса (другая, соответственно, возле противоположного полюса), в цепи движется ток в одном направлении от минимума к наивысшему своему значению и снова к нулю. Как только обмотки меняют свое положение относительно полюсов, ток начинает свое движение в обратном направлении с той же закономерностью.

При этом на входе схемы получается форма сигнала в виде синусоиды с частотой полуволн, соответствующей периоду вращения вала ротора. Для того, чтобы получить на выходе стабильный сигнал, где частота генератора переменного тока постоянна, период вращения механической части должен быть неизменным.

Конструкции генераторов тока, где вместо металлической рамки как носитель зарядов используют токопроводящую плазму, жидкость или газ, получили название МГД-генераторов. Вещества под давлением прогоняют в поле магнитной напряженности. Под воздействием все той же ЭДС индукции заряженные частицы обретают направленное движение, создавая электрический ток. Величина тока прямо пропорциональна скорости прохождения через магнитный поток, а также его мощности.

Генераторы МГД имеют более простое конструктивное решение – в них отсутствует механизм вращения ротора. Такие источники питания способны выдавать большие мощности энергии в короткие промежутки времени. Их применяют в качестве резервных устройств и в условиях экстренных аварийных ситуаций. Коэффициент, определяющий полезное действие (КПД) этих машин выше, чем имеет электрический генератор переменного тока.

Генератор синхронный переменного тока

Существуют такие типы генераторов переменного тока:

  • Машины синхронные.
  • Машины асинхронные.

Синхронный генератор переменного тока имеет строгую физическую зависимость между вращательным движением ротора и генерируемой частотой электричества. В таких системах ротор – это электромагнит, собранный из сердечников, полюсов и возбуждающих обмоток. Последние запитываются от источника постоянного тока посредством щеток и кольцевых контактов. Статор же представляет собой катушки провода, соединенные между собой по принципу звезды с общей точкой – нолем. В них уже наводится ЭДС и вырабатывается ток.

Вал ротора приводится в движение посторонней силой, обычно турбинами, частота движения которых синхронизирована и постоянна. Электрическая цепь, подключаемая к такому генератору, представляет собой трехфазную схему, частота тока в отдельной линии которой смещена на фазу в 120 градусов относительно других линий. Чтобы получить правильную синусоиду, направление магнитного потока в просвете между статорной и роторной частью регулируют конструкцией последних.

Возбуждение генератора переменного тока реализуют двумя методами:

  1. Контактным.
  2. Бесконтактным.

В схеме контактного возбуждения на обмотки электромагнита через щеточную пару подают электроэнергию с другого генератора. Этот генератор может быть совмещен с валом основного. Он, как правило, имеет меньшую мощность, но достаточную, чтобы создать сильное магнитное поле.

Бесконтактный принцип предусматривает, что синхронный генератор переменного тока на валу имеет дополнительные трехфазные обмотки, в которых при вращении наводится ЭДС и вырабатывается электричество. Оно через выпрямляющую схему поступает на катушки возбуждения ротора. Конструктивно в такой системе отсутствуют подвижные контакты, что упрощает систему, делая ее более надежной.

Асинхронный генератор

Существует асинхронный генератор переменного тока. Устройство его отличается от синхронного. В нем нет точной зависимости ЭДС от частоты с которой вал ротора вращается. Присутствует такое понятие как «скольжение S», которое характеризует эту разницу влияния. Величина скольжения определяется вычислением, так что неправильно думать, будто бы нет закономерности электромеханического процесса в асинхронном двигателе.

Если генератор, работающий вхолостую, нагрузить, то протекающий в обмотках ток будет создавать магнитный поток, препятствующий вращению ротора с заданной частотой. Так образуется скольжение, что, естественно, влияет на выработку ЭДС.

Современный асинхронный генератор переменного тока устройство подвижной части имеет в трех разных исполнениях:

  1. Полый ротор.
  2. Короткозамкнутый ротор.
  3. Фазный ротор.

Такие машины могут иметь само- и независимое возбуждение. Первая схема реализуется за счет включения в обмотку конденсаторов и полупроводниковых преобразователей. Возбуждение независимого типа создается дополнительным источником переменного тока.

Схемы включения генераторов

Все мощные источники питания линий электропередач вырабатывают трехфазный электрический ток. Они содержат в себе три обмотки, в которых образуются переменные токи со смещенной друг от друга фазой на 1/3 периода. Если рассматривать каждую отдельную обмотку такого источника питания, то получим однофазный переменный ток, идущий в линию. Напряжение в десятки тысяч вольт может вырабатывать генератор. 220 В потребитель получает с распределительного трансформатора.

Любой генератор переменного тока устройство обмоток имеет стандартное, но подключение к нагрузке бывает двух типов:

  • звездой;
  • треугольником.

Принцип работы генератора переменного тока, включенного звездой, предполагает объединение всех проводов (нулевых) в один, которые идут от нагрузки обратно к генератору. Это обусловлено тем, что сигнал (электрический ток) передается в основном через выходящий провод обмотки (линейный), который и называют фазой. На практике это очень удобно, ведь не нужно тянуть три дополнительных провода для подключения потребителя. Напряжение между линейными проводами и линейным и нулевым проводом будут отличаться.

Соединяя треугольником обмотки генератора, их замыкают друг с другом последовательно в один контур. Из точек их соединения выводят линии к потребителю. Тогда вообще не нужен нулевой провод, а напряжение на каждой линии будет одинаковым независимо от нагрузки.

Преимуществом трехфазного тока перед однофазным является его меньшая пульсация при выпрямлении. Это положительно сказывается на питаемых приборах, особенно двигателях постоянного напряжения. Также трехфазный ток создает вращающийся поток магнитного поля, который способен приводить в движение мощные асинхронные двигатели.

Где применимы генераторы постоянного и переменного тока

Генераторы постоянного тока значительно меньше по размерам и массе, чем машины переменного напряжения. Имея более сложное конструктивное исполнение чем последние, они все же нашли применение во многих отраслях промышленности.

Основное распространение они получили в качестве высокооборотных приводов в машинах, где требуется регулирование частоты вращения, например, в металлообрабатывающих механизмах, подъемниках шахт, прокатных станах. В транспорте такие генераторы установлены на тепловозах, различных судах. Множество моделей ветрогенераторов собраны на базе источников постоянного напряжения.

Генераторы постоянного тока специального назначения применяют в сварке, для возбуждения обмоток генераторов синхронного типа, в качестве усилителей постоянного тока, для питания гальванических и электролизных установок.

Назначение генератора переменного тока — вырабатывать электроэнергию в промышленных масштабах. Такой вид энергии подарил человечеству Никола Тесла. Почему именно изменяющий полярность ток, а не постоянный нашел широкое применение? Это связано с тем, что при передаче постоянного напряжения идут большие потери в проводах. И чем длиннее провод, тем потери выше. Переменное напряжение можно транспортировать на огромные расстояния при гораздо меньших затратах. Причем легко можно преобразовывать переменное напряжение (понижая и повышая его), который выработал генератор 220 В.

Заключение

Человек до конца не познал природу магнетизма, который пронизывает все вокруг. И электрическая энергия – это лишь малая часть открытых тайн мироздания. Машины, которые мы называем генераторами энергии, по сути очень просты, но то, что они могут нам дать, просто поражает воображение. Все же настоящее чудо здесь не в технике, а в мысли человека, которая смогла проникнуть в неисчерпаемый резервуар идей, разлитых в пространстве!

fb.ru

Устройство и принцип работы генератора переменного тока

Мироздание предоставило человечеству триллион способов получить электричество, каждый этап развития характеризуется собственными технологиями. Допустим, исторически первым считают генератор постоянного заряда Ван де Граафа. Неверная точка зрения. Люди пользовались прежде другими разновидностями. Сегодня рассмотрим устройство, принцип работы генератора переменного тока. Приступим.

Работа генераторов электрического тока

Принцип призван создать потенциал относительно Земли, считаемую нулем. Неправильно, но все в мире относительно. Хотя земная поверхность несет заряд, играет роль разница потенциалов меж клеммами генератора и почвой. Стоящий на грунте предмет обволакивается полем планеты, считаем постулат верным. Первым изобретен генератор постоянного тока. Скорее напряжения. Вольтаж получался фантастический, тока приборчик давал мало. Принцип действия прост:

Принцип действия генератора

  1. Лента трется, локально формируется заряд.
  2. Путем конвейерного механизма участок достигает токоснимателя.
  3. Проводимостью клеммы вида шара плотность уравнивается.

В результате сфера приобретает заряд, плотностью равный локальному ленты. Понятно, такие генераторы не слишком удобны, в 1831 году Майкл Фарадей создает нечто новое. Пользуясь намагниченной лошадиной подковой, вращающимся медным диском получил электричество по-иному: явлением магнитной индукции. Ток выходил переменный. Следовательно, поле перестало быть статическим, став электромагнитным. Поясним:

  • В природе часто встречаются заряды электричества положительного или отрицательного знака, никто не сумел разыскать отдельно полюсы магнита.
  • Переменное электрическое поле вызывает соответствующий отклик эфира. Выражен продуцированием переменной магнитной составляющей в плоскости перпендикулярной исходной.

Процесс продолжается беспрерывно, называется электромагнитной волной. Осваивает свободное пространство прямолинейно, пока энергия затухает. Что касается проводов, электричество распространяется сравнительно просто. Но! Пока кабель снабжен оплеткой. Экран пропал, зануление (заземление) отсутствует — волна начинает излучаться. Эффект эксплуатируют беспроводные отвертки-индикаторы, помогают установить (локализовать) источники помех промышленной частоты 50 Гц. И если системный блок компьютера не заземлен, при помощи вещички можно легко исправить недочет.

Помогает проверить вредоносное излучение дисплеев. Частота 50 Гц легко излучается проводами. Аспект увеличивает расходы электростанций (потери), вредит здоровью граждан. Как возникает энергия в генераторе Фарадея? Объясняли школьные учителя: при вращении рамки в поле магнита индукция через площадь меняется, наводится электрический ток.

Механическая энергия движения преобразуется в электрическую. Догадались, человечество эксплуатирует:

  1. Падение с плотины вниз масс воды.
  2. Энергию пара тепловых, атомных электростанций.

Два главнейших механизма получения энергии. Электричество становится движение лопасти турбины генератора. Природа родила устройства, сжигающие дизельное топливо, керосин, принцип действия мало отличается. Разница ограничена мобильностью, скоростью вращения лопасти.

Выработка электрической энергии городов

Посмотрим устройство генератора тока ГЭС. Для накопления потенциальной энергии движимой руслом реки водами воздвигается плотина. Уровень вверх по течению быстро начинает подниматься. Чтобы избежать прорыва (любого типа), часть многотонной массы стравливается (кое-где ставят специальные шлюзы пропускать рыбу на нерест). Полезная часть течения проходит сквозь направляющий аппарат. Знакомые с устройством реактивных двигателей, поняли речь. Направляющим аппаратом называется конфигурация створок, изменением положения регулируется количество проходящей среды (водя).

Говорили в обзорах, регламентированы жесткие требования на частоту вырабатываемого электричества. Ученые просчитали: можно достичь при нынешнем уровне развития, применяя массивные лопасти, на которых не сказываются малые удары волн. Учитывается средняя масса проходящей воды, мелкие скачки скрадываются несусветной массой винта. Очевидно, имея весомые габариты, скорость вращения бессильна составить 50 Гц (3000 об/мин). Лопасть делает 1-2 об/мин.

Линии электропередач

Винт вращает ротор генератора. Движущаяся ось, усаженная обмотками возбуждения. Катушки, сквозь которые пропускается постоянный ток для создания устойчивого магнитного поля. Излучения не происходит, значение напряженности постоянное (см. выше). Наблюдаются неявные флуктуации, результат не отражается на сути процесса: валу образован несколькими вращающимися магнитами.

Возникает тонкий момент: как получить частоту 50 Гц. Быстро пришли к выводу: выпрямлять переменный ток, после ставить инвертор обратного преобразования невыгодно. Вдоль статора расположили множество проволочных катушек (рамка из опытов Фарадея), в которых будет наводиться индукция. Путем правильной коммутации с генератора удается снять нужные 230 вольт (на деле стоят еще понижающие трансформаторы) с частотой 50 Гц. Генераторы дают три фазы, сдвинутые на 120 градусов. Возникает новый вопрос – обеспечить стабильность. Подавать дозированное количество воды, пока лопасть набирает скорость? Практически невозможно, поступают следующим образом:

  1. Помимо токосъемных катушек статоре содержит возбуждающие.
  2. Туда подается напряжение частоты, позволяющей лопасти набрать нужную скорость.
  3. Получается фактически громадный синхронный двигатель.

Начальный разгон нагоняется потоком воды, вспомогательное напряжение придерживает винт, пытающийся превысить заданную скорость. Вода фактически толкает махину, напряжение возбуждения послужит регуляции (понятно, на статор подается переменный ток). Требуется получить больше мощности, направляющий аппарат плотины чуть приоткрывается. Масса воды становится более солидной, непременно сорвала бы обороты. Приходится увеличивать ток возбуждения статора, контролирующее поле становится сильнее, ситуация остается в нормальных пределах.

Двигатель внутреннего сгорания Катерпиллер, вращающий генератор

Мощность генератора возрастает. А напряжение, поддерживается уровень? По закону электромагнитной ЭДС Фарадея напряжение определено скоростью изменения магнитного поля, числом витков. Получается, конструктивно выбирая площадь катушек, длину кабеля, задаем выходное напряжение генератора. Разумеется, каждый должен иметь свою скорость вращения лопасти. Выдерживается током возбуждения ротора. При возрастании мощности увеличивается ЭДС. Рост тока возбуждения повышает скорость изменения магнитной напряженности поля.

Нужен способ поддержания прежних параметров. Зачастую становятся развязывающие трансформаторы с переменным коэффициентом передачи. Потребитель меняет ток, напряжение остается постоянным. Обеспечиваются заданные стандартами параметры. Устройство генератора переменного тока основано на возбуждении обмоток статора, остальное сводится к методикам регуляции параметров.

Регулировка параметром генераторов переменного тока

В простейшем случае мощность не поддается изменению. В бытовых (мелких генераторах) схема отслеживает напряжение, меняется значение тока возбуждения. Редко ситуация на руку потребителю. Расходуется солярка. Получается, тратится прежняя энергия, часть рассеивается пространством. Не страшно, когда возвращаем Земле часть скорости реки, жечь топливо задаром редкий скупец захочет.

Читатели поняли: обороты сорвутся, если не уменьшить подачу воды, газа, пара – в общем, движущей силы. Отслеживает отдельная цепь регуляции, снабженная регулировочными механизмами. Частному дому лучше создать систему аккумуляторную, сегодня имеется возможность 12 вольтами постоянного тока питать освещение, ноутбуки, многие другие приборы. Сеть возможно оборудовать отводом для периодического заряда батарей. Методик, как помним, две:

Простая схема работы генератора

  1. С постоянным током. Напряжение варьируется, каждый час заряжается одна десятая емкости. Длительность процесса – 600 минут.
  2. С постоянным напряжением. Ток падает по экспоненте, вначале составит сравнительно большие величины. Главный недостаток методики.

Принцип действия генератора переменного тока позволит вести подзарядку аккумуляторов, руководствуясь необходимостью. Понятно, потребуется цепь гальванической развязки перед каскадом батарей. Можно догадаться из прочитанного, ГЭС применяют устройства с подстраиваемым коэффициентом трансформации. Методики реализации затеи могут быть разными:

  1. Широкое распространение получили трансформаторы с коммутируемыми обмотками. Число витков может меняться путем переключения контакторами цепей.
  2. Более плавный коэффициент обеспечивает скользящий контакт. Здесь витки одной катушки зачищены, токосъемник бегает взад-вперед, меняя число рабочих витков. Понятно, большой ток пропустить сложно, будет возникать искра, в случае ГЭС станет дугой. Скорее устройство регулирования сравнительно малых мощностей.

Из сказанного следует: ток возбуждения ротора ГЭС логично менять скачками в такт переключению обмоток регулирующего трансформатора. Потом происходит плавная подстройка, параметры напряжения приходят в норму. Рассказали в общих чертах, как работает генератор переменного тока. Стоит отметить: конструкцией многообразие не исчерпано. Описанный вид устройств составляет костяк семейства под названием синхронные генераторы переменного тока. Обеспечивают города, по большей части, энергией.

Асинхронный генератор переменного тока

Асинхронные генераторы отличаются отсутствием электрической связи меж статором и ротором. Скорость регулируется направляющим аппаратом. Сообразно стабильность частоты падает, амплитуда напряжения также носит непостоянный характер. В результате можно отметить относительную простоту конструкции асинхронного генератора переменного тока, стабильность параметров не блещет хорошими показателями.

Отличительной чертой назовем способность недостатков асинхронных двигателей плавно перекочевывать, заражая новые устройства. Очевидно, для снабжения потребителей энергией регулируют частоту тока, мощность получается случайной. Хотя, если генератор находится в относительно постоянном окружении, сказанное не окажется большой проблемой.

vashtehnik.ru

Генератор переменного тока: принцип действия

Преобразование механической энергии в электрическую происходит при помощи генератора тока. В основном, практикуется использование вращающихся электромашинных генераторов. При вращении, в проводнике возникает электродвижущая сила под действием изменяющегося магнитного поля. Часть генератора, создающая магнитное поле, называется индуктором, а та часть, где образуется электродвижущая сила, носит название якоря.

Принцип действия

Вращающаяся часть генератора называется ротором, а его неподвижная часть является статором. Генератор переменного тока имеет статор и ротор, которые по своей конструкции могут быть одновременно якорем и индуктором.

Практически, всю электроэнергию на мировых электростанциях производят электрогенераторы переменного тока. При вращении индуктора, создается магнитное поле, которое вращается и наводит в обмотке статора переменную электродвижущую силу. Ее частота полностью совпадает с частотой вращения ротора.

Элементы генератора

В состав магнитной системы статора входят тонкие стальные листы, спрессованные в пакет. В пазах этого пакета размещается обмотка статора. Она включает в себя три фазы, сдвинутые относительно друг друга на одну третью часть периметра статора. Электродвижущие силы, индуцированные в обмотках фаз, так же сдвинуты между собой на 1200. Каждая фаза имеет обмотку, состоящую из катушек с множеством витков, соединяемых между собой параллельно или последовательно. Части катушек, выступающие из пазов, носят название лобовых соединений статора.

В индукторе и статоре, количество полюсов может быть и более двух. Количество полюсов полностью зависит от частоты вращения ротора. При замедлении вращения ротора может иметь возрастающее число полюсов.

Массивный стальной сердечник ротора содержит в себе обмотку возбуждения генератора. Данная конструкция применяется для электрогенераторов переменного тока, работающих с высокой частотой вращения. Это вызвано тем, что при высоких скоростях вращения, обмотка ротора подвержена действию больших центробежных сил. Большое количество полюсов предполагает наличие отдельной обмотки возбуждения у каждого полюса, что характерно для электрогенераторов, работающих на малых скоростях.

В гидротурбинах генераторы переменного тока могут иметь конструкцию с вертикальным расположением вала. При работе в зависимости от мощности, может применяться воздушное, водородное, водяное или масляное охлаждение.

electric-220.ru

Принцип работы генератора переменного тока и особенности функционирования

Генераторы переменного тока, известные также некоторое время назад как «альтернаторы» — машины электрического типа, предназначенные для преобразования механической работы в электроэнергию переменного тока.

Принцип работы генератора переменного тока напрямую зависит от его вида.

Устройство машины электрического типа

В зависимости от конструкционных характеристик, все устройства ПТ данного типа могут быть представлены:

  1. электротехническими машинами, имеющими недвижимые магнитные полюсы и вращающуюся якорную часть;
  2. электротехническими машинами, имеющими вращающиеся магнитные полюсы и недвижимую статорную часть.

Второй вариант отличается большим распространением, что обусловлено статичностью статорной обмотки.

Двигающийся генераторный элемент является ротором, а неподвижная часть носит название статор, который представлен отдельными изолированными листами на основе железа с пазами для проводов обмотки.

Для изготовления ротора используются сплошные железные листы, а установка статора и полюсных роторных наконечников осуществляется с минимальным зазором, необходимым для стабильной и достаточной магнитной индукции. Благодаря особой форме роторных наконечников удается получать токовые величины, близкие к синусоидальным показателям.

Устройство генератора переменного тока

В зависимости от способа генераторного возбуждения, устройства с переменными токовыми величинами представлены оборудованием:

  • независимого возбуждения с обмоточным возбуждением, подпитываемым током постоянного типа, получаемым от сторонних источников электроэнергии, включая аккумуляторную батарею;
  • с обмоточным возбуждением, подпитываемым токами с незначительным уровнем мощности от вала, единого с генератором;
  • с обмоточным возбуждением, подпитываемым выпрямленными токовыми величинами от генератора с самостоятельным возбуждением;
  • с типом возбуждения, ориентированным на постоянные магниты.

В зависимости от конструктивных особенностей, выделяется оборудование, имеющее явно и неявно выраженные полюса.

В соответствии с количеством фаз, генераторы переменного тока представлены оборудованием однофазного, двухфазного и трехфазного типа с подсоединением «звездой», «треугольником» или «Славянка».

Какое явление используется в работе генератора переменного тока?

Токи ПТ являются движущей силой многих устройств и современных технических систем, включая разнообразный транспорт. Независимо от конструктивных особенностей технического устройства, явление, объясняющее работу генератора ПТ, представлено электромагнитной индукцией. Такой процесс проявляется в условиях замкнутого контура электротока и при наличии измененных магнитных потоков.

Устройство генератора условно делится на пару основных, наиболее важных частей:

  1. якорь, образующий электродвижущую силу в условиях наличия магнитного поля;
  2. индуктор, создающий магнитное поле.

Простейший генератор переменного тока

Постоянная часть или основа устройства включает в себя магнит и проволочную обмотку с возникающей в условиях магнитного поля электродвижущей силой. Для получения мощного переменного тока потребуется использовать менее примитивную конструкцию генератора с достаточно сильным магнитным потоком.

Проверка генератора на работоспособность заключается в отсоединении статора и замерах уровня сопротивления мультиметром. Особого внимания потребует подключение устройства с учетом явления, используемого в работе генератора ПТ:

  • добавление пары стальных сердечников на проволочную намотку оборудования, чем определяется назначение устройства;
  • размещение в пазах на сердечнике стандартного обмоточного элемента, создающего магнитное поле.

Генератор переменного тока (Автомобильный)

Особенностью двухполюсного или многополюсного статора или индуктора, является его статичность и использование для питания постоянных токовых величин. Отличие ротора, или якоря представлено активным вращением, что обусловлено наличием подшипников, а также продуцированием электродвижущей силы или переменных токовых величин. Такой элемент является стандартным внутренним сердечником, имеющим медную проволочную намотку.

Современные генераторы обладают прочным и надежным металлическим корпусом с входами, количество которых обуславливается целевым назначением и особенностями эксплуатации устройства.

Принцип работы генератора переменного тока

Особенностью принципа действия генераторов ПТ, является превращение механической энергии в электроэнергию в процессе вращения проволочного катушечного элемента в условиях созданного магнитного поля.

Асинхронные генераторы

Отличием асинхронного генераторного устройства ПТ является разница в частоте вращения ЭДС ω и роторной части ωr, выражаемая коэффициентом и носящая название скольжение:

S = (ω – ωr)/ ω

Двигатель асинхронный трехфазный

В условиях рабочего режима происходит торможение якорной части в магнитном поле, при этом асинхронные двигатели способны функционировать в качестве генератора при ωr >ω, изменении направленности тока и обратной передаче энергии в электросеть. В таких условиях отмечается торможение электромагнитного момента.

Асинхронные электротехнические машины востребованы при предъявлении не слишком высоких требований к основным параметрам устройства.

Синхронные генераторы

Характеристики синхронного устройства предполагают наличие равенства между частотными параметрами F в ЭДС-статоре и частотой роторных оборотов:

ω = 60 × F / Р,

где Р, является общим количеством полюсных пар на статорной обмотке.

Системы возбуждения синхронных генераторов

Стандартными синхронными генераторами производится напряжение, имеющее синусоидальные характеристики, а подсоединение к выводам потребителей сопровождается протеканием сквозь электрическую цепь одно-, или трехфазного тока.

Стандартные синхронные генераторы являются предпочтительными в условиях наличия перегрузок пускового типа.

Автомобильные электротехнические машины

Генераторы автомобиля не имеют отличий от стандартных устройств, вырабатывающих в процессе работы электрический ПТ с последующим выпрямлением. Конструкция представлена электромагнитным ротором, вращающимся в паре подшипников с наличием привода через шкив.

Устройство автомобильного генератора

Одинарная обмотка характеризуется образованием постоянных токовых величин посредством пары медных колец и графитовых щеточных элементов. Электронным реле регулируется наличие стабильного напряжения на уровне 12 В, вне зависимости от особенностей вращения.

При повышении оборотов движка происходит снижение показателей токового возбуждения, благодаря чему поддерживается постоянство напряжения на выходе.

Особенности функционирования

Правила функционирования электротехнических машин ПТ основаны на появлении внутри проводника электротока посредством электродвижущей силы, способной перемещать все заряженные частицы.

Такая сила проявляется под воздействием изменений интенсивности магнитных полей.

Величина электродвижущей силы всегда прямо пропорциональна скорости изменений в потоках магнитных волн.

Прохождение обмоточных половин у противоположных полюсов вызывает внутри цепи токовое движение в одном направлении от минимальных показателей до наивысших значений и обратно, а изменение положения обмоток относительно полюсов провоцирует возвратное токовое течение с стабильной аналогичной закономерностью.

Простейшие генераторы ПТ представлены проволочной рамкой, которая вращается между разными полюсами внутри неподвижно зафиксированного магнита. Специфика принципа действия современных альтернаторов широко применяется при необходимости поддерживать стабильность электрического снабжения, а также такая техника востребована на объектах, где отсутствует возможность использования централизованных электросетей.

proprovoda.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о