Ренин ангиотензин альдостероновая система схема – Ренин-ангиотензин-альдостероновая система

схема, функции и ее роль

Ренин-ангиотензин-альдостероновая система является комплексом ферментов и гормонов, которые поддерживают гомеостаз. Регулирует равновесие соли и воды в организме и уровень артериального давления.

Механизм работы

Физиология ренин-ангиотензин-альдостероновой системы берет начало на границе коркового и мозгового вещества почки, где имеются юкстагломерулярные клетки, вырабатывающие пептидазу (фермент) — ренин.

Ренин является гормоном и начальным звеном РААС.

Ситуации, при которых ренин выделяется в кровь

Существует несколько состояний, при которых идет попадание гормона в кровеносное русло:

  1. Уменьшение кровотока в ткани почек — при воспалительных процессах (гломерулонефрит др.), при диабетической нефропатии, опухолях почек.
  2. Снижение объема циркулирующей крови (при кровотечении, многократной рвоте, поносах, ожогах).
  3. Падение уровня артериального давления. В артериях почек имеются барорецепторы, которые реагируют на изменение системного давления.
  4. Изменение концентрации ионов натрия. В организме человека имеются скопления клеток, которые отвечают на изменение ионного состава крови стимуляцией выработки ренина. Соль теряется при обильном потоотделении, а также при рвоте.
  5. Стрессы, психоэмоциональные нагрузки. Юкстагломерулярный аппарат почки иннервируется симпатическими нервами, которые активируются при негативных психологических влияниях.

В крови ренин встречается с белком — ангиотензиногеном, который вырабатывается клетками печени и забирает у него фрагмент. Образуется ангиотензин I, который является источником воздействия для ангиотензинпревращающего фермента (АПФ). В итоге получается ангиотензин II, который служит вторым звеном и является мощным вазоконстриктором артериальной системы (суживает сосуды).

Эффекты ангиотензина II

Цель: повысить артериальное давление.

  1. Способствует синтезу альдостерона в клубочковой зоне коры надпочечников.
  2. Воздействует на центр голода и жажды в головном мозге, вызывая «солевой» аппетит. Поведение человека становится мотивированным на поиск воды и соленой пищи.
  3. Влияет на симпатические нервы, способствуя высвобождению норадреналина, который тоже является вазоконстриктором, но менее слабым по действию.
  4. Воздействует на сосуды, вызывая их спазм.
  5. Участвует в развитии хронической сердечной недостаточности: способствует пролиферации, фиброзу сосудов и миокарда.
  6. Снижает скорость клубочковой фильтрации.
  7. Тормозит выработку брадикинина.

Альдостерон — третий компонент, который действует на конечные канальцы почек и способствует выделению из организма ионов калия, магния и обратному всасыванию (реабсорбции) натрия, хлора, воды. Благодаря этому возрастает объем циркулирующей жидкости, поднимаются цифры артериального давления, и усиливается почечный кровоток. Рецепторы к альдостерону имеются не только в почках, но и в сердце, сосудах.

Когда организм достигает гомеостаза, начинают вырабатываться вазодилататоры (вещества, расширяющие сосуды) — брадикинин и каллидин. А компоненты РААС разрушаются в печени.

Схема ренин-ангиотензин-альдостероновой системы

Как любая система, РААС может давать сбой. Патофизиология ренин-ангиотензин-альдостероновой системы проявляет при следующих состояниях:

  1. Поражение коры надпочечников (инфекция, кровоизлияние и травма). Развивается состояние нехватки альдостерона, и организм начинает терять натрий, хлор и воду, что приводит к уменьшению объема циркулирующей жидкости и снижению артериального давления. Состояние компенсируют введением солевых растворов и стимуляторов рецепторов к альдостерону.
  2. Опухоль коры надпочечников приводит к избытку альдостерона, который реализует свои эффекты и повышает давление. Также активизируются процессы деления клеток, возникает гипертрофия и фиброз миокарда, и развивается сердечная недостаточность.
  3. Патология печени, когда нарушается разрушение альдостерона и происходит его накопление. Патология лечится блокаторами рецепторов к альдостерону.
  4. Стеноз почечной артерии.
  5. Воспалительные заболевания почек.

Значение РААС для жизни и медицины

Ренин-ангиотензин-альдостероновая система и ее роль в организме:

  • принимает активное участие в поддержании нормального показателя артериального давления;
  • обеспечивает равновесие воды и солей в организме;
  • поддерживает кислотно-основной баланс крови.

Система может давать сбой. Воздействуя на ее компоненты, можно бороться с гипертонической болезнью. Механизм возникновения почечной гипертензии также тесно связан с РААС.

Высокоэффективные группы препаратов, которые синтезированы благодаря изучению РААС

  1. «Прилы». Ингибиторы (блокаторы) АПФ. Ангиотензин I не переходит в ангиотензин II. Нет вазоконстрикции — нет повышения артериального давления. Препараты: Амприлан, Эналаприл, Каптоприл и др. Ингибиторы АПФ значительно улучшают качество жизни больных сахарным диабетом, обеспечивая профилактику почечной недостаточности. Препараты принимают в минимальной дозировке, которая не вызывает снижения давления, а лишь улучшает местный кровоток и клубочковую фильтрацию. Медикаменты незаменимы при почечной недостаточности, хронической болезни сердца и служат одним из средств лечения гипертонической болезни (если нет противопоказаний).
  2. «Сартаны». Блокаторы рецепторов к ангиотензину II. Сосуды не реагируют на него и не сокращаются. Препараты: Лозартан, Эпросартан и др.

Противоположной ренин-ангиотензин-альдостероновой системе является кининовая. Поэтому блокирование РААС приводит к повышению в крови компонентов кининовой системы (брадикинин и др.), что благоприятно влияет на ткани сердца и стенки сосудов. Миокард не испытывает голодания, потому как брадикинин усиливает местный кровоток, стимулирует выработку естественных вазодилататоров в клетках мозгового вещества почек и микроцитах собирательных трубочек — простагландинов Е и И2. Они нейтрализуют прессорное действие ангиотензина II. Сосуды не спазмированы, что обеспечивает адекватное кровоснабжение органов и тканей организма, кровь не задерживается и снижается формирование атеросклеротических бляшек и тромбов. Кинины благоприятно воздействуют на почки, увеличивают диурез (суточное выделение мочи).

fb.ru

Ренин-ангиотензин-альдостероновая система — Alexmed.info

Центральная роль  в регуляции кровяного давления и электролитного обмена у человека и высших животных. В состав этой регуляторной системы входят ренин, ангиотензиноген и его производные формы – ангиотензин I и ангиотензин II, а также гормон корковой зоны надпочечников – минералокортикоид альдостерон.

– фермент, синтезируемый юкстагломерулярными клетками почечных афферентных артериол, имеющий ММ около 40 кДа. Особенно интенсивно образование ренина происходит при ишемии почек. Локализация юкстагломерулярных клеток делает их особенно чувствительными к изменениям кровяного давления, а также концентрации ионов Na+ и К+ в жидкости, протекающей через почечные канальцы. Благодаря указанным свойствам любая комбинация факторов, вызывающая снижение объема жидкости (обезвоживание, падение кровяного давления, кровопотеря и др.) или снижение концентрации NaCl, стимулирует высвобождение ренина.

В то же время большинство регуляторов синтеза ренина действуют через почечные барорецепторы. На освобождение ренина оказывает влияние состояние ЦНС, а также изменение положения тела в пространстве. В частности, при переходе из положения лёжа в положение сидя или стоя (клиностатическая проба) секреция ренина увеличивается. Эта рефлекторная реакция обусловлена повышением тонуса симпатической части автономной нервной системы, передающей импульсы к b-адренорецепторам юкстагломерулярных клеток.

Основным субстратом, на который воздействует ренин, является ангиотензиноген – белок, входящий во фракцию a2-глобулинов и образуемый печенью. Под воздействием глюкокортикоидов и эстрогенов синтез ангиотензиногена значительно возрастает. В результете действия ренина ангиотензиноген превращается в декапептид ангиотензин I. Это соединение обладает чрезвычайно слабым действием и существенного влияния на уровень кровяного давления не оказывает.

Между тем ангиотензин I под воздействием так называемого ангиотензинпревращающего фермента (АПФ) переходит в мощный сосудосуживающий фактор – ангиотензин II. АПФ (дипептидкарбооксипептидаза) является интегральным белком, расположенным преимущественно на мембране эндотелиальных клеток, эпителии, мононуклеарах, нервных окончаниях, клетках репродуктивных органов и др. Растворимая форма АПФ присутствует практически во всех жидкостях организма.

Принято выделять две изоформы АПФ. Первая из них получила условное наименование «соматической». Эта изоформа имеет ММ 170 кДа и включает гомологичные С- и N-домены. Вторая форма АПФ («репродуктивная») найдена в семенной жидкости, имеет ММ около 100 кДа и соответствует С-домену первой изоформы АПФ. Каждый из 2 указанных доменов содержит аминокислотные остатки, которые могут принимать участие в образовании связи с атомом цинка. Такие Zn2+-структуры являются типичными для многих металлопротеиназ и оказываются основными участками взаимодействия фермента как с субстратом, так и с ингибиторами АПФ.

Следует заметить, что АПФ не только приводит к образованию ангиотензина II, но и разрушает брадикинин – соединение, расширяющее кровеносные сосуды. Следовательно, увеличение кровяного давления при воздействии АПФ связано как с образованием ангиотензина II, так и с распадом брадикинина (рис. 32).

Важную роль для действия АПФ играет ионный состав и, в частности, содержание ионов хлора. Так, при высокой концентрации Cl С-домен АПФ гидролизует и брадикинин, и ангиотензин-I быстрее, чем N-домен. Во внеклеточных регионах, где концентрация анионов хлора высока, за превращение ангиотензина-I отвечает преимущественно N-домен. Однако внутриклеточно, где концентрация Clнизкая, N-домен может участвовать в гидролизе других пептидных субстанций.

За последние годы установлено, что АПФ играет важную роль в гемопоэзе, ибо под его воздействием ингибируется образование гематопоэтического пептида, тормозящего образование гематопоэтических клеток костного мозга.

Роль АПФ в организме была выявлена на мышах, лишенных гена АПФ. У таких животных отмечалось низкое кровяное давление, различные сосудистые дисфункции, нарушение структуры и функции почек и бесплодие у самцов.

увеличивает кровяное давление, вызывая сужение артериол, и является самым сильнодействующим из известных вазоактивных агентов. Кроме того, он по механизму обратной связи тормозит образование и высвобождение ренина юкстагломерулярными клетками почки, что в конечном итоге должно восстанавливать нормальный уровень кровяного давления. Под воздействием ангиотензина II резко возрастает продукция основного минералокортикоида – альдостерона. Несмотря на то, что это действие является прямым, ангиотензин II не влияет на продукцию кортизола. Основное назначение альдостерона сводится к задержке Na+ (за счет усиления его реабсорбции в почечных канальцах) и выделению К+ и Н+ (главным образом через почки). Эти реакции осуществляются следующим образом.

проникает из внеклеточной жидкости в цитоплазму клетки и там соединяется со специфическим рецептором, после чего образовавшийся комплекс (альдостерон+рецептор) проникает в ядро. Альдостерон также стимулирует открытие Na+ каналов, благодаря чему ионы Na+ входят в клетку через апикальную мембрану из просвета канальца.

Увеличение секреции К+ под воздействием альдостерона обусловлено возрастанием проницаемости апикальной мембраны по отношению к этим ионам, благодаря чему К+ поступает из клетки в просвет канальца.

Задержка Na+ в организме, как и ангиотензин II, способствует повышению кровяного давления.

Ангиотензин II способен связываться со специфическими рецепторами клубочковых клеток надпочечника. Содержание этих рецепторов во многом зависит от концентрации ионов К+. Так, если уровень К+ повышается, то возрастает число рецепторов к ангиотензину II в клубочковых клетках. При уменьшении концентрации ионов К+ отмечается прямо противоположный эффект. Следовательно, ионы К+ играют основную роль в действии ангиотензина II на надпочечники.

За последнее время установлено, что ангиотензин II способен активировать макрофаги, благодаря чему усиливается агрегация тромбоцитов и ускоряется свёртывание крови. Одновременно при этом высвобождается ингибитор активатора плазминогена-I (ИАП-1), что может сопровождаться депрессией фибринолиза. Ангиотензин II является одним из факторов, способствующих развитию атерогенеза, торможению апоптоза и усилению оксидативного стресса в тканях, тем самым провоцируя агрегацию тромбоцитов и тромбообразование.

Ангиотензин II способен усиливать функцию миокарда, участвует в биосинтезе норадреналина и других физиологически активных веществ. Одновременно он может действовать как ростовой фактор, приводя к сосудистой и сердечной гипертрофии.

У некоторых животных и у человека ангиотензин II под воздействием фермента аминопептидазы превращается в гептапептид ангиотензин III. У человека уровень ангиотензина II приблизительно в 4 раза выше, чем ангиотензина III. Оба эти соединения оказывают влияние на уровень кровяного давления и продукцию альдостерона и довольно быстро разрушаются под воздействием ферментов ангиотензиназ.

При тяжелых заболеваниях почек, сопровождающихся их ишемией, благодаря повышенному образованию и секреции ренина наблюдается стойкое повышение кровяного давления (почечная гипертензия). Применение ингибиторов АПФ в этих условиях приводит к быстрой нормализации кровяного давления.

В заключение следует еще раз подчеркнуть, что ангиотензин-ренино-альдостероновая система теснейшим образом связана с функцией калликреин-кининовой системы, ибо образование ангиотензина II и разрушение брадикинина осуществляется под воздействием одного и того же фермента – АПФ.

alexmed.info

— минералокортикоиды — Биохимия

Строение альдостерона

Альдостерон у человека является основным представителем минералокортикоидных гормонов, производных холестерола.

Синтез

Осуществляется в клубочковой зоне коры надпочечников. Образованный из холестерола прогестерон на пути к альдостерону подвергается последовательному окислению 21-гидроксилазой,   11-гидроксилазой и 18-гидроксилазой. В конечном итоге образуется альдостерон.

Схема синтеза стероидных гормонов   (полная схема)

Регуляция синтеза и секреции

Активируют:

  • ангиотензин II, выделяемый при активации ренин-ангиотензиновой системы,
  • повышение концентрации ионов калия в крови (связано с деполяризацией мембран, открытием кальциевых каналов и активацией аденилатциклазы).
Активация ренин-ангиотензиновой системы
  1. Для активации этой системы существует два пусковых момента:
  • снижение давления в приносящих артериолах почек, которое определяется барорецепторами клеток юкстагломерулярного аппарата. Причиной этого может быть любое нарушение почечного кровотока – атеросклероз почечных артерий, повышенная вязкость крови, обезвоживание, кровопотери и т.п.
  • снижение концентрации ионов Na+ в первичной моче в дистальных канальцах почек, которое определяется осморецепторами клеток юкстагломерулярного аппарата. Возникает в результате бессолевой диеты, при длительном использовании диуретиков.

Постоянная и независимая от почечного кровотока секреция ренина (базовая) поддерживается симпатической нервной системой.

  1. При выполнении одного или обоих пунктов  клетки юкстагломерулярного аппарата активируются и из них в плазму крови секретируется фермент ренин.
  2. Для ренина в плазме имеется субстрат – белок α2-глобулиновой фракции ангиотензиноген. В результате протеолиза от белка отщепляется декапептид под названием ангиотензин I. Далее ангиотензин I при участии ангиотензин-превращающего фермента (АПФ) превращается в ангиотензин II.
  3. Главными мишенями ангиотензина II служат гладкие миоциты кровеносных сосудов и клубочковая зона коры надпочечников:
  • стимуляция кровеносных сосудов вызывает их спазм и восстановление артериального давления.
  • из надпочечников после стимуляции секретируется альдостерон, действующий на дистальные канальцы почек.

При воздействии альдостерона на канальцы почек увеличивается реабсорбция ионов Na+, вслед за натрием движется вода. В результате давление в кровеносной системе восстанавливается и концентрация ионов натрия увеличивается в плазме крови и, значит, в первичной моче, что снижает активность РААС.

Активация ренин-ангиотензин-альдостероновой системы

Механизм действия

Цитозольный.

Мишени и эффекты

Воздействует на слюнные железы, на дистальные канальцы и собирательные трубочки почек. В почках усиливает реабсорбцию ионов натрия и потерю ионов калия посредством следующих эффектов:

  • увеличивает количество Na+,K+-АТФазы на базальной мембране эпителиальных клеток,
  • стимулирует синтез митохондриальных белков и увеличение количества нарабатываемой в клетке энергии для работы Na+,K+-АТФазы,
  • стимулирует образование Na-каналов на апикальной мембране клеток почечного эпителия.

Патология

Гиперфункция

Синдром Конна (первичный альдостеронизм) – возникает при аденомах клубочковой зоны. Характеризуется триадой признаков: гипертензия, гипернатриемия, алкалоз.

Вторичный гиперальдостеронизм – гиперплазия и гиперфункция юкстагломерулярных клеток и избыточная секреция ренина и ангиотензина II. Отмечается повышение артериального давления и появление отеков.

biokhimija.ru

Ренин-ангиотензин-альдостероновая система: что это, функции

Ещё в конце ХІХ века стало известно, что почки принимают активное участие в регуляции артериального давления. Они вырабатывают фермент – ренин, который с ангиотензином и альдостероном составляет РААС (ренин-ангиотензин-альдостероновую систему). Они влияют на водно-солевой обмен, артериальное давление (именно поэтому различные патологии почек сопровождаются гипертензией) и выполняют другие функции.

Что такое ренин-ангиотензин-альдостероновая система

Принцип действия РААС

Казалось бы, ренин – фермент, вырабатываемый почками, ангиотензиноген – гликопротеид, синтезируемый печенью, а альдостерон вообще гормон надпочечников – что между ними общего. Тем не менее, они составляют единую систему, которая запускается выработкой ренина в юкстагломерулярных клетках почек.

Существует несколько механизмов стимуляции синтеза фермента:

  1. Макулярный. Он срабатывает, если снижается поступление ионов натрия в дистальном извитом канальце.
  2. Внутрипочечный барорецепторный. Юкстагломерулярные клетки являются барорецепторами, они воспринимают растяжение стенок артериол, соответственно реагируют на снижение давления выработкой ренина.
  3. Симпатический. Юкстагломерулярные клетки иннервируются симпатической нервной системой, и как только к ним поступает сигнал, они тут же начинают синтезировать фермент, способствующий повышению давления. Именно поэтому при стрессах, психо-эмоциональных нагрузках возникает артериальная гипертензия.

Затем ренин поступает в кровь. Там он воздействует на гликопротеин ангиотензиноген, вырабатываемый печенью. Таким образом, ангиотензиноген превращается в ангиотензин І. Под влиянием ангиотензинпревращающего фермента (АПФ) отщепляется дипептид у ангиотензина І, и он становится самым мощным сосудосуживающим средством – ангиотензином ІІ. Кроме того, что он вызывает спазм гладкой мускулатуры, тормозит выработку брадикинина, он стимулирует синтез альдостерона. Этот гормон, вырабатываемый надпочечниками:

  • удерживает ионы натрия и воду;
  • выводит калий;
  • усиливает синтез АТФ-азы воздействуя на ДНК.

Как только нормализуется концентрация натрия в крови, прекращается выработка ренина. Все продукты реакций распадаются, давление нормализуется, и начинают синтезироваться вазодилататоры:

  • брадикинин;
  • каллидин.

Стимулироваться работа ренин-ангиотензин-альдостероновой системы может из-за различных патологий. Например, при стенозе почечной артерии запускается РААС. Из-за того, что вырабатывается эффективнейший вазоконстриктор ангиотензин ІІ, возникает спазм сосудов. А это приводит к неоправданной гипертонии. Давление значительно повышается, соответственно нарушается микроциркуляция крови. К органам приносится меньшее количество питательных веществ, жизненно необходимых микроэлементов и кислорода (без него клетки мозга начинают отмирать через 5 минут).

Функции РААС

Как только в дистальных канальцах почек понижается концентрация ионов натрия, на юкстагломерулярные клетки подаётся сигнал от симпатической нервной системы, барорецепторы реагируют на расширение стенки артериол, тут же включается ренин-ангиотензин-альдостероновая система. Все реакции происходят практически мгновенно, но даже за столь незначительное время РААС справляется со своими функциями:

  • поддерживает кислотно-щелочной баланс;
  • регулирует водно-солевой обмен;
  • влияет на восстановление объёма крови;
  • усиливает скорость клубочковой фильтрации.

На протекание химических реакций влияет кислотно-щелочной баланс. В организме он поддерживается благодаря работе почек, буферных систем и лёгких. Если в крови понижается концентрация натрия, запускается РААС. Под влиянием альдостерона ионы возвращаются в кровь и соединяются с анионами, тем самым создают щелочную среду. Из организма выводятся кислоты в виде аммонийных солей (мочевины). Этот процесс способствует сохранению в организме необходимых минералов (натрия, калия, магния) и выведению токсинов.

Как только под влиянием РААС в крови из-за увеличения солей повышается осмотическое давление, стимулируется выработка вазопрессина, оказывается влияние на синтез альдостерона.

  1. При понижении концентрации хлорида натрия под воздействием гормонов удерживается в организме натрий и выводится вода. Так в организме сохраняется необходимое количество солей.
  2. Как только концентрация хлорида натрия повысилась, перестаёт работать РААС. В почечных клубочках происходит выведение избытка солей из организма.

Таким образом регулируется водно-солевой обмен и тем самым поддерживается:

  • необходимый объём крови;
  • нормальная концентрация натрия.

Кроме вазопрессина и альдостерона регуляцию водно-солевого баланса осуществляет и ангиотензин. Когда количество воды в крови снижается, он сужает стенки сосудов, чтобы временно поддержать нормальное артериальное давление (если объём крови недостаточный, возникает гипотензия) и обеспечить все органы необходимыми веществами. Также он влияет на центр жажды, расположенный в 3 желудочке головного мозга, из-за чего начинает хотеться пить. Как только в организм поступает необходимая жидкость и соли, перестаёт вырабатываться ренин. На этом работа РААС временно прекращается.

Если в организме произошёл сбой ренин-ангиотензин-альдостероновой системы, например, из-за:

Это приведёт к тому, что будет постоянно повышенное давление.

Кроме того, ангиотензин ІІ оказывает прямое воздействие на центральную нервную систему, возникает импульс, который буквально даёт команду гладкой мускулатуре сократиться. Сжимаются стенки сосудов, учащается сердцебиение, поднимается артериальное давление.

Изучение механизма действия РААС привело к тому, что были изобретены эффективные гипотензивные препараты:

  • блокаторы рецепторов к ангиотензину;
  • ингибиторы АПФ.

Все эти медикаменты влияют на отдельные элементы цепочки выработки ренина, превращения ангиотензина, синтеза альдостерона. Естественно, они негативно влияют на работу системы и способствуют понижению артериального давления.

Вывод

Механизм действия РААС

РААС принимает активное участие в водно-солевом обмене, поддержании нормального давления и кислотно-щелочного баланса в крови. За считанные доли секунд вырабатывается ренин, ангиотензин и альдостерон, которые регулируют постоянный объём крови и необходимую концентрацию воды и солей. Однако и эта система может давать сбои, возникающие из-за болезней почек, надпочечников, а это приводит к патологическому повышению давления. Вот поэтому при гипертензии обязательно необходима консультация уролога, нефролога.

Общий видеообзор ренин-ангиотензин-альдостероновой системы:

Загрузка…

Посмотрите популярные статьи

myfamilydoctor.ru

Ренин-ангиотензин-альдостероновая система (РААС): схема и физиология

Ренин-ангиотензин-альдостероновая система (РААС) отвечает за норму объема экстрацеллюлярной жидкости, участвует в формировании стенок сосудов и обеспечивает уровень перфузии тканей. РААС непосредственно влияет на сердечно-сосудистую систему, нормализует артериальное давление и поддерживает содержание натрия и калия в норме.

В процессе участвует ренин (энзим), альдостерон (стероидный гормон) и ангиотензин II (пептидный гормон). Схема Ренин-ангиотензин-альдостероновой системы (РААС), представленная ниже, поможет понять принцип функционирования.

Основные цели РААС

Основной задачей для активации Ренин-ангиотензин-альдостероновой системы (РААС) является:

  • Обеспечение достаточного кровотока в сосудах путем поддержания артериального давления, для функционирования печени, сердечно-сосудистой системы и сердца, почек, головного мозга.
  • Выступает в роли «скорой помощи» при потере крови, при инфаркте и при резком снижении давления.
  • Регулирует почечный и сосудистый гомеостаз, развивает процессы компенсаторного характера.

Длительная активация ренин-ангиотензин-альдостероновой системы может вызвать патологические явления в виде общего периферического сопротивления сосудов, недостаточный вывод жидкости из организма, избыток вырабатываемой крови, образованию периваскулярного и миокардиального фиброза.

Компонент системы ренин

Первым в звеньевой цепочке ренин-ангиотензин-альдостероновой системы, находится ренин, его производный элемент проренин, получается путем биосинтеза препрорениновой и рениновой РНК в юкстагломерулярных клетках. В дальнейшей подвергается глюкозелированию с последующим отщеплением аминокислот.

После деления, часть проренина выбрасывается в кровоток по принципу экзоцитоза, остаточная превращается в ренин, секретируясь юкстагломерулярными клетками аппарата почки, путем эндопептидаза. Образованный ренин в гранулах секреции юкстагломерулярной клетки в дальнейшем, также попадает в кровоток. Уровень производства ренина и дальнейшего поступления в кровь контролируется:

  • артериальным давлением;
  • химическими элементами NaClи Anq2;
  • концентрацией внутри клетки ионов калия.

Ренин-ангиотензин-альдостероновая система призвана реагировать на сокращение объема воды и наличия натрия в организме при кровотечении. Потеря крови снижает давление в артериолах гломерулярных клубочков почек. Клетки стенок артериол улавливают спад натяжения, выделяют в капиллярную кровь ренин.

Большая часть регуляторов выработки ренина работает через почечные барорецепторы, под действием показателя состояния центральной нервной системы. На количество ренина влияет положение тела, переход из горизонтального положения в вертикальное или положение сидя, выработка энзима увеличивается. Это объясняется тем, что в симпатической части ЦНС повышается тонус и рефлекторно передается сигнал юкстагломерулярным клеткам.

В крови ренин воздействуя на ангиотензиноген, выделяет из него декапептид ангиотензин I, этот гормон не выполняет значимой функции в организме, но служит фундаментом для образования ангиотезина II. В процессе биохимической реакции, ангиотензин I, при помощи расщепления ангиотензинпревращающим ферментом (АПФ) переходит в ангиотезин II.

Ангиотензин II

Ангиотезин II является центральным звеном ренин-ангиотензин-альдостероновой системы, основной задачей служит вазоконстрикторное воздействие на стенки артерий и ограниченное действие на центральную нервную систему. К рецепторам, участвующих в образование ангиотезина II, относятся следующие подтипы.

Агиотезин I-R (АТ 1-R) основа производного процесса, дает толчок основному количеству функций для реализации физиологически установленных норм ангиотезина II. Таким образом стимулируется выработка альдостерона надпочечниками, производится действие на симпатическую нервную систему. АТ 1-R мобилизирует ангиотезин II на рост клеток, и реагирование на воспалительный процесс. Влияние на сердечно-сосудистую систему, проявляется:

  • повышением артериального давления;
  • увеличением частоты сокращения сердечной мышцы;
  • наличием сердечной и сосудистой гипертонии.

 

Следующий рецепторный тип АТ2-R к ангиотензину II, проявляет активность на первых стадиях развития эмбриона, при формировании мозга. На дальнейших этапах роста плода количество рецептора значительно сокращается.

Производный ангиотезина II – ангиотензиноген синтезируется печенью и под действием ренина, делится на ангиотезин I не активный декапептид, и на активный ангиотезин II, путем ферментативного воздействия АПФ. Функция активного октапептида ангиотезина II:

  • путем сужения артериол повышает артериальное давление;
  • контролирует выработку ренина юкстагломерулярными клетками;
  • увеличивает сокращение миокарда;
  • контролирует содержание натрия, ослаблением фильтрации в почках;
  • поддержание водного баланса, путем формирования питьевого поведения.

Одной из важных задач ангиотезина II, воздействие на рецепторы центральной нервной системы, для активации биосинтеза в надпочечниках по выработке альдостерона. И путем обратной связи, всасывание ионов натрия почками.

Альдостерон

Синтез основного минералокортикоида альдостерона происходит в гломерулярной зоне надпочечников, под воздействием калия и ангиотезина II и действует на мембранные рецепторы клеток ткани различных органов. Хотя основным производным альдостерона является  ангиотезин II, сам гормон не участвует в производстве кортизола.

Функции альдостерона направлены на сдерживание натрия в почках и выведение лишнего количества натрия и калия из них. А также альдестерон играет немаловажную роль в ренин-ангиотензин-альдостероновой системе (РААС) отвечая:

  • за защиту организма в неординарных ситуациях;
  • стабилизирует уровень сахара в крови;
  • сужение стенок сосуда, что делает невозможным понижение артериального давления, путем стабилизации кровяного потока.

Помимо регуляции артериального давления, альдостерон контролирует норму водно-солевого баланса. Но напрямую действуя на стенки сосудов, может вызвать нарушение функции эндотелия. Альдостерон способен спровоцировать воспаления стенки сосудов, активизировать моноциты крови и вызвать нарушение в почках и миокарде.

При повышенной выработке альдостерона или недостаточном количестве гормона необходимо медикаментозное лечение.

gormonys.ru

3.16. Ренин-ангиотензин-альдостероновая система

Доподлинно
известно, что ренин-ангиотензин-альдостероновая
система играет чрезвычайно важную роль
в регуляции кровяного давления и
электролитного обмена у человека и
высших животных. Вместе с тем, за последние
годы выявлены новые функции
ренин-ангиотензин-альдостероновой
системы, что вновь привлекло внимание
исследователей к изучению её физиологической
роли в организме. В состав этой регуляторной
системы входят ренин, ангиотензиноген
и его производные формы –ангиотензин
I и
ангиотензин II,
а также гормон корковой зоны надпочечников
– минералокортикоид альдостерон.

Ренин
– фермент, синтезируемый юкстагломерулярными
клетками почечных афферентных артериол,
имеющий ММ около 40 кДа. Особенно интенсивно
образование ренина происходит при
ишемии почек. Локализация юкстагломерулярных
клеток делает их особенно чувствительными
к изменениям кровяного давления, а также
концентрации ионов Na+
и К+в жидкости, протекающей
через почечные канальцы. Благодаря
указанным свойствам любая комбинация
факторов, вызывающая снижение объема
жидкости (обезвоживание, падение
кровяного давления, кровопотеря и др.)
или снижение концентрацииNaCl,
стимулирует высвобождение ренина.

В
то же время большинство регуляторов
синтеза ренина действуют через почечные
барорецепторы.
На освобождение ренина
оказывает влияние состояние ЦНС, а также
изменение положения тела в пространстве.
В частности, при переходе из положения
лёжа в положение сидя или стоя
(клиностатическая проба) секреция ренина
увеличивается. Эта рефлекторная реакция
обусловлена повышением тонуса
симпатической части автономной нервной
системы, передающей импульсы к-адренорецепторам
юкстагломерулярных клеток.

Основным
субстратом, на который воздействует
ренин, является ангиотензиноген
белок, входящий во фракцию2-глобулинов
и образуемый печенью. Под воздействием
глюкокортикоидов и эстрогенов синтез
ангиотензиногена значительно возрастает.
В результете действия ренина ангиотензиноген
превращается в декапептидангиотензин
I.Это соединение
обладает чрезвычайно слабым действием
и существенного влияния на уровень
кровяного давления не оказывает.

Между
тем ангиотензин I
под воздействием так называемогоангиотензинпревращающего фермента
(АПФ)
переходит в мощный сосудосуживающий
фактор – ангиотензин II.
АПФ
(дипептидкарбооксипептидаза)
является интегральным белком, расположенным
преимущественно на мембране эндотелиальных
клеток, эпителии, мононуклеарах, нервных
окончаниях, клетках репродуктивных
органов и др. Растворимая форма АПФ
присутствует практически во всех
жидкостях организма.

Принято
выделять две изоформы АПФ. Первая из
них получила условное наименование
«соматической». Эта изоформа имеет ММ
170 кДа и включает гомологичные С-
иN-домены. Вторая
форма АПФ («репродуктивная») найдена в
семенной жидкости, имеет ММ около 100 кДа
и соответствует С-домену первой изоформы
АПФ. Каждый из 2 указанных доменов
содержит аминокислотные остатки, которые
могут принимать участие в образовании
связи с атомом цинка. ТакиеZn2+-структуры
являются типичными для многих
металлопротеиназ и оказываются основными
участками взаимодействия фермента как
с субстратом, так и с ингибиторами АПФ.

Следует
заметить, что АПФ не только приводит к
образованию ангиотензинаII,но и разрушаетбрадикинин – соединение,
расширяющее кровеносные сосуды.
Следовательно, увеличение кровяного
давления при воздействии АПФ связано
как с образованием ангиотензинаII,
так и с распадом брадикинина (рис. 32).

Важную
роль для действия АПФ играет ионный
состав и, в частности, содержание ионов
хлора. Так, при высокой концентрации
ClС-домен АПФ гидролизует и брадикинин,
и ангиотензин-Iбыстрее,
чемN-домен. Во внеклеточных
регионах, где концентрация анионов
хлора высока, за превращение ангиотензина-Iотвечает преимущественноN-домен.
Однако внутриклеточно, где концентрацияClнизкая,N-домен может участвовать
в гидролизе других пептидных субстанций.

За
последние годы установлено, что АПФ
играет важную роль в гемопоэзе, ибо под
его воздействием ингибируется образование
гематопоэтического пептида,
тормозящего образование гематопоэтических
клеток костного мозга.

Роль
АПФ в организме была выявлена на мышах,
лишенных гена АПФ. У таких животных
отмечалось низкое кровяное давление,
различные сосудистые дисфункции,
нарушение структуры и функции почек и
бесплодие у самцов.

Ангиотензин
II увеличивает
кровяное давление, вызывая сужение
артериол, и является самым сильнодействующим
из известных вазоактивных агентов.
Кроме того, он по механизму обратной
связи тормозит образование и высвобождение
ренина юкстагломерулярными клетками
почки, что в конечном итоге должно
восстанавливать нормальный уровень
кровяного давления. Под воздействиемангиотензина IIрезко возрастает продукция основного
минералокортикоида –альдостерона.Несмотря на то, что это действие является
прямым, ангиотензинIIне
влияет на продукцию кортизола. Основное
назначение альдостерона сводится к
задержкеNa+
(за счет усиления его реабсорбции в
почечных канальцах)и выделению К+и Н+(главным образом через почки).
Эти реакции осуществляются следующим
образом.

Альдостеронпроникает из внеклеточной жидкости в
цитоплазму клетки и там соединяется со
специфическим рецептором, после чего
образовавшийся комплекс (альдостерон+рецептор)
проникает в ядро. Альдостерон также
стимулирует открытиеNa+
каналов, благодаря чему ионы Na+
входят в клетку через апикальную мембрану
из просвета канальца.

Увеличение
секреции К+
под воздействием альдостерона обусловлено
возрастанием проницаемости апикальной
мембраны по отношению к этим ионам,
благодаря чему К+
поступает из клетки в просвет канальца.

Задержка
Na+ в
организме, как и ангиотензинII,
способствует повышению кровяного
давления.

Ангиотензин
II способен
связываться со специфическими рецепторами
клубочковых клеток надпочечника.
Содержание этих рецепторов во многом
зависит от концентрации ионов К+.
Так, если уровень К+повышается,
то возрастает число рецепторов к
ангиотензинуII в клубочковых
клетках. При уменьшении концентрации
ионов К+отмечается прямо
противоположный эффект. Следовательно,
ионы К+играют основную роль в
действии ангиотензинаIIна надпочечники.

За
последнее время установлено, что
ангиотензин IIспособен активировать макрофаги,
благодаря чему усиливается агрегация
тромбоцитов и ускоряется свёртывание
крови. Одновременно при этом высвобождаетсяингибитор активатораплазминогена-I(ИАП-1),что может сопровождаться
депрессией фибринолиза. Ангиотензин
II является
одним из факторов, способствующих
развитию атерогенеза, торможению
апоптоза и усилению оксидативного
стресса в тканях, тем самым провоцируя
агрегацию тромбоцитов и тромбообразование.

Ангиотензин
II способен
усиливать функцию миокарда, участвует
в биосинтезе норадреналина и других
физиологически активных веществ.
Одновременно он может действовать как
ростовой фактор, приводя к сосудистой
и сердечной гипертрофии.

У
некоторых животных и у человека
ангиотензин IIпод
воздействием ферментааминопептидазыпревращается в гептапептидангиотензин
III. У человека
уровень ангиотензинаII
приблизительно в 4 раза выше, чем
ангиотензина III. Оба эти соединения
оказывают влияние на уровень кровяного
давления и продукцию альдостерона и
довольно быстро разрушаются под
воздействием ферментов ангиотензиназ.

При
тяжелых заболеваниях почек, сопровождающихся
их ишемией, благодаря повышенному
образованию и секреции ренина наблюдается
стойкое повышение кровяного давления
(почечная гипертензия). Применение
ингибиторов АПФ в этих условиях приводит
к быстрой нормализации кровяного
давления.

В
заключение следует еще раз подчеркнуть,
что ангиотензин-ренино-альдостероновая
система теснейшим образом связана с
функцией калликреин-кининовой системы,
ибо образование ангиотензина II
и разрушение брадикинина осуществляется
под воздействием одного и того же
фермента – АПФ.

studfiles.net

Ренин-ангиотензиновая система — это… Что такое Ренин-ангиотензиновая система?

Схема работы ренин-ангиотензиновой системы (англ.)

Ренин-ангиотензиновая система (РАС) или ренин-ангиотензин-альдостероновая система (РААС) — это гормональная система человека и млекопитающих, которая регулирует кровяное давление и объём крови в организме.

Компоненты системы

Компоненты Ренин-ангиотензиновой (Ренин-ангиотензин альдостероновой) системы

Ренин-ангиотензин альдестероновый каскад начинается с биосинтеза препрорениновой из рениновой мРНК в юкстагломерулярных клетках и превращается в проренин путем отщепления 23 аминокислот. В эндоплазматическом ретикулуме проренин подвергается гликозилированию и приобретает 3-D структуру, которая характерна для аспартатных протеаз. Готовая форма проренина состоит из последовательности включающей 43 остатка присоединенных к N-концу ренина, содержащего 339-341 остаток. Предполагается, что дополнительная последовательность проренина (prosegment) связана с ренином для предотвращения взаимодействия с ангиотензиногеном. Большая часть проренина свободно выбрасывается в системный кровоток путем экзоцитоза, но некоторая доля превращается в ренин путем действия эндопептидаз в секреторных гранулах юкстагломерулярных клеток. Ренин, образуемый в секреторных гранулах в дальнейшем выделяется в кровоток, но этот процесс жестко контролируется давлением , Ang 2, NaCl, через внутриклеточные концентрации ионов кальция. Поэтому у здоровых людей объем циркулирующего проренина в десять раз выше концентрации активного ренина в плазме . Однако, все же остается не понятным, почему концентрация неактивного предшественника настолько высока.

Контроль секреции ренина

Активная секреция ренина регулируется четырьмя независимыми факторами:

  1. почечным барорецепторным механизмом в афферентной артериоле, который улавливает изменение почечного перфузионного давления.
  2. Изменениями уровня NaCl в дистальном отделе нефрона. Этот поток измеряется как изменение концентрации Cl клетками плотного пятна дистального извитого канальца нефрона в области, прилегающей к почечному тельцу.
  3. Стимуляцией симпатическими нервами через бета-1 адренергические рецепторы.
  4. Механизмом отрицательной обратной связи, реализованным через прямое действие ангиотензина 2 на юкстагломерулярные клетки. Секрецию ренина активирует снижение перфузионного давления или уровня NaCl и повышение симпатической активности. Ренин также синтезируется и других тканях, включая мозг, надпочечник, яичники, жировая ткань, сердце и сосудах.

Контроль секреции ренина — определяющий фактор активности РААС.

Механизм действия Ренин-ангиотензиновой системы

Ренин регулирует начальный, ограничивающий скорость, этап РААС путем отщепления N-концевого сегмента ангиотензиногена для формирования биологически инертного декапептида ангиотензина 1 или Ang-(1-10). Первичный источник ангиотензиногена — печень. Долговременный подъем уровня ангиотензиногена в крови, который происходит во время беременности, при синдроме Кушинга или при лечении глюкокортикоидами, может вызвать гипертензию, хотя и существуют данные о том, что хроническое повышение концентрации ангиотензина в плазме частично компенсируется снижением секреции ренина. Неактивный декапептид Ang 1 гидролизуется ангиотензин-конвериртирующим ферментом (ACE), который отщепляет С-концевой дипептид и, таким образом, формируется октапептид Ang 2 [Ang-(1-8)], биологически активный, мощный вазоконстриктор. АСЕ представляет собой экзопептидазу и секретируется главным образом легочным и почечным эндотелием, нейроэпителиальными клетками. Ферментативная активность АСЕ заключается в повышении вазоконстрикции и снижении вазодилятации.

Новые данные о компонентах Ренин-ангиотензиновой системы

Хотя Ang2 наиболее биологически активный продукт РААС, существуют данные, что другие метаболиты агиотензинов 1 и 2 могу также могут иметь значительную активность. Ангиотензин 3 и 4 (Ang 3 & Ang 4) формируются путем отщепления аминокислот с N-конца от Ангиотензина 2 вследствие действия аминопептидаз А и N. Ang 3 и 4 наиболее часто вырабатываются в тканях с высоким содержанием этих ферментов, например, в мозге и почках. Ang 3 [Ang-(2-8)], гептапептид образующий в результате отщепления аминокислоты с N-конца, наиболее часто он встречается в центральной нервной системе, где Ang III играет важную роль в поддержании кров давления. Ang IV [Ang-(3-8)] гексапептид является результатом дальнейшего ферментативного расщепления AngIII. Предполагается, что Ang 2 и 4 работают кооперативно. В качестве примера можно привести повышение кровяного давления в мозгу, вызываемое действием этих ангиотензинов на AT1-рецептор. Причем этот гемодинамический эффект Ang 4 требует наличия как Ang2 так и самого AT1- рецептора. Пептиды, получаемые отщеплением аминокислот с С-конца, могут также иметь биологическую активность. Например, Ang-(1-7), гептапептидный фрагмент ангиотензина 2, может образовываться как из Ang2 так и из Ang1 действием ряда эндопептидаз или действием карбоксипептидаз (например, гомологом ACE, названным ACE2) конкретно на Ang2. В отличие от ACE, ACE2 не может участвовать в реакции превращения Ang1 в Ang2 и его активность не подавляется ингибиторами ACE (ACEIs). Ang-(1-7) реализующий свои функции через определенные рецепторы, впервые был описан как вазодилататор и как натуральный ингибитор ACEI. Ему также приписываются и кардиопротекторные свойства. ACE2 может также отщеплять одну аминокислоту с С-конца, результатом такого действия является Ang-(1-9), пептид с неизвестными функциями.

Рецепторы к Ангиотензину II

Описаны как минимум 4 подтипа рецепторов к ангиотензину.

  1. Первый тип AT1-R участвует в реализации наибольшего числа установленных физиологических и патофизиологических функций ангиотензина 2. Действие на сердечно-сосудистую систему (вазоконстрикция, повышение давления крови, повышение сократимости сердца, сосудистая и сердечная гипертония), действие на почки (реабсорбция Na+, ингибироавние выделения ренина), симпатическую нервную систему, надпочечника (стимуляция синтеза альдостерона). AT1-R рецетор также является посредником в влияниях ангиотензина на клеточный рост, пролиферацию, воспалительные реакции, и оксидативный стресс. Этот рецептор связан с G-белком и содержит семь встроенных в мембрану последовательностей. AT1-R широко представлен во многих типах клеток, являющихся мишенью Ang 2.
  2. Второй тип AT2-R широко представлен в период эмбрионального развития мозга, почек затем же в период постнатального развития количество этого рецептора падает. Имеются данные, что, несмотря на низкий уровень экспрессии во взрослом организме, AT2 рецептор может выступать в качестве посредника в процессе вазодилятации и также оказывать антипролиферативный и антиапоптотичекие эффекты в гладких мышцах сосудов и угнетать рост кардиомиоцитов. В почках, как предполагается, активация AT2 влиять на реабсорбцию в проксимальных извитых канальцах и стимулировать реакции превращения простагландина E2 в простагландин F2α.2,7. Однако, важность некоторых из этих At2 связанных действий остается неизученной.
  3. Функции третьего типа (AT3) рецепторов не до конца изучены.
  4. Четвертый тип рецепторов (AT4) участвует в выделении ингибитора активатора плазминогена (под действием ангиотензина 2, а также 3 и 4). Предполагается, что эффекты характерные для Ang 1-7, включая вазодилятацию, натрийурез, снижение пролиферации, и защита сердца, реализуются через уникальные рецепторы, которые не связываются с Ang 2, такими как MAS рецепторы.

Также нужно отметить, что последние данные указывают на существование высокоаффинных поверхностных рецепторов, которые связывают как ренин, так и проренин. Они находятся в тканях мозга, сердца, плаценты и почек (в поэндотелиальной гладкой мускулатуре и мезангие). Эффекты таких рецепторов направлены на локальное увеличение выработки Ang2 и запуска внеклеточных киназ, таких как, MAP -киназ, к которым относится ERK1 и ERK2. Эти данные пролили свет на Ang2-независимые механизмы клеточного роста, активируемые ренином и проренином.

Влияние на прочие секреции

Как отмечалось ранее Ang2, через AT1 рецепторы стимулирует выработку альдостерона клубочковой зоной надпочечника . Альдостерон наиболее важный регулятор K+- Na+ баланса и таким образом играет важную роль в контроле объема жидкостей. Он увеличивает реабсорцию натрия и воды в дистальных извитых канальцах и собирательных трубочках (а также в толстой кишке и слюнных и потовых железах) и таким образом вызывает экскрецию ионов калия и водорода. Ангиотензин 2 вместе с внеклеточным уровнем ионов калия — наиболее значимые регуляторы альдостерона, но синтез Ang2 также может быть вызван АКТГ, норадреналином, эндотелином, серотонином, а ингибирован АНП и NO. Также важно отметить, что Ang 2 важный фактор трофики клубочковой зоны надпочечников, которая без его наличия может атрофироваться.

См. также

Ссылки

Шаблон:АТХ код C09

dic.academic.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о