Схема двухполярного блока питания для усилителя – Блок питания усилителя мощности | РадиоГазета

Двухполярный БП для усилителя - РАДИОСХЕМЫ

Доброе время суток, уважаемые радиолюбители! Все когда-то начинают собирать усилители НЧ - сначала это простые схемы на микросхемах c однополярным питанием, затем это микросхемы с двухполярным питанием (TDA 7294, LM3886 и прочие) - бывает приходит время УНЧ на транзисторах, по крайней мере у меня происходит именно так! Так вот, какие бы не были схемы усилителей, объединяет их одно - это питание. При первых запусках нужно, как все знают, подключать источник питания через лампочку и, при возможности, меньшим питанием по вольтажу, чтобы предостеречь от сгорания дорогостоящих деталей при ошибке в монтаже. А почему бы не сделать универсальный блок питания для пробных запусков или ремонта усилителей? Я это всё к тому что у меня это был трансформатор подключенный через лампу, диодный мост с конденсаторами и целая куча проводов, занимающая весь стол. В общем в один прекрасный момент мне это всё надоело и решил БП облагородить - сделать компактным и мобильным! Также решил добавить в него простую схемку для подбора или проверки стабилитронов. И вот что у нас получается:

Схемотехника

Корпус использовал от нерабочего блока питания  компьютера. На штатном месте остался выключатель и разъём для сетевого шнура. Трансформатор у меня такой. Информацию про него в интернете не нашёл, и поэтому сам искал первичную, вторичную обмотку.

Напомню: при прозвонке неизвестного трансформатора нужно подключать его к сети через лампочку!

В моём случае выяснилось что он имеет 4 обмотки по 10 вольт. Соединил обмотки последовательно - получилось 2 по 20 вольт или 1 на 40 вольт. Диодных мостов у меня два: один на +/-28 вольт и второй +/-14, сделал для проверки схем на операцинниках (фнч, темброблоки и прочие).

Для проверки стабилитронов была выбрана самая простая хорошо рабочая схемка, которая есть на другом сайте. Изменил только номиналы резисторов R1 и R2: R1 - 15k, R2 - 10k. И соответственно питается она у меня от 56 вольт. Разместил на небольшой кусочек текстолита. Платку изготовил путем прорезания дорожек. Кнопку взял советскую, так как её проще прикрепить к передней панели. Контакты для подсоединения стабилитронов  вывел на переднюю панель. Вольтметр не стал размещать на панели, вывел 2 клеммы для подсоединения мультиметра. Диодные мосты с конденсаторами разместил также на кусочках текстолита: можно было конечно разместить на одну плату, просто было несколько "обрезков", вот на них и разместил. Выходы питания, для подсоединения тестируемых устройств, реализовал на зажимах для проводки. В общем получилась такая схематика.

Фото сборки блока питания

Видео

Напряжение 220 вольт идет через лампу на выключатель, с выключателя на трансформатор. Далее на диодные мостики и конденсаторы. Также в корпусе было место, и я прикрутил розетку - для проверки тех же неизвестных трансформаторов или при наладке импульсных блоков питания. Патрон для лампочки прикрепил на верхнюю крышку корпуса, с помощью трубки с резьбой от люстры. Внутри блока питания просто ни как её не разместишь, поэтому пришлось сделать именно так. Итого получилась такая схема, подробнее можно рассмотреть на картинках. Простой блок питания с несколькими функциями, а самое главное занимает немного места на столе. Казалось бы - простая примитивная конструкция, но очень полезная тем, кто занимается изготовлением или ремонтом аудиоаппаратуры, а главное, экономит время и нервы.

radioskot.ru

500 Ватт импульсный блок питания для аудиоусилителей. Блок питания для аудио усилителя

Многие знают как я люблю разбираться с разными блоками питания. В этот раз у меня на столе несколько необычный блок питания, по крайней мере такой я еще не тестировал. Да и по большому счету вообще не встречал ранее обзоров блоков питания подобной разновидности, хотя вещь по своему интересная и я раньше делал подобные блоки питания сам.
Заказать я его решил из чистого любопытства, решил что может быть полезным. Впрочем подробнее в обзоре.

Вообще стоит наверное начать с небольшого лирического вступления. Много лет назад я довольно сильно увлекался аудиотехникой, прошел как через полностью самодельные варианты, так и "гибриды", где использовались УМ мощностью до 100 Ватт из магазина Юный техник, и полуразобранная Радиотехника УКУ 010, 101 и Одиссей 010, потом был Феникс 200У 010С.

Даже пробовал собрать УМЗЧ Сухова, но что-то тогда не пошло, уже и не вспомню что именно.

Акустика также разная была, как самодельная, так и готовая, например Романтика 50ас-105, Кливер 150ас-009.

Но больше всего запомнились Амфитон 25АС 027, правда они у меня были несколько доработаны. Попутно к небольшим изменениям схемы и конструкции я заменил родные динамики 50 ГДН на 75 ГДН.
Это и предыдущие фото не мои, так как моя аппаратура давно продана, а я потом перешел на Sven IHOO 5.1, а затем вообще стал слушать только мелкие компьютерные колоночки. Да, вот такой регресс.

Но вот что-то начали бродить в голове мысли, сделать что нибудь, например усилитель мощности, возможно просто так, возможно вообще все делать по другому. Но в итоге решил я заказать блок питания. Конечно я могу его сделать сам, мало того, в одном из обзоров я не только это делал, а и выложил подробную инструкцию, но к этому я еще вернусь, а пока перейду к обзору.

Начну со списка заявленных технических характеристик:
Напряжение питания - 200-240 Вольт
Выходная мощность - 500 Ватт
Выходные напряжения:
Основное - +/-35 Вольт
Вспомогательное 1 - +/- 15 Вольт 1 Ампер
Вспомогательное 2 - 12 Вольт 0.5 Ампера , гальванически отвязано от остальных.
Размеры - 133 x 100 x 42 мм

Каналы +/- 15 и 12 Вольт имеют стабилизацию, основное напряжение +/-35 Вольт не стабилизировано. Здесь я наверное выскажу свое мнение.
Меня часто спрашивают, какой блок питания купить для одного либо другого усилителя. На что я обычно отвечаю - проще собрать самому на базе известных драйверов IR2153 и их аналогов. Первый же вопрос, который следует после этого - так у них же нет стабилизации напряжения.
Да, лично на мой взгляд - стабилизация напряжения питания УМЗЧ не только не нужна, а иногда и вредна. Дело в том, что стабилизированный БП обычно больше шумит на ВЧ и кроме того, могут быть проблемы с цепями стабилизации, потому как усилитель мощности потребляет энергию не равномерно, а всплесками. Мы же слушаем музыку, а не одну частоту.

БП без стабилизации обычно имеет немного выше КПД, так как трансформатор всегда работает в оптимальном режиме, не имеет обратной связи и потому больше похож на обычный трансформатор, но с меньшим активным сопротивлением обмоток.

Вот собственно перед нами и пример БП для усилителей мощности.

Упаковка мягкая, но замотали так, что вряд ли получится его повредить в процессе доставки, хотя противостояние почты и продавцов наверное будет вечным.

Внешне выглядит красиво, особо и не придерешься.

Размер относительно компактный, особенно если сравнивать с обычным трансформатором соответствующей мощности.

Более понятные размеры есть на странице товара в магазине.

1. На входе блока питания установлен разъем, что оказалось довольно удобным.
2. Присутствует предохранитель и полноценный входной фильтр. Вот только про термистор, защищающий от бросков тока как сеть, так и диодный мост с конденсаторами, забыли, это плохо. Также в районе входного фильтра расположены контактные площадки, которые надо замкнуть для перевода БП на напряжение 110-115 Вольт. Перед первым включением лучше проверить, не замкнуты ли площадки если у вас в сети 220-230.
3. Диодный мост KBU810, все бы ничего, но он без радиатора, а при 500 Ватт он уже желателен.
4. Входные фильтрующие конденсаторы имеют заявленную емкость 470 мкФ, реальная около 460 мкФ. Так как они включены последовательно, то общая емкость входного фильтра составляет 230мкФ, маловато для выходной мощности в 500 Ватт. Кстати плата предполагает установку и одного конденсатора. Но в любом случае поднимать емкость без установки термистора я бы не советовал. Причем справа от предохранителя есть даже место для термистора, надо только впаять его и перерезать под ним дорожку.

В инверторе применены транзисторы IRF740, хоть и далеко не новые транзисторы, но раньше я их также широко применял в подобных применениях. Как альтернатива, IRF830.
Транзисторы установлены на отдельных радиаторах, сделано это отчасти не просто так. Радиаторы соединены с корпусом транзистора, причем не только в месте крепления самого транзистора, а и монтажные выводы радиатора соединены на самой плате. На мой взгляд плохое решение, так как будет лишнее излучение в эфир на частоте преобразования, по крайней мере нижний транзистор инвертора (на фото он дальний) я бы отвязал от радиатора, а радиатор от схемы.

Управляет транзисторами неизвестный модуль, но судя по наличию резистора питания, да и просто моему опыту, думаю что не сильно ошибусь, если скажу что внутри стоит банальная IR2153. правда зачем делать такой модуль, для меня осталось загадкой.

Инвертор собран по полумостовой схеме, но в качестве средней точки используется не точка соединения фильтрующих электролитических конденсаторов, а два пленочных конденсатора емкостью 1мкФ (на фото два параллельно трансформатору), а первичная обмотка подключена через третий конденсатор, также емкостью 1мкФ (на фото перпендикулярно трансформатору).

Решение известное и по своему удобное, так как позволяет весьма просто не только увеличить емкость входного фильтрующего конденсатора, а и применить один на 400 Вольт, что может быть полезным при апгрейде.

Габарит трансформатора весьма скромный для заявленной мощности в 500 Ватт. Я конечно протестирую еще его под нагрузкой, но уже могу сказать, что на мой взгляд его реальная длительная мощность на более 300-350 Ватт.

На странице магазина, в перечне ключевых особенностей, было указано -

3. Transformers 0.1 mm * 100 multi-strand oxygen-free enameled wire, heat is very low, efficiency is more than 90%.


Что в переводе означает - в трансформаторе использована обмотка из 100 штук бескислородных проводов диаметром 0.1мм, уменьшен нагрев и КПД выше 90%.
Ну КПД я проверю потом, а вот насчет того, что обмотка многопроволочная, факт. Я конечно их не пересчитывал, но жгут довольно неплохой и данный вариант намотки действительно положительно сказывается на качестве работы трансформатора в частности и всего БП в целом.

Не забыли и про конденсатор, соединяющий "горячую" и "холодную" сторону БП, причем поставили его правильного (Y1) типа.

В выходном выпрямителе основных каналов применены диодные сборки MUR1620CTR и MUR1620CT (16 Ампер 200 Вольт), причем производитель не стал колхозить "гибридные" варианты, а поставил как положено, две комплементарные сборки, одна с общим катодом, а другая с общим анодом. Обе сборки установлены на отдельных радиаторах и также как в случае с транзисторами, они не изолированы от компонентов. Но в данном случае проблема может быть только в плане электробезопасности, хотя если корпус закрыт, то ничего страшного в этом нет.
В выходном фильтре задействовано по паре конденсаторов 1000мкФ х 50 Вольт, что на мой взгляд маловато.

Кроме того, для уменьшения пульсаций между конденсаторами установлен дроссель, а конденсаторы, стоящие после него, дополнительно зашунтированы керамическим 100 нФ.
Вообще на странице товара было написано -

1. All high-frequency low-impedance electrolytic capacitors specifications, low ripple.


В переводе - все конденсаторы имеют низкий импеданс для уменьшения пульсаций. В общем-то так то оно и есть, применены Cheng-X, но это по сути просто немного улучшенный вариант обычных китайских конденсаторов и я бы лучше поставил мою любимую Samwha RD или Capxon KF.

Параллельно конденсаторам нет разрядных резисторов, хотя место на плате для них имеется, потому вас могут ждать "сюрпризы", так как заряд держится довольно долго.

Дополнительные каналы питания подключены к своим обмоткам трансформатора, причем канал 12 Вольт гальванически отвязан от остальных.
Каждый канал имеет независимую стабилизацию напряжения, дроссели для уменьшения помех и керамические конденсаторы по выходу. Но вы наверное заметили, что диодов в выпрямителе пять. Канал 12 Вольт питается от однополупериодного выпрямителя.

По выходу, как и по входу, стоят клеммники, причем весьма неплохого качества и конструкции.

На странице товара есть фото сверху, где видно все и сразу. Уже потом заметил, что в магазине на всех фото есть монтажные стойки, в моем комплекте их не было 🙁

Печатная плата двухсторонняя, качество весьма высокое, использован стеклотекстолит, а не привычный гетинакс. В одном из узких место сделана защитная прорезь.
Снизу также обнаружилась пара резисторов, предположу, что это примитивная схема защиты от перегрузки, которую иногда добавляют к драйверам на IR2153. Но честно говоря, я бы на нее не рассчитывал.

Также снизу печатной платы присутствует маркировка выходов и варианты выходных напряжений, под которые изготавливаются данные платы. Немного заинтриговали две вещи - два одинаковых варианта +/- 70 Вольт и заказной вариант.

Перед тем, как перейти к тестам, немного расскажу о своем варианте подобного БП.
Примерно три с половиной года назад я выкладывал обзор регулируемого БП, где использовался блок питания собранный примерно по такой же схеме.

В собранном виде он также выглядел довольно похоже, извините за плохое качество фото.

Если убрать из моего варианта все "лишнее", например узел регулировки оборотов вентилятора в зависимости от температуры, а также умощненный драйвер транзисторов и схему дополнительного питания от выхода инвертора, то мы получим схему обозреваемого БП.
По сути это тот же БП, только выходных напряжений больше. Вообще схемотехника данного БП совсем простая, проще только банальный автогенератор.

Кроме того обозреваемый БП снабжен примитивной схемой ограничения выходной мощности, подозреваю что реализована она так, как показано на выделенном участке схемы.

Но посмотрим на что способна данная схема и ее реализация в обозреваемом блоке питания.
Здесь надо отметить, что так как стабилизация основного напряжения отсутствует, то оно напрямую зависит от напряжения в сети.
При входном напряжении 223 Вольта выходное составляет 35.2 в режиме холостого хода. Потребление при этом 3.3 Ватта.

При этом присутствует заметный нагрев резистора питания драйвера транзисторов. Его номинал 150 кОм, что при 300 Вольт дает рассеиваемую мощность порядка 0.6 Ватта. Данный резистор греется независимо от нагрузки блока питания.
Также заметен небольшой нагрев трансформатора, фото сделано примерно через 15 минут после включения.

Для нагрузочного теста была собрана конструкция, состоящая из двух электронных нагрузок, осциллографа и мультиметра.
Мультиметр измерял один канал питания, второй канал контролировался вольтметром электронной нагрузки, которая была подключена короткими проводами.

Не буду утомлять читателя большим перечислением тестов, потому сразу перейду к осциллограммам.
1, 2. Разные точки выхода БП до диодных сборок, и с разным временем развертки. Частота работы инвертора составляет 70 кГц.
3, 4. Пульсации перед дросселем канала 12 Вольт и после него. После КРЕНки вообще все гладко, но есть проблема, напряжение в этой точке всего около 14.5 Вольта без нагрузки основных каналов и 13.6-13.8 с нагрузкой, что мало для стабилизатора 12 Вольт.

Нагрузочные тесты проходили так:
Сначала нагружал один канал на 50%, затем второй на 50%, потом нагрузку первого поднимал до 100%, а затем и второй. В итоге получалось четыре режима нагрузки - 25-50-75-100%.
Сначала что на выходе по ВЧ, на мой взгляд очень даже неплохо, пульсации минимальны, а при установке дополнительного дросселя их вообще можно свести почти до нуля.

А вот на частоте 100 Гц все довольно грустно, маловата емкость по входу, маловата.
Полный размах пульсаций при 500 Ватт выходной мощности составляет около 4 Вольт.

Нагрузочные тесты. Так как напряжение под нагрузкой проседало, то я по мере этого поднимал тока нагрузки чтобы выходная мощность примерно соответствовала ряду 125-250-375-500 Ватт.
1. Первый канал - 0 Ватт, 42.4 Вольта, второй канал - 126 Ватт, 33.75 Вольта
2. Первый канал - 125.6 Ватта, 32.21 Вольта, второй канал - 130 Ватт, 32.32 Вольта.
3. Первый канал - 247.8 Ватта, 29.86 Вольта, второй канал - 127 Ватт, 30.64 Вольта.
4. Первый канал - 236 Ватт, 29.44 Вольта, второй канал - 240 Ватт, 29.58 Вольта.

Вы наверное заметили, что в первом тесте напряжение не нагруженного канала больше 40 Вольт. Это обусловлено выбросами напряжения, а так как нагрузки нет совсем, то напряжение плавно поднималось, даже небольшая нагрузка возвращала напряжение в норму.

Одновременно измерялось потребление, но так как есть относительно большая погрешность при измерении выходной мощности, то расчетные значения КПД я также буду приводить ориентировочно.
1. 25% нагрузки, КПД 89.3%
2. 50% нагрузки, КПД 91.6%
3. 75% нагрузки, КПД 90%
4. 476 Ватт, около 95% нагрузки, КПД 88%
5, 6. Просто ради любопытства измерил коэффициент мощности при 50 и 100% мощности.

В общем-то результаты примерно похожи на заявленные 90%

Тесты показали довольно неплохую работу блока питания и все было бы замечательно, если бы не привычная "ложка дегтя" в виде нагрева. Еще в самом начале я оценил примерно мощность БП в 300-350 Ватт.
В процессе привычного теста с постепенным прогревом и интервалами по 20 минут я выяснил, что при мощности 250 Ватт Бп ведет себя просто отлично, нагрев компонентов примерно такой:
Диодный мост - 71
Транзисторы - 66
Трансформатор (магнитопровод) - 72
Выходные диоды - 75

Но когда я поднял мощность до 75% (375 Ватт), то через 10 минут картина была совсем другая
Диодный мост - 87
Транзисторы - 100
Трансформатор (магнитопровод) - 78
Выходные диоды - 102 (более нагруженный канал)

Попытавшись разобраться с проблемой, я выяснил, что идет сильный перегрев обмоток трансформатора, в следствие этого прогревается магнитопровод, снижается его индукция насыщения и он начинает входить в насыщение в итоге резко увеличивается нагрев транзисторов (позже я регистрировал температуру до 108 градусов), затем я остановил тест. При этом тесты " на холодную" с мощностью в 500 Ватт проходили нормально.

Ниже пара термофото, первое при мощности нагрузки 25%, второе при 75%, соответственно через пол часа (20+10 минут). Температура обмоток достигла 146 градусов и был заметный запах перегретого лака.

В общем теперь подведу некоторые итоги, отчасти неутешительные.
Общее качество изготовления очень хорошее, но есть некоторые конструктивные нюансы, например установка транзисторов без изоляции от радиаторов. Радует большое количество выходных напряжений, например 35 Вольт для питания усилителя мощности, 15 для предварительного усилителя и независимые 12 Вольт для всяких сервисных устройств.

Есть схемные недоработки, например отсутствие термистора по входу и малая емкость входных конденсаторов.
В характеристиках было заявлено что дополнительные каналы 15 Вольт могут выдать ток до 1 Ампера, реально я бы не ждал больше 0.5 Ампера без дополнительного охлаждения стабилизаторов. Канал 12 Вольт скорее всего вообще не выдаст более 200-300мА.

Но все эти проблемы либо не критичны, либо легко решаются. Самая сложная проблема - нагрев. БП может длительно отдавать до 250-300 Ватт, 500 Ватт только относительно кратковременно, либо придется добавлять активное охлаждение.

Попутно у меня возник небольшой вопрос к уважаемой общественности. Есть мысли сделать свой усилитель, соответственно с обзорами. Но какой был бы интереснее, усилитель мощности, предварительный, если УМ, то на какую мощность и т.п. Лично мне он не особо нужен, но вот поковыряться настроение есть. Обозреваемый БП к этому имеет слабое отношение 🙂

Этот БП на алиэкспресс - ссылка, и еще одна.

На этом у меня все, надеюсь что информация была полезна и как обычно жду вопросов в комментариях.

www.kirich.blog

МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ

Всем привет! После сборки усилителя на ТДА7294, сделал еще и инвертор, чтобы можно было питать от 12 В, то есть автомобильный вариант. После того как все сделал в плане УНЧ, был поставлен вопрос: чем теперь его питать? Даже для тех же тестов, или чтобы просто послушать? Думал обойдется все АТХ БП, но при попытке «навалить», БП надежно уходит в защиту, а переделывать как-то не очень хочется... И тут осенила мысль сделать свой, без всяких «прибамбасов» БП (кроме защиты разумеется). Начал с поиска схем, присматривался к относительно не сложным для меня схем. В итоге остановился на этой:

Схема ИБП для УМЗЧ

Нагрузку держит отлично, но замена некоторых деталей на более мощные позволит выжать из неё 400 Вт и более. Микросхема IR2153 - самотактируемый драйвер, который разрабатывался специально для работы в балластах энергосберегающих ламп. Она имеет очень малое потребление тока и может питаться через ограничительный резистор.

Сборка устройства

Начнем с травления платы (травление, зачистка, сверление). Архив с ПП скачайте тут.

Сначала прикупил некоторые отсутствующие детали (транзисторы, ирка, и мощные резисторы).

Кстати, сетевой фильтр полностью снял с БП от проигрывателя дисков:

Далее внимательно распаиваем детали на плате согласно схеме и ПП.

Теперь самое интересное в ИИП - трансформатор, хотя ничего сложного тут нету, просто надо понять, как его правильно мотать, и всего то. Для начала нужно знать, чего и сколько наматывать, для этого есть множество программ, однако самая распространённая и пользующаяся популярностью у радиолюбителей это – ExcellentIT. В ней мы и будем рассчитывать наш трансформатор.

Как видим, получилось у нас 49 витков первичная обмотка, и две обмотки по 6 витков (вторичная). Будем мотать!

Изготовление трансформатора

Так как у нас кольцо, скорее всего грани его будут под углом 90 градусов, и если провод мотать прямо на кольцо, возможно повреждение лаковой изоляции, и как следствие межвитковое КЗ и тому подобное. Дабы исключить этот момент, грани можно аккуратно спилить напильником, или же обмотать Х/Б изолентой. После этого можно мотать первичку.

После того как намотали, еще раз заматываем изолентой кольцо с первичной обмоткой.

Затем сверху мотаем вторичную обмотку, правда тут чуть сложней.

Как видно в программе, вторичная обмотка имеет 6+6 витков, и 6 жил. То есть, нам нужно намотать две обмотки по 6 витков 6 жилами провода 0,63 (можно выбрать, предварительно написав в поле с желаемым диаметром провода). Или еще проще, нужно намотать 1 обмотку, 6 витков 6 жилами, а потом еще раз такую же. Что бы сделать этот процесс проще, можно, и даже нужно мотать в две шины (шина-6 жил одной обмотки), так мы избегаем перекоса по напряжению (хотя он может быть, но маленький, и часто не критичный).

По желанию, вторичную обмотку можно изолировать, но не обязательно. Теперь после этого припаиваем трансформатор первичной обмоткой к плате, вторичную к выпрямителю, а выпрямитель у меня использован однополярный со средней точкой.

Расход меди конечно больше, но меньше потерей (соответственно меньше нагрева), и можно использовать всего одну диодную сборку с БП АТХ отслуживший свой срок, или просто нерабочий. Первое включение обязательно проводим с включённой в разрыв питания от сети лампочкой, в моем случае просто вытащил предохранитель, и в его гнездо отлично вставляется вилка от лампы.

Если лампа вспыхнула и погасла, это нормально, так как зарядился сетевой конденсатор, но у меня данного явления не было, либо из-за термистора, или из-за того, что я временно поставил конденсатор всего на 82 мкФ, а может все месте обеспечивает плавный пуск. В итоге если никаких неполадок нету, можно включать в сеть ИИП. У меня при нагрузке 5-10 А, ниже 12 В не просаживалось, то что нужно для питания авто усилителей!

Примечания и советы

  1. Если мощность всего около 200 Вт, то резистор, задающий порог защиты R10, должен быть 0,33 Ом 5 Вт. Если он будет в обрыве, или сгорит, сгорят все транзисторы, а также микросхема.
  2. Сетевой конденсатор выбирается из расчета: 1-1,5 мкФ на 1 Вт мощности блока.
  3. В данной схеме частота преобразования примерно 63 кГц, и в ходе эксплуатации, наверное, лучше для кольца марки 2000НМ, частоту уменьшить до 40-50 кГц, так как предельная частота, на которой кольцо работает без нагрева – 70-75 кГц. Не стоит гнаться за большой частотой, для данной схемы, и кольца марки 2000НМ, будет оптимально 40-50 кГц. Слишком большая частота приведет к коммутационным потерям на транзисторах и значительных потерях на трансформаторе, что вызовет его значительный нагрев.
  4. Если у вас на холостом ходу при правильной сборке греется трансформатор и ключи, попробуйте снизить емкость конденсатора снаббера С10 с 1 нФ до 100-220 пкФ. Ключи нужно изолировать от радиатора. Вместо R1 можно использовать термистор с БП АТХ.

Вот конечные фото проекта блока питания:

Всем удачи! Специально для Радиосхем - с вами был Alex Sky.

   Форум по ИБП

   Обсудить статью МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ




radioskot.ru

Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт

Ну, наконец, после небольшого перерыва выкладываю новую статью по сборке импульсного источника двухполярного питания на ir2153 для усилителя низкой частоты. Данный ИИП мощностью 300 Вт может питать такие усилители как “Ланзар” или усилитель на TDA7294 и др., требующие двухполярное питание.

Рассматриваемый блок питания я буду задействовать для питания своего будущего усилителя “Ланзар”. Мощность источника питания 300-400 Вт будет достаточной для двух каналов усилителя  по 100Вт с КПД=55%.

Схема была найдена на просторах интернета, собрана, отработана мною и выложена в виде данной статьи, как проверенная схема, чтобы вы могли без проблем повторить её. Вы же меня понимаете друзья, как редко найденная в интернете схема запускается и работает с первого раза.

На самом деле, схема не сложна, но я с ней помучился и попробую вам объяснить некоторые моменты настройки защиты.

Данный импульсный блок питания имеет защиту от перегрузки. Блок питания нестабилизированный.

Схема ИИП на ir2153 для усилителя низкой частоты.

Данный источник питания не имеет стабилизации, поэтому в выходном каскаде отсутствуют дроссели.

Напряжение планировал +-45Вольт, но расчеты не точны вследствие неизвестного материала сердечника трансформатора, в итоге +-50Вольт при токе 3.5А. Сердечник импортный. Ну, я не огорчился, нормальное напряжение +-50Вольт, в самый раз для моего будущего усилителя.

 

Опишу немного работу схемы.

Все, что зеленым цветом является плавным запуском. Плавный запуск в данной схеме служит для гашения больших токов при включении источника питания в сеть. При включении в сеть, начинается зарядка большой емкости электролитического конденсатора С10, а так же электролитов в выходном каскаде C13-C16. Суть работы плавного запуска следующая, при включении источника питания в сеть, весь ток протекает через резистор R6, тем самым рассеивая излишки в виде тепла в атмосферу. Как только все емкости зарядились (прошли переходные процессы), замыкаются контакты реле K1, и весь ток начинает течь не через резистор R6 а через замкнутые контакты реле K1. Временная задержка срабатывания реле задается времязадающей емкостью С7. VDS1 является выпрямительным мостом для питания плавного запуска. VD1 стабилитрон на 13 Вольт для питания реле К1.

Перейдем к самому источнику питания. Резистор R2 ограничивает ток питания самого драйвера ir2153, то есть через него запитан драйвер. VD2 является однополупериодным выпрямителем питания драйвера.

Емкость С6 и резистор R4 задают частоту генерации драйвера ir2153. Под статьей можете скачать программу расчета номиналов данных элементов по частоте. Номиналы C6 и R4 указанные на схеме способствуют генерации прямоугольных импульсов с частотой 43-44кГц. Я убавил номинал резистора R4 до 13кОм, тем самым повысил частоту до 50кГц, трансформатор стал греться меньше, но и поднялось напряжение на нагрузке, было +-48 Вольт при токе 3А, стало +-50Вольт, но это только мне на руку.

На транзисторах VT1,VT2,R1,R3 собран “икающий” триггер защиты. R11 является датчиком тока. На нем совсем небольшое падение напряжения, и при увеличении тока во вторичной обмотке, ток первичной обмотки тоже увеличивается, увеличивается и падение напряжения на резисторе R11. Через подстроечный резистор R10 ток поступает на базу транзистора VT1, и при достижении определенного напряжения база-эмиттер примерно 0,6 Вольт транзистор открывается. Через  открытый транзистор VT1 и резистор R1 начинает протекать небольшой ток, который открывает транзистор VT2, через данный транзистор и резистор R3 питание драйвера зашунтируется. Драйвер прекращает работу, ток падает в обмотках трансформатора, транзистор VT1 закрывается. Питание на драйвер вновь появляется, так как закрыт транзистор VT1, а следовательно и VT2, и питание драйвера уже не зашунтировано.

Далее цикл повторяется, пока в первичной обмотке трансформатора не ослабится ток. Визуально это все наблюдается миганием светодиода, эффект “икания”. Подстройка защиты ведется подстроечным резистором R10, но о настройке защиты чуть ниже.

На выходе стоят диоды типа “Шоттки”, позволяющие выпрямить высокочастотный ток. Ну и в каждом из плеч выходного каскада стоят электролиты по 2000мкФ на плечо. Данных баночек вполне достаточно для импульсного источника питания мощностью до 500Вт, используемого под усилитель низкой частоты.

Варистор VDR1 защищает схему от скачков напряжения. При скачке напряжения (напряжение срабатывания MYG14-431 составляет 430В при токе 1мА) сопротивление варистора мгновенно уменьшается, выкорачивая цепь питания схемы, перегорает предохранитель, обрывая сетевое питание.

Дроссель T1 служит для подавления высокочастотных помех на входе.

Детали для сборки импульсного источника питания на ir2153

ОБОЗНАЧЕНИЕТИПНОМИНАЛКОЛИЧЕСТВОКОММЕНТАРИЙ
Драйвер питанияIR21531
VT1Биполярный транзистор2n55511
VT2Биполярный транзистор2n54011
VT3Биполярный транзисторBC5171Составной транзистор
VT4,VT5MOSFET - транзисторIRF7402Полевой транзистор
VD1Стабилитрон1n4743A113В 1.3Вт
VD2,VD4Выпрямительный диодHER1082Другой быстрый диод
VD3Выпрямительный диод1n41481
VD5,VD6Диод ШотткиMBR20100220А 100В
VDS1Выпрямительный диод1n40074
VDS2Диодный мостRS60716А 1000В
VDR1ВаристорMYG14-4311
HL1СветодиодКрасный1
K1РелеHK3FF-DC12V-SH1Обмотка на 12В 400 Ом
R1Резистор 0,25Вт8,2кОм1
R2Резистор 2Вт18кОм1
R3Резистор 0,25Вт100 Ом1
R5Резистор 0,25Вт47кОм1
R6Резистор 5Вт22 Ом1
R4,R7Резистор 0,25Вт15кОм2
R8,R9Резистор 0,25Вт33 Ом2
R10Резистор подстр.330 Ом1Однооборотный
R11,R11Резистор 2Вт0,2 Ом2
C1,C3,C17,C18Конденсатор неполярный100нФ 400В4Пленка
C2Конденсатор неполярный470нФ 400В1Пленка
C4,C5,C7Электролит220мкФ 16В3
C6,C8Конденсатор неполярный1нФ2Керамика любое напряж.
C9Конденсатор неполярный680нФ1Керамика любое напряж.
C10Электролит330мкФ 400В1
C11,C12Конденсатор неполярный1мкФ 400В2Пленка
C13-C16Электролит1000мкФ 63В4

Дроссель Т1 можете выдрать из любого импульсного блока питания ПК, как это сделал я.
Скачать список компонентов для ИИП на ir2153 в файле PDF.

Трансформатор намотан на кольце марки 2000НМ, размеры 40-24-20 мм. Первичная обмотка содержит 33 витка проводом диаметра 0,85мм в две жилы (перестраховался).

Вторичная обмотка ложится в два слоя. Диаметр провода вторичной обмотки 0,85мм и имеет 13+13 витков (то есть с отводом от середины, всего 26 витков), второй слой аналогичен первому (13+13 витков). Между слоями лежит диэлектрик.

Более подробную инструкцию о расчете и намотке трансформатора читайте в статье "Расчет и намотка импульсного трансформатора", также рекомендую прочитать статью "Как перемотать трансформатор из блока питания ПК".

Данный импульсный источник питания на ir2153 можно пересчитать под любое напряжение, достаточно перемотать трансформатор.

Если надумаете собирать данный блок питания напряжением более +-50В, то следует заменить выходные емкости С13-С16 на более высоковольтные, например на 100В., а также заменить Шоттки, например, на MBR20200.

Пару слов о защите.

Может сложиться так, что после сборки ИИП описанного в этой статье, при запуске будет срабатывать защита. И регулировка подстроечного резистора не даст никакого результата. Тогда следует уменьшить номинал резистора R11 до 0,07 Ом. У меня так и сделано, параллельно зацеплены три резистора по 0,2 Ом.

Суть ребята такая, если номинал резистора R11 большой, например 0,2 Ом, то на нем будет падение напряжения больше чем нужно, и при работе ИИП постоянно будет большое напряжение на базе транзистора VT1, защита будет срабатывать.

Может случиться так, что при испытании на довольно большой нагрузке защита не срабатывает, то можно попробовать увеличить номинал R11, например до 0,15 Ом. Либо попробовать увеличить номинал подстроечного резистора R10, например до 3,3 кОм. Так как, R10 и R11 соединены параллельно, и R11 на два порядка меньше, то увеличение R10 приведет к очень малому (несколько тысячных-сотых долей) изменению эквивалентного соединения.

В общем, повозитесь с настройкой защиты и все поймете. Хотя если все номиналы будут соответствовать схеме, и мотать трансформатор будете на кольце, даже рассчитанном на другое напряжение, у вас все заработает с первого раза. От вас требуется внимательность, и аккуратность.

Замечу, что на плате стоят два резистора R11 сопротивлением 0,22 Ома, соединенных между собой параллельно,  в результате R11 равен 0,11 Ом (по правилу двух параллельно соединенных проводников). У меня на плате три резистора R11 по 0,22 Ома (параллельно соединенных), что дает в результате 0,07 Ом.

Первый запуск и настройка защиты.

Первый запуск всегда делайте через лампу. Что это значит? Это значит, что от сети подключаем не напрямую питание, а в разрыв одного из двух проводов подсоединяем лампу 220 Вольт.

Что нам даст лампа? Лампа – это тот же резистор, в котором визуально можно наблюдать рассеивание лишней мощности в виде света (тепла соответственно тоже), а также предотвратит  перегорание элементов при неисправности в блоке питания.

Если в вашем собранном блоке питания на ir2153 будет присутствовать короткое замыкание (КЗ), чего я вам не желаю, то при подключении через лампу, последняя будет гореть в полный накал и возможно ничего больше не сгорит, так как лампа рассеет всю мощность. Это очевидно, так как схема примет вид:

Если в блоке питания будет обрыв, то лампа не загорится.

При нормальном запуске ИИП наблюдается следующая картина, лампа должна вспыхнуть и погаснуть. Вспыхивает лампа в момент зарядки всех емкостей. Если емкости не разрядить, то второй запуск пройдет без вспыхивания лампы.

Для настройки защиты лампу исключите из цепи, иначе лампа будет рассеивать мощность и не позволит вам, как следует нагрузить ваш ИИП.

Для проверки защиты нужно нагрузить наш ИИП на ir2153. Нагружать будем мощными резисторами. Для этого их нужно рассчитать.  Расчет производим с помощью закона Ома.  На выходе у меня +-50В, если я замерю не относительно ноля, а на плечах, то получу напряжение +100В. Я хочу выжать из моего блока питания ток 3А, это 300Вт (мощность = ток*напряжение). Теперь 100В/3А=33,3 Ом.

Я нашел несколько 25Вт резисторов и собрал из них 33 Ом. Наливаете в тазик воды и опускаете в него подключенные резисторы . В разрыв амперметр, чтобы замерить ток.

Ток потребления 3 Ампера.

Напряжение на плечах 102 Вольта.

Далее плавным вращением подстроечного резистора R10, добиваемся загорания светодиода, который должен начать мигать.  После того, как поймали место, где срабатывает защита, крутим подстроечный резистор R10 в обратном направлении, пока защита перестанет срабатывать. В этом положении оставляем R10. Все, защита настроена, при перегрузке более 300Вт в моем случае, сработает защита.

Несколько советов.

После пайки обязательно сотрите остатки канифоли спиртом или ацетоном. Посадите ключи и Шоттки на радиаторы, через диэлектрические прокладки. После настройки защиты погоняйте ваш блок питания сначала минут  15, потом можете час. После 1 часа работы, трансформатор нагрелся до 64 градусов и рост температуры остановился. Это нормально. Ключи IRF740 работают до 150 градусов, и соответственно будут нагреваться.

Замеры температуры при работе схемы:

При желании и наличии осциллографа, можете пересчитать R4 и С6, для оптимальной настройки частоты. Уменьшив R4 до 13кОм, я увеличил частоту до 50кГц, что сразу сказалось на работе моего блока питания, повысился КПД, а следовательно и уменьшилось выделение тепла.

Печатная плата для ИИП на ir2153 СКАЧАТЬ

Даташит на ir2153 СКАЧАТЬ

Список компонентов для сборки ИИП на ir2153 (PDF) СКАЧАТЬ

Программа расчета частоты драйвера ir2153 по R4 и C6 СКАЧАТЬ

Статья по расчету и намотке импульсного трансформатора ПЕРЕЙТИ

Статья по перемотке импульсного трансформатора из БП ПК ПЕРЕЙТИ.


Похожие статьи

audio-cxem.ru

Двухполярный блок питания схема которого • Питание

Двухполярный блок питания внешний вид монтажа которого показан на рисунке.

Технические характеристики:

  • Регулируемые выходные напряжения 1,2 … 25 В постоянного тока
  • максимальный длительный выходной ток: 2 ✕ 1,5A
  • индикаторы выходного напряжения – светодиоды
  • защита от короткого замыкания и тепловая защита
  • размеры платы: 45 ✕ 81 мм

Двухполярный блок питания схема которого классическая, выходное напряжение устанавливается с помощью потенциометров PR1 и PR2.

LM317 – используется как положительный стабилизатор напряжения, а LM337 – стабилизирует отрицательное напряжение.

Для стабилизаторов LM требуется небольшое количество рассыпухи и еще они имеют встроенную тепловую защиту, а также ограничение тока при коротком замыкании. Диапазон выходного напряжения составляет от ± 1,25 В до ± 25 В. Микросхемы LM317 и LM337 имеют встроенную кратковременную защиту от короткого замыкания. При выборе трансформатора обратите внимание на номинальное напряжение конденсаторов C1, C2. Трансформатор должен быть выбран таким образом, чтобы его вторичное напряжение после выпрямления не превышало номинальное напряжение конденсаторов.

Печатная плата двухполярный блок питания показана на рисунке.

Сборка не представляет особого труда, а последние установленные элементы должны быть конденсаторы C1, C2, сразу после установки микросхем на радиатор. Стабилизаторы US1 и US2 должны быть изолированы от радиатора с помощью слюды или силиконовой прокладки. Схема собранная из заведомо исправных элементов, не требует какой-либо регулировки, и после подключения трансформатора работает сразу же.

varikap.ru

Блок питания для настройки усилителей

Тем, кто профессионально занимается изготовлением или ремонтом УНЧ, рекомендуем собрать эту схему безопасного источника двухполярного питания с защитой от перегрузки по току, который специально предназначен для запуска большинства схем усилителей, особенно транзисторных.

Принципиальная схема блока питания

Схема двухполярного БП с защитой, для настройки усилителей

Внимание! При питании выше +/-80В, следует вместо транзисторов BC546/556 применять их аналоги на более высокое напряжение.

Характеристики БП

  • Два симметричных, независимых выхода регулируются в диапазоне +/-15-100V
  • Полная защита по току 100-700 мА
  • Стабилизация питания с хорошей фильтрацией
  • Светодиодные индикаторы выходного напряжения, короткого замыкания и ограничения тока
  • Функция подачи переменного напряжения сети (50 Гц) для измерения PSRR
Испытание и настройка

Варианты исполнения

Также есть возможность независимой работы в связке блок питания с трансформатором или сам стабилизатор, как электронный предохранитель для безопасного запуска усилителей мощности.

Блок питания в корпусе — передняя панель

Что касается корпуса — тут кому как понравится. В авторском варианте БП был собран как приставка-переходник между трансформатором (или вот таким импульсным ИП) и схемой, в пластиковой коробке, внутри которой разместились платы стабилизаторов и радиаторы, а на переднюю панель выведены стрелочные индикаторы тока и напряжения обоих каналов. Думаем не нужно объяснять, насколько удобно видеть сразу все эти 4 параметра в процессе настройки УНЧ. Вот файлы с печатными платами. Всем успешного аудиостроя и чистого звука!


2shemi.ru

Двухполярный блок питания


Двухполярный блок питания часто используется для питания операционных усилителей и выходных каскадов мощных усилителей низкой частоты (audio). Так же двухполярное напряжение используется в компьютерных блоках питания.

Схема двухполярного блока питания

На данном рисунке изображена простейшая схема двухполярного блока питания. Допустим, вторичная обмотка трансформатора выдаёт переменное напряжение 12.6 вольт. Конденсатор C1 заряжается положительным напряжением через диод VD1 во время положительного полупериода, а конденсатор C2 заряжается отрицательным напряжением через диод VD2 во время отрицательного полупериода. Каждый из конденсаторов будет заряжаться до напряжения 17.8 вольт (12.6 * 1.41). Полярности обоих конденсаторов противоположны относительно "земли" (общего вывода).

В данном блоке питания сохраняются проблемы однополупериодных выпрямителей. Т.е. ёмкость конденсаторов должна быть довольно приличной.

На следующем рисунке показана схема двухполярного блока питания, использующего диодный мост и удвоенную вторичную обмотку трансформатора с отводом от середины как общий вывод.

В данной схеме используется двухполупериодное выпрямление при котором можно использовать конденсаторы фильтра меньшей емкости при том же токе нагрузки. Но, чтобы получить то же напряжение, что и в предыдущей схеме, нам необходимо иметь обмотку на двойное напряжение, т.е. 12.6 х 2 = 25.2 вольта, с отводом от середины.

Стабилизированный двухполярный блок питания

Наибольшую ценность представляют стабилизированные двухполярные блоки питания. Именно они применяются в audio усилителях. Такие блоки состоят из двух стабилизированных блоков. Один из них стабилизирует положительное напряжение, а второй - отрицательное относительно общего вывода. Схема такого блока показана на следующем рисунке.

При использовании стабилизаторов 7805 и 7905 такой блок будет выдавать стабилизированное двухполярное напряжение ±5В.


katod-anod.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о