Фарадей электромагнитная индукция – Электромагнитная индукция – FIZI4KA

Электромагнитная индукция – FIZI4KA

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Опыты Фарадея

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​\( S \)​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​\( B \)​, площади поверхности ​\( S \)​, пронизываемой данным потоком, и косинуса угла ​\( \alpha \)​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​\( \Phi \)​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​\( \alpha \)​ магнитный поток может быть положительным (\( \alpha \) < 90°) или отрицательным (\( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​\( N \)​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​\( R \)​:

При движении проводника длиной ​\( l \)​ со скоростью ​\( v \)​ в постоянном однородном магнитном поле с индукцией ​\( \vec{B} \)​ ЭДС электромагнитной индукции равна:

где ​\( \alpha \)​ – угол между векторами ​\( \vec{B} \)​ и \( \vec{v} \).

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​\( \varepsilon_{is} \)​, возникающая в катушке с индуктивностью ​\( L \)​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​\( \Phi \)​ через контур из этого проводника пропорционален модулю индукции ​\( \vec{B} \)​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​\( L \)​ между силой тока ​\( I \)​ в контуре и магнитным потоком ​\( \Phi \)​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

6. Решение проверить.

Электромагнитная индукция

3 (60%) 2 votes

fizi4ka.ru

правило Ленца, уравнения Максвелла в интегральной форме, электромагнитная индукция

В статье расскажем что такое электромагнитная индукция, подробно опишем закон Фарадея и правило Ленца, а так же немного затронем тему уравнений Максвелла.

Электромагнитная индукция

Суть электромагнитной индукции заключается в том, что изменение магнитного поля, покрывающего электрическую цепь, вызывает возникновение электродвижущей силы в этой цепи, которая в случае замкнутой цепи вызывает протекание электрического тока. Если цепь, в которой мы должны генерировать электродвижущую силу, состоит из катушки и прикрепленного к ней амперметра, то источник изменяющегося магнитного поля, который включает в себя катушку, может быть адекватно перемещен постоянным магнитом или движущимся электромагнитом, в котором мы меняем ток питания. В каждом из этих случаев магнитное поле, которое пронизывает катушку, изменяется со временем.

В общем, изменение магнитного потока в цепи амперметра вызывает электрический ток в этой цепи.

Источником индуктивных явлений снова является сила Лоренца F, которая возникает, когда заряд q движется со скоростью v в магнитном поле B

F = q * v * B

Когда направляющая перемещается в поле B, подвижные носители нагрузки будут смещаться под действием силы Лоренца до тех пор, пока в проводнике не появится электрическое поле E, а сила, действующая на носители, F = q * E, уравнивает силу Лоренца. Когда линейный проводник длины l движется с постоянной скоростью v в однородном магнитном поле B, направленном перпендикулярно оси проводника и вектору скорости , как на чертеже:

тогда мы сохраним условие баланса между силой Лоренца и силой отталкивания между зарядами в виде уравнения:

q*v*B = q*E ,

следовательно

v*B = E = V / l ,

где V — разность потенциалов на концах проводника длиной l. Следовательно, значение этой разности потенциалов:

Если вектор v не перпендикулярен полю B , но образует с ним угол N , то разность потенциалов на концах направляющей будет:

V = v * B * l * sin θ

Это означает, что перемещение проводника вдоль направления поля B не будет генерировать в нем электродвижущую силу. Нетрудно доказать, что в случае направляющей любой формы разность потенциалов между точками а и b направляющей равна:

Когда прямоугольная рамка со сторонами a и b вращается в однородном магнитном поле B с постоянной угловой скоростью T

это электродвижущая сила V, генерируемая с обеих сторон рамы:

Магнитные силы, действующие в двух других сторонах петли, перпендикулярны этим сторонам и не влияют на электродвижущую силу. Посредством соответствующего способа получения генерируемого напряжения можно реализовать простейшие модели генераторов переменного тока (а) и постоянного тока (b), как показано на рисунке:

В природе и технике существует огромное количество явлений, вызванных электромагнитной индукцией, то есть генерацией электродвижущей силы в пространстве, где существует изменяющееся магнитное поле. Все эти явления описываются одним замечательным, компактным уравнением, являющимся содержанием закона Фарадея.

Формулы и объяснение закона Фарадея

Большое открытие Майкла Фарадея (1791 — 1867) состояло в том, что он нашел правило, управляющие электромагнитной индукцией. В результате многолетних экспериментов Фарадей заявил, что электродвижущая сила E появляется в проводнике при изменении магнитного поля, окружающего этот проводник, величина генерируемой электродвижущей силы пропорциональна скорости магнитного поля, и что направление индуцированной электродвижущей силы зависит от направления, в котором изменяется магнитное поле. Все эти факты содержатся только в одном уравнении:

где dΦ B — элементарный поток магнитного поля

В общем случае, даже когда проводников нет, электродвижущая сила равна циркуляции электрического поля E вдоль замкнутого контура:

Таким образом , закон Фарадея может быть записан в обобщенной форме:

Обратите внимание, сколько факторов может изменить значение потока:

1. Изменение значения вектора B ;

2. Изменение значения площади поверхности d A ;

3. Путем изменения угла между B и d А ;

4. Одновременное изменение B и d А ;

5. Одновременное изменение В и угла ;

6. Одновременное изменение d A и угла.

Нельзя не заметить появившийся здесь знак минус! Этот знак минус в законе Фарадея был назван правилом Ленца, который можно понимать как правило неповиновения в электродинамике.

Правило Ленца

Правило Ленца (знак минуса в законе Фарадея) определяет, что индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока.

Закон индукции Фарадея вместе с правилом Ленца представляет собой анимацию, в которой движение постоянного магнита вызывает создание электродвижущей силы в катушке, покрытой полем магнита.

Индукционный ток может создаваться не только в обмотках, но и в сплошных металлических блоках, помещенных в изменяющиеся магнитные поля.

Пример: так называемый вихревой ток, схематически показанный на рисунке:

Когда постоянное магнитное поле приложено к вращающейся алюминиевой мишени, то в мишени создаются два семейства противоположно направленных токов. Магнитное поле вихревых токов направлено так, что часть диска, которая выходит из поля, будет втянута обратно в поле, а часть диска, которая входит в область поля, будет вытеснена из этого поля.

Вихревые токи часто нежелательны, например, в сердечниках трансформатора, где они вызывают потери тепла. Для ограничения вихревых токов сердечники трансформатора выполнены в виде стопок из листового металла.

Уравнения Максвелла в интегральной форме

Закон Фарадея содержит: обобщенный закон Ампера, закон Гаусса для электрического поля и закон Гаусса для магнитного поля в системе из четырех уравнений Максвелла. Эти уравнения были представлены применительно к макроскопическим контурам и замкнутым поверхностям. По этой причине мы говорим, что это уравнения Максвелла в интегральной форме. Давайте посмотрим на эти уравнения еще раз.

Закон Фарадея

Обобщенный закон Ампера

Закон Гаусса для электрического поля

Закон Гаусса для магнитного поля

Интегральные уравнения Максвелла описывают электрические и магнитные явления в макроскопическом масштабе. Ведь для их формулировки нужны контуры, замкнутые поверхности, токи и потоки полей. Однако чрезвычайно важно знать, что происходит с электрическими и магнитными полями в отдельных точках, то есть в микроскопическом масштабе. Тогда можно будет описать такие явления как электромагнитные волны.  

Для микроскопического описания электрических и магнитных явлений используются уравнения Максвелла в дифференциальной форме. Чтобы получить их, мы применим две математические теоремы к уравнениям в интегральной форме: теорема Гаусса-Остроградского и теорема Стокса.

 Следует отметить, что преобразование уравнений Максвелла между целочисленной и дифференциальной формами получается в результате только математических операций. Это означает физическую эквивалентность этих двух форм уравнений Максвелла.

Теорема Гаусса-Остроградского и теорема Стокса, несмотря на их кажущуюся сложность, концептуально совершенно просты и легко интуитивно принимаются. Обе эти тему будут представлены в следующей статье.

meanders.ru

Закон электромагнитной индукции (закон Фарадея).

Федун В.И. Конспект лекций по физике Электромагнетизи

Лекция 26.

Электромагнитная индукция. Открытие Фарадея.

В 1831 г. М. Фарадеем было сделано одно из важнейших фундаментальных открытий в электродинамике – обнаружено явлениеэлектромагнитной индукции.

В замкнутом проводящем контуре при изменении магнитного потока (потока вектора ), охватываемого этим контуром, возникает электрический ток.

Этот ток получил название индукционного.

Появление индукционного тока означает, что при изменении магнитного

Фарадей обнаружил, что индукционный ток можно вызвать двумя различными способами, которые удобно объяснить с помощью рисунка.

1-й способ: перемещение рамки в магнитном поле неподвижной катушки(см. рис.26.1).

2-й способ: изменение магнитного поля , создаваемого катушкой, за счет ее движения или вследствие изменения силы токав ней (или того и другого вместе). Рамкапри этом неподвижна.

В обоих этих случаях гальванометр будет показывать наличие индукционного тока в рамке.

Направление индукционного тока и, соответственно, знак э.д.с. индукции определяются правилом Ленца.

Правило Ленца.

Индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей.

Правило Ленца выражает важное физическое свойство – стремление системы противодействовать изменению ее состояния. Это свойство называют электромагнитной инерцией.

Какова бы ни была причина изменения магнитного потока, охватываемого замкнутым проводящим контуром, возникающая в контуре э.д.с. индукции определяется формулой

(26.1)

Природа электромагнитной индукции.

С целью выяснения физических причин, которые приводят к возникновению э.д.с. индукции, последовательно рассмотрим два случая.

1. Контур движется в постоянном магнитном поле.

Пусть контур с подвижной перемычкой длиной находится в магнитном поле, перпендикулярном плоскости контура (см.Рисунок 26.2). Если двигать перемычку со скоростьювправо, то с такой же скоростью начнут двигаться и носители тока в перемычке – электроны. В результате на каждый электрон начинает

Рисунок 26.2

действовать сила

,

вызывающая перемещение электронов по перемычке вниз, т.е. потечет ток, направленный вверх.

Перераспределившиеся заряды создадут электрическое поле, которое возбудит ток и в остальных участках контура.

Это и есть индукционный ток.

Магнитная сила играет роль сторонней силы. Ей можно сопоставить эквивалентное поле сторонних сил

.

(26.2)

Электродвижущая сила, создаваемая этим полем, называется электродвижущей силой индукции . В нашем случае

.

(26.3)

Здесь знак «минус» поставлен потому, что стороннее поле направлено против положительного обхода контура, определяемого правилом правого винта. Произведениеесть скорость приращения площади контура (приращение площади в единицу времени), поэтому

,

где - приращение магнитного потока сквозь контур.

Тогда,

.

(26.4)

Полученный результат можно обобщить на случай произвольной ориентации вектора индукции магнитного поля относительно плоскости контура и на любой контур, движущийся (и/или деформируемый) произвольным образом в постоянном неоднородном внешнем магнитном поле.

Итак, возбуждение э.д.с. индукции при движении контура в постоянном магнитном поле объясняется действием магнитной составляющей силы Лоренца, пропорциональной , которая возникает при перемещении проводника.

2. Контур покоится в переменном магнитном поле.

Наблюдаемое на опыте возникновение индукционного тока свидетельствует о том, что и в этом случае в контуре появляются сторонние силы, которые теперь связаны с изменяющимся во времени магнитным полем. Какова же их природа? Ответ на этот принципиальный вопрос был дан Максвеллом.

Поскольку проводник покоится, то скорость упорядоченного движения электрических зарядов и, следовательно, магнитная сила, пропорциональная, также равна нулю и уже не может привести заряды в движение. Однако кроме магнитной силы на электрический заряд может действовать только сила со стороны электрического поля, равная. Поэтому остается заключить, чтоиндукционный ток обусловлен электрическим полем , возникающим при изменении во времени внешнего магнитного поля. Именно это электрическое поле и ответственно за появление э.д.с. индукции в неподвижном контуре. Согласно Максвеллу,изменяющееся во времени магнитное поле порождает в окружающем пространстве электрическое поле. Возникновение электрического поля не связано с наличием проводящего контура, который лишь позволяет обнаружить по возникновению в нем индукционного тока существование этого поля.

Формулировка закона электромагнитной индукции, данная Максвеллом, принадлежит к числу наиболее важных обобщений электродинамики.

Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле.

Математическая формулировка закона электромагнитной индукции в понимании Максвелла имеет вид:

Циркуляция вектора напряженности этого поля по любому неподвижному замкнутому контуруопределяется выражением

,

(26.5)

где - магнитный поток, пронизывающий контур.

Используемый для обозначения скорости изменения магнитного потока знак частной производной указывает на то, что контур является неподвижным.

Поток вектора через поверхность, ограниченную контуром, равен, поэтому выражение закона электромагнитной индукции можно переписать следующим образом:

.

(26.6)

Воспользовавшись теоремой Стокса можно получить закон электромагнитной индукции в дифференциальной форме:

.

(26.7)

Это одно из уравнений системы уравнений Максвелла.

Тот факт, что циркуляция электрического поля, возбуждаемого переменным во времени магнитным полем, отлична от нуля, означает, что рассматриваемое электрическое поле не потенциальное.Оно, как и магнитное поле, являетсявихревым.

В общем случае электрическое поле может быть представлено векторной суммой потенциального (поля статических электрических зарядов, циркуляция которого равна нулю) и вихревого (обусловленного изменяющимся во времени магнитным полем) электрических полей.

В основе рассмотренных нами явлений, объясняющих закон электромагнитной индукции, не просматривается общего принципа, позволяющего установить общность их физической природы. Поэтому эти явления следует рассматривать как независимые, а закон электромагнитной индукции - как результат их совместного действия. Тем более удивительным оказывается тот факт, что э.д.с. индукции в контуре всегда равна скорости изменения магнитного потока сквозь контур. В тех случаях, когда меняется и поле и расположение или конфигурация контура в магнитном поле, э.д.с. индукции следует рассчитывать по формуле

,

(26.8)

а закон электромагнитной индукции можно представить в виде

.

(26.9)

Выражение, стоящее в правой части этого равенства, представляет собой полную производную магнитного потока по времени: первое слагаемое связано с изменением магнитного поля во времени, второе – с движением контура.

Можно сказать, что во всех случаях индукционный ток вызывается полной силой Лоренца

.

Какая часть индукционного тока вызывается электрической, а какая магнитной составляющей силы Лоренца - зависит от выбора системы отсчета.

О работе сил Лоренца и Ампера.

Из самого определения работы следует, что сила, действующая в магнитном поле на электрический заряд и перпендикулярная его скорости, не может совершать работы. Однако при движении проводника с током, увлекающего за собой заряды, сила Ампера все же работу совершает. Наглядным подтверждением этого служат электромоторы.

Это противоречие исчезает, если принять во внимание, что движение проводника в магнитном поле неизбежно сопровождается явлением электромагнитной индукции. Поэтому наряду с силой Ампера работу над электрическими зарядами совершает и возникающая в проводнике электродвижущая сила индукции. Т.о., полная работа сил магнитного поля складывается из механической работы, обусловленной силой Ампера, и работы э.д.с., индуцируемой при движении проводника. Обе работы равны по модулю и противоположны по знаку, поэтому их сумма равна нулю. Действительно, работа амперовой силы при элементарном перемещении проводника с током в магнитном поле равна , за это же время э.д.с. индукции совершает работу

,

(26.10)

тогда полная работа .

Силы Ампера совершают работу не за счет энергии внешнего магнитного поля, которое может оставаться постоянным, а за счет источника э.д.с., поддерживающего ток в контуре.

studfiles.net

Закон Фарадея: формула для электромагнитной индукции

Майкл Фарадей (1791-1867) родился в Англии и жил, можно сказать, для изучения физики и химии. Он считается основателем концепции об электромагнитном поле и автором закона электромагнитной индукции, а также первооткрывателем формулы электромагнитной индукции.

Данное направление физики дало старт к промышленному производству электричества. Подтолкнуло его к этому открытие, которое совершил Эрстед. В нем доказано, что при запуске тока через прямой передатчик вокруг этого передатчика возникает магнитное поле.

Фарадей задумался над обратным эффектом, где магнитное поле, в котором проводник в замкнутом состоянии, может продуцировать ток.

Опыты Фарадея на пути к открытию

Фарадей — один из самых значимых физиков в истории

На протяжении десяти лет он пытался доказать свою теорию. И в 1831 году Фарадей провел ряд удачных опытов, которые служили безупречным доказательством.

Фарадей разместил на основании из дерева две катушки, обозначим их катушкой А и катушкой Б.

Обмотка катушки Б была изолирована, располагалась между обмоткой катушки А.

Катушка А была подключена к гальванической батарее, а катушка Б к гальванометру, чтобы измерить движение токов.

В итоге сформировались две независимые цепи гальваническая батарея — Катушка А и Катушка Б — гальванометр.

Обмотки катушек ничем не были соединены между собой, существовало только магнитное поле продуцируемое катушкой А, которое охватывало катушку Б.

Как только замыкали катушку А, гальванометр показывал незначительный электрический импульс. В дальнейшем, при постоянном токе в катушке А, гальванометр не показывал никаких изменений в катушке Б.

Но как только цепь в катушке А размыкалась, гальванометр опять фиксировал импульс тока в катушке Б, который двигался в обратном направлении.

Данный опыт позволил Фарадею сделать выводы о том, что магнитное поле катушки А, которое меняется относительно времени, рождает электрический ток в катушке Б.

Появление тока в данных условиях определяется как индукция, поэтому ток считается индукционным.

Примечательно, при росте магнитного поля, в случае, когда цепь с катушкой А активна, электрический ток в катушке Б движется в одном направлении, а когда магнитное поле слабеет, во время отключения цепи с катушкой А, ток движется в противоположную сторону.

Возникновение электричества с помощью магнетизма Фарадей определил как явление электромагнитной индукции.

Чтобы убедиться в том, что источник возникновения тока — это переменное магнитное поле, Фарадей двигал катушки по отношению друг к другу, при этом ток в катушке А был постоянным, а за счет движения, Катушка Б была в переменном магнитном поле и индуцировала электрический ток.

Исходя из этого опыта он сделал вывод — с увеличением скорости движения катушки, увеличивалась сила индукционного тока.

Затем катушка А была заменена источником высокой остаточной магнитной индукцией — магнитом, и Фарадей подтвердил опыт со сближением и удалением Катушки Б, которая подключена к гальванометру.

Как и в предыдущем опыте, гальванометр показал ток, который двигался в одном направлении при сближении с магнитом и менял направление на противоположное при отдалении от магнита.

И вновь сила тока увеличивалась при увеличении скорости движения катушки.

После этих опытов Фарадей пришел к выводу, что на возникновение индукционного тока влияет изменение количества линий магнитного поля, через которое проходит катушка.

Иначе говоря, чем больше магнитных линий будет пройдено через катушку Б за короткий промежуток времени, тем выше сила индукционного тока. Число линий, которые проходят через ограниченную площадь проводника определяется как магнитный поток.

Чем выше индукция, тем больше линий магнитного потока, и если умножить их на площадь проводника, учитывая угол наклона к плоскости проводника, можно вычислить магнитный поток.

Формула электромагнитной индукции

Закон электромагнитной индукции дал старт разработкам генераторов

Зная все критерии опыта, можно определить что такое электромагнитная индукция.

Электромагнитная индукция — это появление электрического тока в замкнутом проводнике при изменении магнитного потока, который проходит через проводник.

Главное определение закона электродинамики Фарадей определил так:

Электродвижущая сила, которая возникла в проводнике, пропорциональна скорости изменения магнитного потока, проходящего через проводник.

ε = -df/ dt

ε — это электродвижущая сила

df — дифференциальная величина электромагнитного потока,

dt — дифференциальная величина времени прохождения потока через контур

Знак «-» в формуле появился после определения правила Ленца. Он выяснил, что индукционный поток всегда противодействует причине, которая его вызывает.

Формулу можно применять как в ситуации с неподвижным контуром, так и при движении проводников в магнитном поле.

Входящая в нее производная от магнитного потока по времени в общем случае включает в себя две части, первая часть определена переменой магнитной индукции во времени, а вторая – движением проводника по отношению к магнитному полю.

Закон электромагнитной индукции дал старт разработкам генераторов, которые устроены наподобие опытов Фарадея:

  • ротор, который двигается;
  • статор, находящийся в неизменном положении;
  • возникшее между ними электромагнитное поле.

Через обмотку статор проходит электрический ток, который вырабатывает магнитное поле, это поле влияет на магнитное поле ротора, под действием этой силы раскручивается вал.

В этом видео вы увидите целый урок на тему закона Фарадея для электромагнитной индукции:

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

vyuchit.work

Закон Фарадея для электромагнитной индукции в трансформаторах

Электричество обладает способностью генерировать магнитное поле. В 1831 году М. Фарадей ввел понятие электромагнитная индукция. Он смог получить в закрытой системе проводников электричество, появляющееся при изменении показателей магнитного потока. Формула закона Фарадея дала толчок для развития электродинамики.

История развития

После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.

Основными агрегатами, в которых применяется закон электромагнитной индукции Фарадея, являются двигатель, трансформатор и множество иных приборов.

Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока. Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным. До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.

Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.

Опытное доказательство

Проводя свои исследования, английский ученый установил, что индукционный ток получается одним из двух способов. В первом опыте он появляется при движении рамки в магнитном поле, создаваемом неподвижной катушкой. Второй способ предполагает неподвижное положение рамки. В этом эксперименте изменяется только поле катушки при ее движении или изменении силы тока в ней.

Опыты Фарадея привели исследователя к выводу, что при генерировании индукционного тока провоцируется увеличением или уменьшением магнитного потока в системе. Также опыты Фарадея позволили утверждать, что значение электричества, полученного опытным путем, не зависит от методологии, которой был изменен поток магнитной индукции. На показатель влияет только скорость такого изменения.

Количественное выражение

Установить количественное значение явления электромагнитной индукции позволяет закон Фарадея. Он гласит, что ЭДС, определяющаяся в системе, меняет значение пропорционально скорости перемещения потока в проводнике. Формула будет иметь такой вид:

Отрицательный знак свидетельствует о том, что ЭДС препятствует появлению изменений внутри контура. Для решения некоторых задач отрицательный знак в формуле не ставят. В этом случае результат записывают в виде модуля.

Система может включать в себя несколько витков. Количество их обозначается латинской буквой N. Все элементы контура пронизываются единым магнитным потоком. ЭДС индукции будет рассчитываться так:

Понятным примером воссоздания электричества в проводнике считается катушка, сквозь которую перемещается постоянный магнит.

Работа Э. Ленца

Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

Если в катушку постепенно вводить магнит, в ней повышается уровень магнитного потока. Согласно правилу Ленца, магнитное поле будет иметь направление противоположное увеличению поля магнита. Чтобы понять эту направленность, необходимо смотреть на магнит с северной стороны. Отсюда будет вкручиваться буравчик навстречу северному полюсу. Ток будет перемещаться в сторону движения часовой стрелки.

Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

Понятие самоиндукции

Генерация индукции в идеальной системе, которое имеет место при падении или возрастании электричества в проводнике, именуется самоиндукцией.

Закон Фарадея для самоиндукции выражается равенством, когда при изменении электричества не произошло иных изменений:

где е – ЭДС, L – индуктивность закрытой катушки, ΔI/Δt – скорость, с которой происходят изменения силы тока.

Индуктивность

Отношение, которое показывает пропорциональность между такими категориями, как сила тока в проводящей системе и магнитным потоком именуется индуктивностью. На показатель имеет влияние физические габариты катушки и магнитные характеристики среды. Отношение описывается формулой:

Движущееся в контуре электричество провоцирует появление магнитного поля. Оно пронизывает собственный проводник и влечет появление своего потока сквозь контур. Причем собственный поток пропорционален электричеству, которая его порождает:

Фс = L*I

Значение индуктивности также формируется из закона Фарадея.

Недвижимая система

Сила Лоренца объясняет возникновение ЭДС при движении системы в поле со значением постоянным. Индукционная ЭДС имеет способность возникать и при неподвижной проводящей системе, находящейся в переменном магнитном поле. Сила Лоренца в таком примере не способна объяснить появление ЭДС индукции.

Максвелл для проводящих систем неподвижного типа предложил применять особое уравнение. Оно объясняет возникновение в таких системах ЭДС. Главным принципом закона Фарадея-Максвелла является факт, что переменное поле образует в пространстве вокруг себя электрическое поле. Оно выступает фактором, провоцирующим появление тока индукции в недвижимой системе. Перемещение вектора (Е) по стационарным контурам (L) является ЭДС:

При наличии тока переменного значения законы Фарадея водятся в уравнения Максвелла. Причем они могут быть представлены как в дифференциальной форме, так и в виде интегралов.

Труды в области электролиза

При использовании законов Фарадея описываются закономерности, которые существуют при электролизе. Этот процесс заключается в превращении веществ с разнообразными характеристиками. Это происходит при движении электричества сквозь электролит.

Эти закономерности были доказаны М. Фарадеем в 1834 году. Первое утверждение гласит, что масса вещества, которое образуется на электроде, меняется соответственно заряду, перемещенному сквозь электролит.

Второе утверждение гласит, что эквиваленты компонентов с разными характеристиками пропорциональны химическим эквивалентам этих компонентов.

Оба представленных утверждения совмещаются в объединенный закон Фарадея. Из него следует, что число Фарадея будет равняться электричеству, способному выделить на электролите 1 моль вещества. Ее рассчитывают на единицу валентности. Именно по объединенной формуле в далеком 1874 году был вычислен заряд электрона.

Законы электролиза, установленные Фарадеем, тестировались при различном значении тока, температуры, давления, а также при одновременном выделении двух и более веществ. Электролиз также проводился в разных расплавах и растворителях. Концентрация электролита также отличалась в разных опытах. При этом иногда наблюдались небольшие отклонения от закона Фарадея. Они объясняются электронной проводимостью электролитов, которая определяется наравне с ионной проводимостью.

Открытия, сделанные английским физиком М. Фарадеем, позволили описать множество явлений. Его законы являются основой современной электродинамики. По этому принципу функционирует различное современное оборудование.

protransformatory.ru

Опыты Фарадея (электромагнитная индукция)

Электромагнитная индукция

В начале XIX столетия опыты в области электромагнетизма стали чуть ли не модой. Открытие в 1820 г. Эрстедом существование магнитного поля вокруг проводника с током вызвало небывалый резонанс в научных кругах. Проводилось множество экспериментов с электричеством.

29 августа 1831 г. Фарадеем эмпирически было открыто явление электромагнитной индукции. Первоначально данное явление Фарадей обнаружил для стационарных по отношению друг к другу проводников при замыкании и размыкании цепи. Чуть позднее ученый показал, что явление электромагнитной индукции обнаруживается при движении катушек с токами друг по отношению к другу. 17 октября Фарадей отметил в лабораторном журнале, что обнаружил индукционный ток во время введения и удаления магнита в (из) катушку. За один месяц Фарадей определил все основные особенности явления электромагнитной индукции.

Опыты Фарадея

В настоящее время классическими опытами Фарадея по обнаружению явления электромагнитной индукции являются следующие эксперименты:

  1. Гальванометр замыкают на соленоид. В соленоид вдвигается (или выдвигается из него) постоянный магнит. При перемещении магнита фиксируют отклонение стрелки гальванометра, что означает возникновение индукционного тока. При увеличении скорости перемещения магнита по отношению к катушке отклонение стрелки увеличивается. Замена полюсов магнита вызывает изменение направления отклонения стрелки гальванометра. Отметим, что магнит можно оставить неподвижным и перемещать соленоид относительно магнита.
  2. В этом эксперименте используются две катушки. Одна вставлена в другую. Концы одной из катушек соединяют с гальванометром. Через другую катушку пропускается электрический ток. Стрелка гальванометра претерпевает отклонения, когда происходит включение (выключение) тока, его изменение (увеличение или уменьшение) или если катушки движутся относительно друг друга. Направление отклонения стрелки гальванометра противоположны при включении и выключении тока (уменьшении – увеличении силы тока).

При обобщении результатов своих экспериментов Фарадей отметил, что индукционный ток возникает всякий раз, когда происходит изменение потока магнитной индукции, сцепленного с контуром. При этом величина индукционного тока не связана со способом изменения потока, а зависит от скорости его изменения. Эмпирически Фарадей доказывал, что величина угла отклонения стрелки гальванометра связана со скоростью перемещения магнита (скоростью изменения силы тока, скоростью перемещения катушек относительно друг друга).

Своими опытами Фарадей показал, что сила тока индукции в проводящем контуре пропорциональна скорости изменения количества линий магнитной индукции, которые проходят через поверхность, которую ограничивает рассматриваемый контур.

На основе опытов Фарадея Максвелл сформулировал основной закон электромагнитной индукции. В соответствии с этим законом электродвижущая сила индукции в замкнутом контуре равна скорости изменения магнитного потока () сквозь поверхность, которую ограничивает этот контур:

   

где , – магнитный поток ( – угол между вектором и нормалью к плоскости контра). Минус отображает правило Ленца.

Значение опытов Фарадея заключено в том, что через явления электромагнитной индукции проявляется взаимосвязь электрического и магнитного полей. Электрическое поле, которое возникает при изменении магнитного поля, имеет иную природу, нежели электростатическое поле. Оно не имеет непосредственной связи с электрическими зарядами, и его линии напряженности не могул на них начинаться и заканчиваться. Эти линии поля подобны линиям магнитной индукции и являются замкнутыми линиями. Это электрическое поле является вихревым.

Примеры решения задач

ru.solverbook.com

Закон электромагнитной индукции (закон Фарадея).

Федун В.И. Конспект лекций по физике Электромагнетизи

Лекция 26.

Электромагнитная индукция. Открытие Фарадея.

В 1831 г. М. Фарадеем было сделано одно из важнейших фундаментальных открытий в электродинамике – обнаружено явлениеэлектромагнитной индукции.

В замкнутом проводящем контуре при изменении магнитного потока (потока вектора ), охватываемого этим контуром, возникает электрический ток.

Этот ток получил название индукционного.

Появление индукционного тока означает, что при изменении магнитного

Фарадей обнаружил, что индукционный ток можно вызвать двумя различными способами, которые удобно объяснить с помощью рисунка.

1-й способ: перемещение рамки в магнитном поле неподвижной катушки(см. рис.26.1).

2-й способ: изменение магнитного поля , создаваемого катушкой, за счет ее движения или вследствие изменения силы токав ней (или того и другого вместе). Рамкапри этом неподвижна.

В обоих этих случаях гальванометр будет показывать наличие индукционного тока в рамке.

Направление индукционного тока и, соответственно, знак э.д.с. индукции определяются правилом Ленца.

Правило Ленца.

Индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей.

Правило Ленца выражает важное физическое свойство – стремление системы противодействовать изменению ее состояния. Это свойство называют электромагнитной инерцией.

Какова бы ни была причина изменения магнитного потока, охватываемого замкнутым проводящим контуром, возникающая в контуре э.д.с. индукции определяется формулой

(26.1)

Природа электромагнитной индукции.

С целью выяснения физических причин, которые приводят к возникновению э.д.с. индукции, последовательно рассмотрим два случая.

1. Контур движется в постоянном магнитном поле.

Пусть контур с подвижной перемычкой длиной находится в магнитном поле, перпендикулярном плоскости контура (см.Рисунок 26.2). Если двигать перемычку со скоростьювправо, то с такой же скоростью начнут двигаться и носители тока в перемычке – электроны. В результате на каждый электрон начинает

Рисунок 26.2

действовать сила

,

вызывающая перемещение электронов по перемычке вниз, т.е. потечет ток, направленный вверх.

Перераспределившиеся заряды создадут электрическое поле, которое возбудит ток и в остальных участках контура.

Это и есть индукционный ток.

Магнитная сила играет роль сторонней силы. Ей можно сопоставить эквивалентное поле сторонних сил

.

(26.2)

Электродвижущая сила, создаваемая этим полем, называется электродвижущей силой индукции . В нашем случае

.

(26.3)

Здесь знак «минус» поставлен потому, что стороннее поле направлено против положительного обхода контура, определяемого правилом правого винта. Произведениеесть скорость приращения площади контура (приращение площади в единицу времени), поэтому

,

где - приращение магнитного потока сквозь контур.

Тогда,

.

(26.4)

Полученный результат можно обобщить на случай произвольной ориентации вектора индукции магнитного поля относительно плоскости контура и на любой контур, движущийся (и/или деформируемый) произвольным образом в постоянном неоднородном внешнем магнитном поле.

Итак, возбуждение э.д.с. индукции при движении контура в постоянном магнитном поле объясняется действием магнитной составляющей силы Лоренца, пропорциональной , которая возникает при перемещении проводника.

2. Контур покоится в переменном магнитном поле.

Наблюдаемое на опыте возникновение индукционного тока свидетельствует о том, что и в этом случае в контуре появляются сторонние силы, которые теперь связаны с изменяющимся во времени магнитным полем. Какова же их природа? Ответ на этот принципиальный вопрос был дан Максвеллом.

Поскольку проводник покоится, то скорость упорядоченного движения электрических зарядов и, следовательно, магнитная сила, пропорциональная, также равна нулю и уже не может привести заряды в движение. Однако кроме магнитной силы на электрический заряд может действовать только сила со стороны электрического поля, равная. Поэтому остается заключить, чтоиндукционный ток обусловлен электрическим полем , возникающим при изменении во времени внешнего магнитного поля. Именно это электрическое поле и ответственно за появление э.д.с. индукции в неподвижном контуре. Согласно Максвеллу,изменяющееся во времени магнитное поле порождает в окружающем пространстве электрическое поле. Возникновение электрического поля не связано с наличием проводящего контура, который лишь позволяет обнаружить по возникновению в нем индукционного тока существование этого поля.

Формулировка закона электромагнитной индукции, данная Максвеллом, принадлежит к числу наиболее важных обобщений электродинамики.

Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле.

Математическая формулировка закона электромагнитной индукции в понимании Максвелла имеет вид:

Циркуляция вектора напряженности этого поля по любому неподвижному замкнутому контуруопределяется выражением

,

(26.5)

где - магнитный поток, пронизывающий контур.

Используемый для обозначения скорости изменения магнитного потока знак частной производной указывает на то, что контур является неподвижным.

Поток вектора через поверхность, ограниченную контуром, равен, поэтому выражение закона электромагнитной индукции можно переписать следующим образом:

.

(26.6)

Воспользовавшись теоремой Стокса можно получить закон электромагнитной индукции в дифференциальной форме:

.

(26.7)

Это одно из уравнений системы уравнений Максвелла.

Тот факт, что циркуляция электрического поля, возбуждаемого переменным во времени магнитным полем, отлична от нуля, означает, что рассматриваемое электрическое поле не потенциальное.Оно, как и магнитное поле, являетсявихревым.

В общем случае электрическое поле может быть представлено векторной суммой потенциального (поля статических электрических зарядов, циркуляция которого равна нулю) и вихревого (обусловленного изменяющимся во времени магнитным полем) электрических полей.

В основе рассмотренных нами явлений, объясняющих закон электромагнитной индукции, не просматривается общего принципа, позволяющего установить общность их физической природы. Поэтому эти явления следует рассматривать как независимые, а закон электромагнитной индукции - как результат их совместного действия. Тем более удивительным оказывается тот факт, что э.д.с. индукции в контуре всегда равна скорости изменения магнитного потока сквозь контур. В тех случаях, когда меняется и поле и расположение или конфигурация контура в магнитном поле, э.д.с. индукции следует рассчитывать по формуле

,

(26.8)

а закон электромагнитной индукции можно представить в виде

.

(26.9)

Выражение, стоящее в правой части этого равенства, представляет собой полную производную магнитного потока по времени: первое слагаемое связано с изменением магнитного поля во времени, второе – с движением контура.

Можно сказать, что во всех случаях индукционный ток вызывается полной силой Лоренца

.

Какая часть индукционного тока вызывается электрической, а какая магнитной составляющей силы Лоренца - зависит от выбора системы отсчета.

О работе сил Лоренца и Ампера.

Из самого определения работы следует, что сила, действующая в магнитном поле на электрический заряд и перпендикулярная его скорости, не может совершать работы. Однако при движении проводника с током, увлекающего за собой заряды, сила Ампера все же работу совершает. Наглядным подтверждением этого служат электромоторы.

Это противоречие исчезает, если принять во внимание, что движение проводника в магнитном поле неизбежно сопровождается явлением электромагнитной индукции. Поэтому наряду с силой Ампера работу над электрическими зарядами совершает и возникающая в проводнике электродвижущая сила индукции. Т.о., полная работа сил магнитного поля складывается из механической работы, обусловленной силой Ампера, и работы э.д.с., индуцируемой при движении проводника. Обе работы равны по модулю и противоположны по знаку, поэтому их сумма равна нулю. Действительно, работа амперовой силы при элементарном перемещении проводника с током в магнитном поле равна , за это же время э.д.с. индукции совершает работу

,

(26.10)

тогда полная работа .

Силы Ампера совершают работу не за счет энергии внешнего магнитного поля, которое может оставаться постоянным, а за счет источника э.д.с., поддерживающего ток в контуре.

studfiles.net

Оставить комментарий

avatar
  Подписаться  
Уведомление о