Закон джона ленца – Закон Джоуля — Ленца — Википедия

Закон Джоуля — Ленца — Википедия

Закон Джо́уля — Ле́нца — физический закон, дающий количественную оценку теплового действия электрического тока. Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцем[1].

В словесной формулировке звучит следующим образом[2]:

Мощность тепла, выделяемого в единице объёма среды при протекании постоянного электрического тока, равна произведению плотности электрического тока на величину напряженности электрического поля.

Математически может быть выражен в следующей форме:

w=j→⋅E→=σE2,{\displaystyle w={\vec {j}}\cdot {\vec {E}}=\sigma E^{2},}

где w{\displaystyle w} — мощность выделения тепла в единице объёма, j→{\displaystyle {\vec {j}}} — плотность электрического тока, E→{\displaystyle {\vec {E}}} — напряжённость электрического поля, σ — проводимость среды, а точкой обозначено скалярное произведение.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах[3]:

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивления участка.

В интегральной форме этот закон имеет вид

dQ=I2Rdt,{\displaystyle dQ=I^{2}Rdt,}
Q=∫t1t2I2Rdt,{\displaystyle Q=\int \limits _{t_{1}}^{t_{2}}I^{2}Rdt,}

где dQ{\displaystyle dQ} — количество теплоты, выделяемое за промежуток времени dt{\displaystyle dt}, I{\displaystyle I} — сила тока, R{\displaystyle R} — сопротивление, Q{\displaystyle Q} — полное количество теплоты, выделенное за промежуток времени от t1{\displaystyle t_{1}} до t2{\displaystyle t_{2}}. В случае постоянных силы тока и сопротивления:

Q=I2Rt.{\displaystyle Q=I^{2}Rt.}

Применяя закон Ома, можно получить следующие эквивалентные формулы:

Q=U2t/R =IUt.{\displaystyle Q=U^{2}t/R\ =IUt.}

Снижение потерь энергии[править | править код]

При передаче электроэнергии тепловое действие тока в проводах является нежелательным, поскольку ведёт к потерям энергии. Подводящие провода и нагрузка соединены последовательно, значит ток в сети I{\displaystyle I} на проводах и нагрузке одинаков. Мощность нагрузки и сопротивление проводов не должны зависеть от выбора напряжения источника. Выделяемая на проводах и на нагрузке мощность определяется следующими формулами

Qw=Rw⋅I2,{\displaystyle Q_{w}=R_{w}\cdot I^{2},}
Qc=Uc⋅I.{\displaystyle Q_{c}=U_{c}\cdot I.}

Откуда следует, что Qw=Rw⋅Qc2/Uc2{\displaystyle Q_{w}=R_{w}\cdot Q_{c}^{2}/U_{c}^{2}}. Так как в каждом конкретном случае мощность нагрузки и сопротивление проводов остаются неизменными и выражение Rw⋅Qc2{\displaystyle R_{w}\cdot Q_{c}^{2}} является константой, то тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе. Повышая напряжение мы снижаем тепловые потери в проводах. Это, однако, снижает электробезопасность линий электропередачи.

Выбор проводов для цепей[править | править код]

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при выборе проводов, предназначенных для сборки электрических цепей, достаточно следовать принятым нормативным документам, которые регламентируют выбор сечения проводников.

Электронагревательные приборы[править | править код]

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают

электронагревательные приборы. В них используется нагревательный элемент — проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром, константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители[править | править код]

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

ru.wikipedia.org

Закон Джоуля-Ленца и его применение

Закон Джоуля-Ленца и его применение

Раздел ОГЭ по физике:

3.9.Закон Джоуля-Ленца
Раздел ЕГЭ по физике: 3.2.8. Работа электрического тока. Закон Джоуля–Ленца



Рассмотрим Закон Джоуля-Ленца и его применение.

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt. Учитывая, что U = IR, в результате получаем формулу:

Q = I2Rt , где

Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)

♦ Закон Джоуля–Ленца: количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

В XIX в. независимо друг от друга англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников при прохождении электрического тока и опытным путём обнаружили закономерность: количество теплоты, выделяющееся при прохождении тока по проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени: Q = I2Rt  (в случае постоянных силы тока и сопротивления). Эту закономерность называют законом Джоуля-Ленца. Данный закон дает количественную оценку теплового действия электрического тока.

Применяя закон Ома, можно получить эквивалентные формулы: Q = IUt,  Q= U2t/R

 


 

Где применяется закон Джоуля-Ленца ?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии. Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей. Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.

Нагревание проводов является вредным, поскольку приводит к потерям электроэнергии при передаче ее от источника к потребителю. Для уменьшения этих потерь силу тока уменьшают, повышая напряжение источника с тем, чтобы передаваемая мощность осталась прежней. Чтобы избежать электрического пробоя изоляции проводов, их поднимают на большую высоту на мачтах высоковольтных линий электропередач, связывающих крупные электростанции с городами и поселками, отстоящими от них на десятки и сотни километров.


Вы смотрели конспект урока физики в 8 классе «Закон Джоуля-Ленца и его применение».
Выберите дальнейшие действия:

 

uchitel.pro

Закон Джоуля – Ленца: определение, формула, физический смысл

Закон Джоуля – Ленца – закон физики, определяющий количественную меру теплового действия электрического тока. Сформулирован этот закон был в 1841 году английским учёным Д. Джоулем и совершенно отдельно от него в 1842 году известным русским физиком Э. Ленцем. Поэтому он получил своё двойное название — закон Джоуля – Ленца.

Определение закона и формула

Словесная формулировка имеет следующий вид: мощность тепла, выделяемого в проводнике при протекании сквозь него электрического тока, пропорционально произведению значения плотности электрического поля на значение напряженности.

Математически закон Джоуля — Ленца выражается следующим образом:

ω = j • E = ϭ E²,

где ω — количество тепла, выделяемого в ед. объема;

E и j – напряжённость и плотность, соответственно, электрического полей;

σ — проводимость среды.

Физический смысл закона Джоуля – Ленца

Закон можно объяснить следующим образом: ток, протекая по проводнику, представляет собой перемещение электрического заряда под воздействием электрического поля. Таким образом, электрическое поле совершает некоторую работу. Эта работа расходуется на нагрев проводника.

Другими словами, энергия переходит в другое свое качество – тепло.

Но чрезмерный нагрев проводников с током и электрооборудования допускать нельзя, поскольку это может привести к их повреждению. Опасен сильный перегрев при коротких замыканиях проводов, когда по проводниках могут протекать достаточно большие токи.

В интегральной форме для тонких проводников закон Джоуля – Ленца звучит следующим образом: количество теплоты, которое выделяется в единицу времени в рассматриваемом участке цепи, определяется как произведение квадрата силы тока на сопротивление участка.

Математически эта формулировка выражается следующим образом:

Q = ∫ k • I² • R • t,

при этом Q – количество выделившейся теплоты;

I – величина тока;

R — активное сопротивление проводников;

t – время воздействия.

Значение параметра k принято называть тепловым эквивалентом работы. Величина этого параметра определяется в зависимости от разрядности единиц, в которых выполняются измерения значений, используемых в формуле.

Закон Джоуля-Ленца имеет достаточно общий характер, поскольку не имеет зависимости от природы сил, генерирующих ток.

Из практики можно утверждать, что он справедлив, как для электролитов, так проводников и полупроводников.

Область применения

Областей применения в быту закона Джоуля Ленца – огромное количество. К примеру, вольфрамовая нить в лампе накаливания, дуга в электросварке, нагревательная нить в электрообогревателе и мн. др. Это наиболее широко распространенный физический закон в повседневной жизни.

pue8.ru

Закон Джоуля-Ленца: определение, формула, применение

Мы ежедневно пользуемся электронагревательными приборами, не задумываясь, откуда берётся тепло. Разумеется, вы знаете, что тепловую энергию вырабатывает электричество. Но как это происходит, а тем более, как оценить количество выделяемого тепла, знают не все. На данный вопрос отвечает закон Джоуля-Ленца, обнародованный в позапрошлом столетии.

В 1841 году усилия английского физика Джоуля, а в 1842 г. исследования русского учёного Ленца увенчались открытием закона, применение которого позволяет количественно оценить результаты теплового действия электрического тока [ 1 ]. С тех пор изобретено множество приборов, в основе которых лежит тепловое действие тока. Некоторые из них, изображены на рис. 1.

Рис. 1. Тепловые приборы

Определение и формула

Тепловой закон можно сформулировать и записать в следующей редакции: «Количество тепла, выработанного током, прямо пропорционально квадрату приложенного к данному участку цепи тока, сопротивления проводника и промежутка времени, в течение которого электричество действовало на проводник».

Обозначим символом Q количество выделяемого тепла, а символами I, R и Δt – силу тока, сопротивление и промежуток времени, соответственно. Тогда формула закона Джоуля-Ленца будет иметь вид: Q = I2*R*Δt

Согласно законам Ома I=U/R, откуда R = U/I. Подставляя выражения в формулу Джоуля-Ленца получим: Q = U2/R * Δt ⇒ Q = U*I*Δt

.

Выведенные нами формулы – различные формы записи закона Джоуля-Ленца. Зная такие параметры как напряжение или силу тока, можно легко рассчитать количество тепла, выделяемого на участке цепи, обладающем сопротивлением R.

Дифференциальная форма

Чтобы перейти к дифференциальной форме закона, проанализируем утверждение Джоуля-Ленца применительно к электронной теории. Приращение энергии электрона ΔW за счёт работы электрических сил поля равно разности энергий электрона в конце пробега (m/2)*(u=υmax)2 и в начале пробега (mu2)/2 , то есть

Здесь uскорость хаотического движение (векторная величина), а υmax – максимальная скорость электрического заряда в данный момент времени.

Поскольку установлено, что скорость хаотического движения с одинаковой вероятностью совпадает с максимальной (по направлению и в противоположном направлении), то выражение

2*u*υmax в среднем равно нулю. Тогда полная энергия, выделяющаяся при столкновениях электронов с атомами, образующими узлы кристаллической решётки, составляет:

Это и есть закон Джоуля-Ленца, записанный в дифференциальной форме. Здесь γ – согласующий коэффициент,  E – напряжённость поля.

Интегральная форма

Предположим, что проводник имеет цилиндрическую форму с сечением S. Пусть длина этого проводника составляет l. Тогда мощность P, выделяемая в объёме V= lS составляет:

гдеR – полное сопротивление проводника.

Учитывая, чтоU = I×R, из последней формулы имеем:

  • P = U×I;
  • P = I2R;
  • P = U2/R.

Если величина тока со временем меняется, то количество теплоты вычисляется по формуле:

Данное выражение, а также вышеперечисленные формулы, которые можно переписать в таком же виде, принято называть интегральной формой закона Джоуля-Ленца.

Формулы очень удобны при вычислении мощности тока в нагревательных элементах. Если известно сопротивление такого элемента, то зная напряжение бытовой сети легко определить мощность прибора, например, электрочайника или паяльника.

Физический смысл

Вспомним, как электрический ток протекает по металлическому проводнику. Как только электрическая цепь замкнётся, то под действием ЭДС движение свободных электронов упорядочивается, и они устремляются к положительному полюсу источника питания. Однако на их пути встречаются стройные ряды кристаллических решёток, атомы которых создают препятствия упорядоченному движению, то есть оказывают сопротивление.

На преодоление сопротивления уходит часть энергии движущихся электронов. В соответствии с фундаментальным законом сохранения энергии, она не может бесследно исчезнуть. Она-то и превращается в тепло, вызывающее нагревание проводника. Накапливаемая тепловая энергия излучается в окружающее пространство или нагревает другие предметы, соприкасающиеся с проводником.

На рисунке 2 изображёна схема опыта, демонстрирующего закон теплового действия тока, разогревающего участок провода в электрической цепи.

Рис. 2. Тепловое действие тока

Явление нагревания проводников было известно практически с момента получения электротока, но исследователи не могли тогда объяснить его природу, и тем более, предложить способ оценки количества выделяемого тепла. Эту проблему решает закон  Джоуля-Ленца, которым мы пользуемся по сегодняшний день.

Практическая польза закона Джоуля-Ленца

При сильном нагревании можно наблюдать излучение видимого спектра света, что происходит, например, в лампочке накаливания. Слабо нагретые тела тоже излучают тепловую энергию, но в диапазоне инфракрасного излучения, которого мы не видим, но можем ощутить своими тепловыми рецепторами.

Допускать сильное нагревание проводников нельзя, так как чрезмерная температура разрушает структуру металла, проще говоря – плавит его. Это может привести к выводу из строя электрооборудования, а также стать причиной пожара. Для того, чтобы не допустить критических параметров нагревания необходимо делать расчёты тепловых элементов, пользуясь формулами, описывающими закон Джоуля-Ленца.

Проанализировав выражение U2/R убеждаемся, что когда сопротивление стремится к нулю, то количество выделенного тепла стремится к бесконечности. Такая ситуация возникает при коротких замыканиях. В это основная опасность КЗ.

В борьбе с короткими замыканиями используют:

  • автоматические выключатели:
  • электронные защитные блоки;
  • плавкие предохранители;
  • другие защитные устройства.

Применение и практический смысл

Непосредственное превращение электричества в тепловую энергию нельзя назвать экономически выгодным. Однако, с точки зрения удобства и доступности современного человечества к источникам электроэнергии различные нагревательные приборы продолжают массово применяться как в быту, так и на производстве.

Перечислим некоторые из них:

  • электрочайники;
  • утюги;
  • фены;
  • варочные плиты;
  • паяльники;
  • сварочные аппараты и многое другое.

На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.

Рис. 3. Бытовые нагревательные приборы

Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.

Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.

Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.

www.asutpp.ru

открытие и основные физические величины, математическая запись и формулировка

При протекании по проводнику электрический ток оказывает на него тепловое действие, во время которого выделяется определенное значение количества теплоты. Для его расчета применяется закон Джоуля-Ленца, который получил широкое применение при проектировании и изготовлении всех устройств, работающих от электричества.

Общие сведения

В 1941 году английским физиком Джеймсом Джоулем и, независимо от него, в 1942 году русским ученым Эмилием Ленцем было открыто уравнение Джоуля-Ленца. Оно позволяет рассчитать по формуле количество теплоты в электрической цепи, выделяемое при прохождении электротока через проводник. Значение количества теплоты, выделяемое проводником при протекании тока через него, зависит от напряжения, времени, силы тока и сопротивления проводника. Открытие позволило точно рассчитывать схемы различных устройств при их проектировании.

Прежде чем сформулировать закон Джоуля-Ленца, следует рассмотреть и понять физический смысл основных и производных величин, от которых зависит, какое количество теплоты выделяет проводник при прохождении через него электротока.

Разность потенциалов

Научно доказано, что каждое вещество состоит из атомов, которые также состоят из элементарных или субатомных частиц. К ним относятся следующие: электроны, протоны и нейтроны. Атом в исходном состоянии имеет нейтральный заряд, поскольку количество протонов и электронов равны и, следовательно, справедливо равенство положительного и отрицательного зарядов, и они компенсируют друг друга.

Однако возникают случаи «захвата» атомом электрона другого атома. Если атом захватывает электрон, то он называется отрицательным ионом, а при потере преобразовывается в положительный. В результате потери или притяжения субатомной отрицательно заряженной частицы образуется электромагнитное поле, составляющая которого зависит от заряда иона.

Разность между положительной и отрицательной составляющими является напряжением, единицей измерения которого является вольт (обозначение: В или V). Чем больше разница, тем больше напряжение. В некоторых источниках его еще называют разностью потенциалов, величину которой можно измерять при помощи вольтметра или рассчитать, используя формулы. При соединении потенциалов с противоположными знаками образуется электрический ток, который представляет упорядоченное движение заряженных частиц, под действием силы электромагнитного поля имеет векторное направление.

В научной литературе можно встретить такое определение: электрическим напряжением является работа, которая выполняется при перемещении точечного заряда. Таким образом, 1 В — это напряжение между двумя точечными положительным и отрицательным зарядами, равными 1 Кл, на перемещение которых тратится энергия электромагнитного поля 1 Дж. Вспомогательными единицами измерения являются следующие: 1 кВ = 1000 В, 1 МВ = 10 6 В, 1 мВ = 10^(-3) и т. д.

Сила тока

Сила тока (I) — величина, равная количеству заряженных частиц, которые проходят через проводник за единицу времени. Единица измерения — ампер (А), а с помощью амперметра можно измерять ее значение. Прибор подключается последовательно с потребителем в электрическую цепь. Если через площадь поперечного сечения проводника за 1 секунду проходит количество заряда, равное 1 Кл, то эта величина является силой тока в 1 А.

Математическая запись нахождения силы тока имеет вид: I = Qz / t, где Qz — значение заряда, а t — единица времени. Кроме того, существуют и дополнительные единицы измерения: 1 mА = 10^(-3) A, 1 кА = 1000 А и т. д. Электрический ток бывает следующих видов:

  1. Переменным.
  2. Постоянным.

Переменный ток подчиняется определенному закону, который характеризует изменение амплитуды и направления протекания. Основной характеристикой является частота, согласно которой происходит разделение на синусоидальный и несинусоидальный токи. Графиком синусоидального типа тока является синусоида, формула которой зависит от максимальной амплитуды Imax и угловой частоты w. Она имеет следующий вид: i = Imax * sin (w * t).

Для расчета значения угловой частоты необходимо значение частоты тока в сети (f), которое подставляется в формулу: w = 6,2832 * f. Постоянный ток не изменяет направление своего движения по проводнику, однако его значение может меняться.

Электрическое сопротивление

Вещества по проводимости электричества можно классифицировать на проводники, полупроводники и диэлектрики. К первому типу относятся все вещества, которые хорошо проводят ток. Эта особенность обуславливается наличием свободных носителей заряда, информацию о которых можно получить из электронной конфигурации элементов периодической системы Д. И. Менделеева.

К проводникам относят следующие вещества: металлы, электролиты и ионизированный газ. В металлах электроны являются носителями заряда. В жидкостях (электролитах) носителями заряда являются анионы и катионы: первые обладают положительным зарядом, а вторые — отрицательным. При электролизе анионы притягиваются электродом, который является отрицательно заряженным (катодом), а на катионы действует положительный заряд анода. Функцию носителей заряда в газах выполняют отрицательно заряженные электроны и ионы.

При повышении температуры проводника происходит взаимодействие атомов между собой, в результате которого разрушается кристаллическая решетка и появляются свободные носители заряда. При протекании тока происходит взаимодействие с узлами решетки и с электронами проводника, при котором движение упорядоченных заряженных частиц замедляется и выделяется тепловая энергия, а затем снова скорость их движения возвращается в исходное состояние, благодаря воздействию электромагнитного поля. Это физическое свойство называется электрическим сопротивлением проводника, при нагревании которого его величина возрастает.

Полупроводники — вещества, проводящие ток только при определенных условиях. Функцию носителей заряда выполняют электроны и дырки. При каком-либо воздействии внешней энергии (например, тепловой) происходит уменьшение силы притяжения между ядром и электронами, при котором некоторые из них «вырываются» и становятся свободным, а на их месте образуются дырки.

Происходит образование электромагнитного поля положительной составляющей и к ней притягивается соседняя субатомная частица с отрицательным зарядом. Этот процесс повторяется и приводит к движению дырок. Сопротивление вещества (проводника или полупроводника) зависит от следующих факторов:

  1. Температурных показателей.
  2. Типа вещества.
  3. Длины.
  4. Площади сечения.
  5. Значения силы тока и напряжения.
  6. Вида тока.

Диэлектрики — группа веществ, которые не могут проводить ток, поскольку в них отсутствуют какие-либо носители электрического заряда. Сопротивление или электропроводимость обозначается буквой R и является взаимодействием заряженных частиц, движущихся упорядочено, с узлами кристаллической решетки. Единицей его измерения является Ом.

Характеристика мощности

Мощностью электротока (P) называют количество работы, которое им совершается за единицу времени. Для постоянного и переменного токов мощность вычисляется по разным соотношениям. В цепи постоянного тока значения его силы (I) и напряжения (U) равны мгновенным значениям. Формула мощности записывается в следующем виде: P = U * I. Для цепи, в которой соблюдается закон Ома, формула принимает следующий вид: P = sqr (I) * R = sqr (U) / R.

Для полной цепи формула включает значение электродвижущей силы (e): P = I * e. Если нужно учитывать значение внутреннего сопротивления источника питания (Rвн), то формулу нужно править при условии поглощения (использование в цепи электродвигателя или при зарядке аккумулятора) следующим образом: P = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).

При наличии в цепи генератора или гальванического элемента (условие отдачи электроэнергии), формула принимает следующий вид: P = I * (e + (I * Rвн)). Однако эту формулу нельзя применять для расчета мощности переменного тока, поскольку он изменяется с течением времени. В цепях переменного тока существует понятие активной, реактивной и полной мощностей:

  1. Активная определяется с учетом среднеквадратичных значений U и I, а также углом сдвига фаз (a): Pа = I * U * cos (a).
  2. Реактивная (Qр): Qp = U * I * sin (a).
  3. Полная (S): S = sqrt (sqr (Pа) + sqr (Qp)).

Значение Qp>0 при наличии в цепи индуктивной нагрузки, а при емкостной — Qp<0. Единицей измерения является ватт (Вт). Сила тока в 1 А при напряжении, равном 1 В, обладает мощностью 1 Вт.

Запись закона Джоуля-Ленца

Формулировка уравнения Джоуля-Ленца следующая: количество теплоты Q, которое выделилось за единицу времени t на участке цепи, прямо пропорционально произведению сопротивления R на квадрат силы тока I, протекающей через этот участок. Формула закона Джоуля-Ленца имеет вид: Q = a * sqr (I) * R * t. Литера «а» является температурным коэффициентом, который равен 1 при условии, что количество теплоты получается в джоулях. Если принять его равным 0,24, то результат будет измеряться в калориях. Поскольку а = 1, то формула Ленца будет выражаться кратко в таком виде: Q = sqr (I) * R * t.

При перегреве проводника может возникнуть короткое замыкание, которое приводит к выходу аппаратуры из строя. Оно может также быть причиной пожара. Для избежания таких ситуаций в электротехнике применяются плавкие предохранители, которые позволяют прекратить подачу электричества на устройство.

Закон позволяет найти необходимые параметры электрического тока, чтобы избежать перегрева и пожара. Основные соотношения для расчета составляющих величин закона в цепях постоянного тока следующие:

  1. Закон Ома для участка и полной цепи: I = U / R и i = e / (R + Rвн).
  2. Q = U * I * t.
  3. Q = e * i * t.
  4. Q = (t * sqr (U)) / R.
  5. Q = (t * sqr (e)) / (R + Rвн).
  6. Q = P * t.

Различие математической записи закона в цепях с переменным и постоянным токами обусловлено их свойствами и параметрами, а также появлением нагрузок активной и реактивной составляющей. Кроме того, ток переменной составляющей постоянно изменяется во времени. Основные соотношения:

  1. Закон Ома: i = U / Z, где Z — полное сопротивление цепи. Оно включает в себя активную, индуктивную и емкостную нагрузки.
  2. Q = S * t = t * [sqrt (sqr (Pа) + sqr (Qp))].
  3. Q = U * i * t, где U и i — действующие значения напряжения и тока, которые измеряются при помощи вольтметра и амперметра соответственно. Формулу в таком виде можно применять для примерного расчета Q, причем в цепях, состоящих только из активной нагрузки.
  4. Запись закона с учетом в электрической цепи активной и реактивной нагрузок: Q = sqr (i) * Z * t.

Примеров применения уравнения Джоуля-Ленца достаточно много, одним из которых является обыкновенная лампа накаливания с вольфрамовой нитью. Свечение происходит из-за высокого напряжения и материала, из которого изготовлена нить накаливания. Электродуговая сварка работает тоже по этому закону, поскольку ток проходит через электрод и оказывает на него тепловое действие, при котором образуется сварочная дуга. Благодаря закону, можно правильно рассчитать и сделать вывод о применении радиокомпонента в какой-либо схеме.

Таким образом, уравнение Джоуля-Ленца играет важную роль в электротехнике, поскольку позволяет произвести точные расчеты радиокомпонентов схемы, исключая перегрев деталей и пожар.

rusenergetics.ru

Нагревание проводников электрическим током. Закон Джоуля-Ленца (Гребенюк Ю.В.)

Этот урок посвящён изучению теплового действия электрического тока. Мы проведём ряд опытов, демонстрирующих зависимость количества теплоты от силы тока и сопротивления, а также  рассмотрим закон Джоуля – Ленца

Мы уже знаем, что при прохождении тока через электрическую лампочку её спираль нагревается и излучает видимый свет. Таким образом, мы наблюдаем тепловое действие электрического тока. Благодаря этому действию, нагреваются, например, утюг или чайник. Но при работе вентилятора или пылесоса практически не наблюдается тепловое действие, также в нормальном состоянии слабо греются провода. На этом уроке, тема которого: «Нагревание проводников электрическим током. Закон Джоуля – Ленца», мы определим, от чего зависит тепловое действие электрического тока.

Факт нагрева проводника при протекании по нему тока объясняется тем, что во время движения заряженных частиц под действием электрического поля они сталкиваются с частицами проводника, в результате часть энергии передаётся этим частицам проводника, то есть средняя скорость хаотического (теплового) движения частиц проводника увеличивается, и проводник нагревается. По закону сохранения энергии кинетическая энергия свободных заряженных частиц, приобретённая под действием электрического поля, превратится во внутреннюю энергию проводника. Следовательно, можно предположить:

1. чем больше сопротивление проводника, тем больше тепла выделяется при прохождении электрического тока по проводнику, то есть количество теплоты, которое выделяется в проводнике при прохождении по нему электрического тока, прямо пропорционально сопротивлению проводника;

2. количество теплоты, выделяемое в проводнике при прохождении по нему электрического тока, зависит от силы тока (чем больше сила тока, тем большее количество свободных частиц проходит через сечение проводника в единицу времени, происходит больше столкновений, следовательно, больше энергии передаётся частицам проводника).
Можно подтвердить данные предположения с помощью опытов.

Соберём электрическую цепь, в которой последовательно с источником тока подключены два нагревателя с разными сопротивлениями, которые опущены в калориметры (прибор для измерения количества теплоты) с одинаковым количеством воды при одинаковой температуре. При прохождении электрического тока через нагреватели будет наблюдаться повышение температуры воды, причём вода будет нагреваться быстрее в том калориметре, в который помещён нагреватель с бльшим сопротивлением (см. Рис. 1). То есть подтверждается предположение 1.

Для подтверждения предположения 2 соберём электрическую цепь, в которой последовательно к источнику тока подключен амперметр, лампочка накаливания и реостат. Регулируя сопротивление реостата, меняем силу тока в цепи при постоянном напряжении. При увеличении силы тока увеличивается яркость лампочки (см. Рис. 2), то есть увеличивается количество теплоты, которое выделяет нить накаливания.

interneturok.ru

Закон Джоуля — Ленца - это... Что такое Закон Джоуля — Ленца?

Закон Джоуля — Ленца — физический закон, дающий количественную оценку теплового действия электрического тока. Открыт в 1840 году независимо Джеймса Джоуля и Эмилия Ленца.

В словесной формулировке звучит следующим образом[1]

Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Математически может быть выражен в следующей форме:

где w — мощность выделения тепла в единице объёма,  — плотность электрического тока,  — напряжённость электрического поля, σ — проводимость среды.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах[2]:

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка

В математической форме этот закон имеет вид

где dQ — количество теплоты, выделяемое за промежуток времени dt, I — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t1 до t2. В случае постоянных силы тока и сопротивления:

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока является нежелательным, поскольку ведёт к потерям энергии. Поскольку передаваемая мощность линейно зависит как от напряжения, так и от силы тока, а мощность нагрева зависит от силы тока квадратично, то выгодно повышать напряжение перед передачей электроэнергии, понижая в результате силу тока. Однако, повышение напряжения снижает электробезопасность линий электропередачи.

Для применения высокого напряжения в цепи для сохранения прежней мощности на полезной нагрузке приходится увеличивать сопротивление нагрузки. Подводящие провода и нагрузка соединены последовательно. Сопротивление проводов () можно считать постоянным. А вот сопротивление нагрузки () растёт при выборе более высокого напряжения в сети. Также растёт соотношение сопротивления нагрузки и сопротивления проводов. При последовательном включении сопротивлений (провод — нагрузка — провод) распределение выделяемой мощности () пропорционально сопротивлению подключённых сопротивлений.

Ток в сети для всех сопротивлений постоянен. Следовательно, выполняются соотношение

и для в каждом конкретном случае являются константами. Следовательно, мощность, выделяемая на проводах, обратно пропорциональна сопротивлению нагрузки, то есть уменьшается с ростом напряжения, так как . Откуда следует, что . В каждом конкретном случае величина  является константой, следовательно, тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе.

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при сборке электрических цепей достаточно следовать принятым нормативным документам, которые регламентируют, в частности, выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы. В них используется нагревательный элемент — проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром, константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

См. также

Примечания

Ссылки

dic.academic.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о