Значение косинуса – Таблица косинусов углов от 0° до 360°

Таблица КОСИНУСОВ для углов от 0° до 360° градусов


КОСИНУС (COS α) острого угла в прямоугольном треугольнике равен отношению прилежащего катета к его гипотенузе…

Малая таблица значений тригонометрических функций (в радианах и градусах)
α (радианы) 0 π/6 π/4 π/3 π/2 π 3π/2
α (градусы) 30° 45° 60° 90° 180° 270° 360°
cos α (Косинус) 1 3/2 2/2 1/2 0 -1 0 1

Полная таблица косинусов для углов от 0° до  360° 
Угол в градусах  Cos (Косинус)
1
0.9998
0.9994
0.9986
0.9976
0.9962
0.9945
0.9925
0.9903
0.9877
10° 0.9848
11° 0.9816
12° 0.9781
13° 0.9744
14° 0.9703
15° 0.9659
16° 0.9613
17° 0.9563
18° 0.9511
19° 0.9455
20° 0.9397
21° 0.9336
22° 0.9272
23° 0.9205
24° 0.9135
25° 0.9063
26° 0.8988
27° 0.891
28° 0.8829
29° 0.8746
30° 0.866
31° 0.8572
32° 0.848
33° 0.8387
34° 0.829
35° 0.8192
36° 0.809
37° 0.7986
38° 0.788
39° 0.7771
40°
0.766
41° 0.7547
42° 0.7431
43° 0.7314
44° 0.7193
45° 0.7071
46° 0.6947
47° 0.682
48° 0.6691
49° 0.6561
50° 0.6428
51° 0.6293
52° 0.6157
53° 0.6018
54° 0.5878
55° 0.5736
56° 0.5592
57° 0.5446
58° 0.5299
59° 0.515
60° 0.5
61° 0.4848
62° 0.4695
63° 0.454
64° 0.4384
65° 0.4226
66° 0.4067
67° 0.3907
68° 0.3746
69° 0.3584
70° 0.342
71° 0.3256
72° 0.309
73° 0.2924
74° 0.2756
75° 0.2588
76° 0.2419
77° 0.225
78° 0.2079
79° 0.1908
80° 0.1736
81° 0.1564
82° 0.1392
83° 0.1219
84° 0.1045
85° 0.0872
86° 0.0698
87° 0.0523
88° 0.0349
89° 0.0175
90° 0

 

Таблица косинусов для углов от 91° до 180°
Угол cos (Косинус)
91° -0.0175
92° -0.0349
93° -0.0523
94° -0.0698
95° -0.0872
96° -0.1045
97° -0.1219
98° -0.1392
99° -0.1564
100° -0.1736
101° -0.1908
102° -0.2079
103° -0.225
104° -0.2419
105° -0.2588
106° -0.2756
107° -0.2924
108° -0.309
109° -0.3256
110° -0.342
111° -0.3584
112° -0.3746
113° -0.3907
114° -0.4067
115° -0.4226
116° -0.4384
117° -0.454
118° -0.4695
119° -0.4848
120° -0.5
121° -0.515
122° -0.5299
123° -0.5446
124° -0.5592
125° -0.5736
126° -0.5878
127° -0.6018
128° -0.6157
129° -0.6293
130° -0.6428
131° -0.6561
132° -0.6691
133° -0.682
134° -0.6947
135° -0.7071
136° -0.7193
137° -0.7314
138° -0.7431
139° -0.7547
140° -0.766
141° -0.7771
142° -0.788
143° -0.7986
144° -0.809
145° -0.8192
146° -0.829
147° -0.8387
148° -0.848
149° -0.8572
150° -0.866
151° -0.8746
152° -0.8829
153° -0.891
154° -0.8988
155° -0.9063
156° -0.9135
157° -0.9205
158° -0.9272
159° -0.9336
160°
-0.9397
161° -0.9455
162° -0.9511
163° -0.9563
164° -0.9613
165° -0.9659
166° -0.9703
167° -0.9744
168° -0.9781
169° -0.9816
170° -0.9848
171° -0.9877
172° -0.9903
173° -0.9925
174° -0.9945
175° -0.9962
176° -0.9976
177° -0.9986
178° -0.9994
179° -0.9998
180° -1

Таблица косинусов для углов от 180° до 270°
Угол cos (косинус)
181° -0.9998
182° -0.9994
183° -0.9986
184° -0.9976
185° -0.9962
186° -0.9945
187° -0.9925
188° -0.9903
189° -0.9877
190° -0.9848
191° -0.9816
192° -0.9781
193° -0.9744
194° -0.9703
195° -0.9659
196° -0.9613
197° -0.9563
198° -0.9511
199° -0.9455
200° -0.9397
201° -0.9336
202° -0.9272
203° -0.9205
204° -0.9135
205° -0.9063
206° -0.8988
207° -0.891
208° -0.8829
209° -0.8746
210° -0.866
211° -0.8572
212° -0.848
213° -0.8387
214° -0.829
215° -0.8192
216° -0.809
217° -0.7986
218° -0.788
219° -0.7771
220° -0.766
221° -0.7547
222° -0.7431
223° -0.7314
224° -0.7193
225° -0.7071
226° -0.6947
227° -0.682
228° -0.6691
229° -0.6561
230° -0.6428
231° -0.6293
232° -0.6157
233° -0.6018
234° -0.5878
235° -0.5736
236° -0.5592
237° -0.5446
238° -0.5299
239° -0.515
240° -0.5
241° -0.4848
242° -0.4695
243° -0.454
244° -0.4384
245° -0.4226
246° -0.4067
247° -0.3907
248° -0.3746
249° -0.3584
250° -0.342
251° -0.3256
252° -0.309
253° -0.2924
254° -0.2756
255° -0.2588
256° -0.2419
257° -0.225
258° -0.2079
259° -0.1908
260° -0.1736
261° -0.1564
262° -0.1392
263° -0.1219
264° -0.1045
265° -0.0872
266° -0.0698
267° -0.0523
268° -0.0349
269° -0.0175
270° 0

Таблица косинусов для углов от 270° до 360°
Угол Cos (Косинус)
271° 0.0175
272° 0.0349
273°
0.0523
274° 0.0698
275° 0.0872
276° 0.1045
277° 0.1219
278° 0.1392
279° 0.1564
280° 0.1736
281° 0.1908
282° 0.2079
283° 0.225
284° 0.2419
285° 0.2588
286° 0.2756
287° 0.2924
288° 0.309
289° 0.3256
290° 0.342
291° 0.3584
292° 0.3746
293° 0.3907
294° 0.4067
295° 0.4226
296° 0.4384
297° 0.454
298° 0.4695
299° 0.4848
300° 0.5
301° 0.515
302° 0.5299
303° 0.5446
304°
0.5592
305° 0.5736
306° 0.5878
307° 0.6018
308° 0.6157
309° 0.6293
310° 0.6428
311° 0.6561
312° 0.6691
313° 0.682
314° 0.6947
315° 0.7071
316° 0.7193
317° 0.7314
318° 0.7431
319° 0.7547
320° 0.766
321° 0.7771
322° 0.788
323° 0.7986
324° 0.809
325° 0.8192
326° 0.829
327° 0.8387
328° 0.848
329° 0.8572
330° 0.866
331° 0.8746
332° 0.8829
333° 0.891
334° 0.8988
335° 0.9063
336° 0.9135
337° 0.9205
338° 0.9272
339° 0.9336
340° 0.9397
341° 0.9455
342° 0.9511
343° 0.9563
344° 0.9613
345° 0.9659
346° 0.9703
347° 0.9744
348° 0.9781
349° 0.9816
350° 0.9848
351° 0.9877
352° 0.9903
353° 0.9925
354° 0.9945
355° 0.9962
356° 0.9976
357° 0.9986
358° 0.9994
359° 0.9998
360° 1

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите нужную часть таблицы, на выделенном фоне нажмите правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Пример

Чему равен косинус 30? …

— Ищем в таблице соответствующее значение. Правильный ответ:  0.866


Автор: Bill4iam


kvn201.com.ua

Таблица косинусов (полная, градусы и значения)

В данной таблице представлены значения косинусов от 0° до 360°. Таблица косинусов нужна, чтобы узнать, чему равен косинус угла. Нужно только найти его в таблице. Для начала короткая версия таблицы.

https://uchim.org/matematika/tablica-kosinusov - uchim.org

Таблица косинусов для 0°-180°

cos(1°)0.9998
cos(2°)0.9994
cos(3°)0.9986
cos(4°)0.9976
cos(5°)0.9962
cos(6°)0.9945
cos(7°)0.9925
cos(8°)0.9903
cos(9°)0.9877
cos(10°)0.9848
cos(11°)0.9816
cos(12°)0.9781
cos(13°)0.9744
cos(14°)0.9703
cos(15°)0.9659
cos(16°)0.9613
cos(17°)0.9563
cos(18°)0.9511
cos(19°)0.9455
cos(20°)0.9397
cos(21°)0.9336
cos(22°)0.9272
cos(23°)0.9205
cos(24°)0.9135
cos(25°)0.9063
cos(26°)0.8988
cos(27°)0.891
cos(28°)0.8829
cos(29°)0.8746
cos(30°)0.866
cos(31°)0.8572
cos(32°)0.848
cos(33°)0.8387
cos(34°)0.829
cos(35°)0.8192
cos(36°)0.809
cos(37°)0.7986
cos(38°)0.788
cos(39°)0.7771
cos(40°)0.766
cos(41°)0.7547
cos(42°)0.7431
cos(43°)0.7314
cos(44°)0.7193
cos(45°)0.7071
cos(46°)0.6947
cos(47°)0.682
cos(48°)0.6691
cos(49°)0.6561
cos(50°)0.6428
cos(51°)0.6293
cos(52°)0.6157
cos(53°)0.6018
cos(54°)0.5878
cos(55°)0.5736
cos(56°)0.5592
cos(57°)0.5446
cos(58°)0.5299
cos(59°)0.515
cos(60°)0.5
cos(61°)0.4848
cos(62°)0.4695
cos(63°)0.454
cos(64°)0.4384
cos(65°)0.4226
cos(66°)0.4067
cos(67°)0.3907
cos(68°)0.3746
cos(69°)0.3584
cos(70°)0.342
cos(71°)0.3256
cos(72°)0.309
cos(73°)0.2924
cos(74°)0.2756
cos(75°)0.2588
cos(76°)0.2419
cos(77°)0.225
cos(78°)0.2079
cos(79°)0.1908
cos(80°)0.1736
cos(81°)0.1564
cos(82°)0.1392
cos(83°)0.1219
cos(84°)0.1045
cos(85°)0.0872
cos(86°)0.0698
cos(87°)0.0523
cos(88°)0.0349
cos(89°)0.0175
cos(90°)0
cos(91°)-0.0175
cos(92°)-0.0349
cos(93°)-0.0523
cos(94°)-0.0698
cos(95°)-0.0872
cos(96°)-0.1045
cos(97°)-0.1219
cos(98°)-0.1392
cos(99°)-0.1564
cos(100°)-0.1736
cos(101°)-0.1908
cos(102°)-0.2079
cos(103°)-0.225
cos(104°)-0.2419
cos(105°)-0.2588
cos(106°)-0.2756
cos(107°)-0.2924
cos(108°)-0.309
cos(109°)-0.3256
cos(110°)-0.342
cos(111°)-0.3584
cos(112°)-0.3746
cos(113°)-0.3907
cos(114°)-0.4067
cos(115°)-0.4226
cos(116°)-0.4384
cos(117°)-0.454
cos(118°)-0.4695
cos(119°)-0.4848
cos(120°)-0.5
cos(121°)-0.515
cos(122°)-0.5299
cos(123°)-0.5446
cos(124°)-0.5592
cos(125°)-0.5736
cos(126°)-0.5878
cos(127°)-0.6018
cos(128°)-0.6157
cos(129°)-0.6293
cos(130°)-0.6428
cos(131°)-0.6561
cos(132°)-0.6691
cos(133°)-0.682
cos(134°)-0.6947
cos(135°)-0.7071
cos(136°)-0.7193
cos(137°)-0.7314
cos(138°)-0.7431
cos(139°)-0.7547
cos(140°)-0.766
cos(141°)-0.7771
cos(142°)-0.788
cos(143°)-0.7986
cos(144°)-0.809
cos(145°)-0.8192
cos(146°)-0.829
cos(147°)-0.8387
cos(148°)-0.848
cos(149°)-0.8572
cos(150°)-0.866
cos(151°)-0.8746
cos(152°)-0.8829
cos(153°)-0.891
cos(154°)-0.8988
cos(155°)-0.9063
cos(156°)-0.9135
cos(157°)-0.9205
cos(158°)-0.9272
cos(159°)-0.9336
cos(160°)-0.9397
cos(161°)-0.9455
cos(162°)-0.9511
cos(163°)-0.9563
cos(164°)-0.9613
cos(165°)-0.9659
cos(166°)-0.9703
cos(167°)-0.9744
cos(168°)-0.9781
cos(169°)-0.9816
cos(170°)-0.9848
cos(171°)-0.9877
cos(172°)-0.9903
cos(173°)-0.9925
cos(174°)-0.9945
cos(175°)-0.9962
cos(176°)-0.9976
cos(177°)-0.9986
cos(178°)-0.9994
cos(179°)-0.9998
cos(180°)-1

Таблица косинусов для 181°-360°

cos(181°)-0.9998
cos(182°)-0.9994
cos(183°)-0.9986
cos(184°)-0.9976
cos(185°)-0.9962
cos(186°)-0.9945
cos(187°)-0.9925
cos(188°)-0.9903
cos(189°)-0.9877
cos(190°)-0.9848
cos(191°)-0.9816
cos(192°)-0.9781
cos(193°)-0.9744
cos(194°)-0.9703
cos(195°)-0.9659
cos(196°)-0.9613
cos(197°)-0.9563
cos(198°)-0.9511
cos(199°)-0.9455
cos(200°)-0.9397
cos(201°)-0.9336
cos(202°)-0.9272
cos(203°)-0.9205
cos(204°)-0.9135
cos(205°)-0.9063
cos(206°)-0.8988
cos(207°)-0.891
cos(208°)-0.8829
cos(209°)-0.8746
cos(210°)-0.866
cos(211°)-0.8572
cos(212°)-0.848
cos(213°)-0.8387
cos(214°)-0.829
cos(215°)-0.8192
cos(216°)-0.809
cos(217°)-0.7986
cos(218°)-0.788
cos(219°)-0.7771
cos(220°)-0.766
cos(221°)-0.7547
cos(222°)-0.7431
cos(223°)-0.7314
cos(224°)-0.7193
cos(225°)-0.7071
cos(226°)-0.6947
cos(227°)-0.682
cos(228°)-0.6691
cos(229°)-0.6561
cos(230°)-0.6428
cos(231°)-0.6293
cos(232°)-0.6157
cos(233°)-0.6018
cos(234°)-0.5878
cos(235°)-0.5736
cos(236°)-0.5592
cos(237°)-0.5446
cos(238°)-0.5299
cos(239°)-0.515
cos(240°)-0.5
cos(241°)-0.4848
cos(242°)-0.4695
cos(243°)-0.454
cos(244°)-0.4384
cos(245°)-0.4226
cos(246°)-0.4067
cos(247°)-0.3907
cos(248°)-0.3746
cos(249°)-0.3584
cos(250°)-0.342
cos(251°)-0.3256
cos(252°)-0.309
cos(253°)-0.2924
cos(254°)-0.2756
cos(255°)-0.2588
cos(256°)-0.2419
cos(257°)-0.225
cos(258°)-0.2079
cos(259°)-0.1908
cos(260°)-0.1736
cos(261°)-0.1564
cos(262°)-0.1392
cos(263°)-0.1219
cos(264°)-0.1045
cos(265°)-0.0872
cos(266°)-0.0698
cos(267°)-0.0523
cos(268°)-0.0349
cos(269°)-0.0175
cos(270°)-0
cos(271°)0.0175
cos(272°)0.0349
cos(273°)0.0523
cos(274°)0.0698
cos(275°)0.0872
cos(276°)0.1045
cos(277°)0.1219
cos(278°)0.1392
cos(279°)0.1564
cos(280°)0.1736
cos(281°)0.1908
cos(282°)0.2079
cos(283°)0.225
cos(284°)0.2419
cos(285°)0.2588
cos(286°)0.2756
cos(287°)0.2924
cos(288°)0.309
cos(289°)0.3256
cos(290°)0.342
cos(291°)0.3584
cos(292°)0.3746
cos(293°)0.3907
cos(294°)0.4067
cos(295°)0.4226
cos(296°)0.4384
cos(297°)0.454
cos(298°)0.4695
cos(299°)0.4848
cos(300°)0.5
cos(301°)0.515
cos(302°)0.5299
cos(303°)0.5446
cos(304°)0.5592
cos(305°)0.5736
cos(306°)0.5878
cos(307°)0.6018
cos(308°)0.6157
cos(309°)0.6293
cos(310°)0.6428
cos(311°)0.6561
cos(312°)0.6691
cos(313°)0.682
cos(314°)0.6947
cos(315°)0.7071
cos(316°)0.7193
cos(317°)0.7314
cos(318°)0.7431
cos(319°)0.7547
cos(320°)0.766
cos(321°)0.7771
cos(322°)0.788
cos(323°)0.7986
cos(324°)0.809
cos(325°)0.8192
cos(326°)0.829
cos(327°)0.8387
cos(328°)0.848
cos(329°)0.8572
cos(330°)0.866
cos(331°)0.8746
cos(332°)0.8829
cos(333°)0.891
cos(334°)0.8988
cos(335°)0.9063
cos(336°)0.9135
cos(337°)0.9205
cos(338°)0.9272
cos(339°)0.9336
cos(340°)0.9397
cos(341°)0.9455
cos(342°)0.9511
cos(343°)0.9563
cos(344°)0.9613
cos(345°)0.9659
cos(346°)0.9703
cos(347°)0.9744
cos(348°)0.9781
cos(349°)0.9816
cos(350°)0.9848
cos(351°)0.9877
cos(352°)0.9903
cos(353°)0.9925
cos(354°)0.9945
cos(355°)0.9962
cos(356°)0.9976
cos(357°)0.9986
cos(358°)0.9994
cos(359°)0.9998
cos(360°)1

Как легко запомнить таблицу косинусов (видео)

Существуют также следующие таблицы тригонометрических функций: таблица синусов, таблица тангенсов и таблица котангенсов.

Всё для учебы » Математика в школе » Таблица косинусов (полная, градусы и значения)

Чтобы добавить страницу в закладки, нажмите Ctrl+D.

Если страница помогла, сохраните её и поделитесь ссылкой с друзьями:


Ссылка: https://uchim.org/matematika/tablica-kosinusov

Группа с кучей полезной информации (подпишитесь, если предстоит ЕГЭ или ОГЭ):

uchim.org

Таблица косинусов углов от 0° - 360°. Углы с шагом в 1°. Таблица значений косинусов.

Таблица косинусов углов от 0° - 360°. Углы с шагом в 1°.
cos(0°)=cos(360°)=1; точная, но чуть более сложная таблица ( с точностью до 1") здесь.

Углы
1° - 90°

Углы
91 ° - 180°

Углы
181° - 270°

Углы
271 ° - 360°

Угол

Cos

cos= 0.9998
cos= 0.9994
cos= 0.9986
cos= 0.9976
cos= 0.9962
cos= 0.9945
cos= 0.9925
cos= 0.9903
cos= 0.9877
10° cos= 0.9848
11° cos= 0.9816
12° cos= 0.9781
13° cos= 0.9744
14° cos= 0.9703
15° cos= 0.9659
16° cos= 0.9613
17° cos= 0.9563
18° cos= 0.9511
19° cos= 0.9455
20° cos= 0.9397
21° cos= 0.9336
22° cos= 0.9272
23° cos= 0.9205
24° cos= 0.9135
25° cos= 0.9063
26° cos= 0.8988
27° cos= 0.891
28° cos= 0.8829
29° cos= 0.8746
30° cos= 0.866
31° cos= 0.8572
32° cos= 0.848
33° cos= 0.8387
34° cos= 0.829
35° cos= 0.8192
36° cos= 0.809
37° cos= 0.7986
38° cos= 0.788
39° cos= 0.7771
40° cos= 0.766
41° cos= 0.7547
42° cos= 0.7431
43° cos= 0.7314
44° cos= 0.7193
45° cos= 0.7071
46° cos= 0.6947
47° cos= 0.682
48° cos= 0.6691
49° cos= 0.6561
50° cos= 0.6428
51° cos= 0.6293
52° cos= 0.6157
53° cos= 0.6018
54° cos= 0.5878
55° cos= 0.5736
56° cos= 0.5592
57° cos= 0.5446
58° cos= 0.5299
59° cos= 0.515
60° cos= 0.5
61° cos= 0.4848
62° cos= 0.4695
63° cos= 0.454
64° cos= 0.4384
65° cos= 0.4226
66° cos= 0.4067
67° cos= 0.3907
68° cos= 0.3746
69° cos= 0.3584
70° cos= 0.342
71° cos= 0.3256
72° cos= 0.309
73° cos= 0.2924
74° cos= 0.2756
75° cos= 0.2588
76° cos= 0.2419
77° cos= 0.225
78° cos= 0.2079
79° cos= 0.1908
80° cos= 0.1736
81° cos= 0.1564
82° cos= 0.1392
83° cos= 0.1219
84° cos= 0.1045
85° cos= 0.0872
86° cos= 0.0698
87° cos= 0.0523
88° cos= 0.0349
89° cos= 0.0175
90° cos= 0

Угол

Cos

91° cos= -0.0175
92° cos= -0.0349
93° cos= -0.0523
94° cos= -0.0698
95° cos= -0.0872
96° cos= -0.1045
97° cos= -0.1219
98° cos= -0.1392
99° cos= -0.1564
100° cos= -0.1736
101° cos= -0.1908
102° cos= -0.2079
103° cos= -0.225
104° cos= -0.2419
105° cos= -0.2588
106° cos= -0.2756
107° cos= -0.2924
108° cos= -0.309
109° cos= -0.3256
110° cos= -0.342
111° cos= -0.3584
112° cos= -0.3746
113° cos= -0.3907
114° cos= -0.4067
115° cos= -0.4226
116° cos= -0.4384
117° cos= -0.454
118° cos= -0.4695
119° cos= -0.4848
120° cos= -0.5
121° cos= -0.515
122° cos= -0.5299
123° cos= -0.5446
124° cos= -0.5592
125° cos= -0.5736
126° cos= -0.5878
127° cos= -0.6018
128° cos= -0.6157
129° cos= -0.6293
130° cos= -0.6428
131° cos= -0.6561
132° cos= -0.6691
133° cos= -0.682
134° cos= -0.6947
135° cos= -0.7071
136° cos= -0.7193
137° cos= -0.7314
138° cos= -0.7431
139° cos= -0.7547
140° cos= -0.766
141° cos= -0.7771
142° cos= -0.788
143° cos= -0.7986
144° cos= -0.809
145° cos= -0.8192
146° cos= -0.829
147° cos= -0.8387
148° cos= -0.848
149° cos= -0.8572
150° cos= -0.866
151° cos= -0.8746
152° cos= -0.8829
153° cos= -0.891
154° cos= -0.8988
155° cos= -0.9063
156° cos= -0.9135
157° cos= -0.9205
158° cos= -0.9272
159° cos= -0.9336
160° cos= -0.9397
161° cos= -0.9455
162° cos= -0.9511
163° cos= -0.9563
164° cos= -0.9613
165° cos= -0.9659
166° cos= -0.9703
167° cos= -0.9744
168° cos= -0.9781
169° cos= -0.9816
170° cos= -0.9848
171° cos= -0.9877
172° cos= -0.9903
173° cos= -0.9925
174° cos= -0.9945
175° cos= -0.9962
176° cos= -0.9976
177° cos= -0.9986
178° cos= -0.9994
179° cos= -0.9998
180° cos= -1

Угол

Cos

181° cos=-0.9998
182° cos=-0.9994
183° cos=-0.9986
184° cos=-0.9976
185° cos=-0.9962
186° cos=-0.9945
187° cos=-0.9925
188° cos=-0.9903
189° cos=-0.9877
190° cos=-0.9848
191° cos=-0.9816
192° cos=-0.9781
193° cos=-0.9744
194° cos=-0.9703
195° cos=-0.9659
196° cos=-0.9613
197° cos=-0.9563
198° cos=-0.9511
199° cos=-0.9455
200° cos=-0.9397
201° cos=-0.9336
202° cos=-0.9272
203° cos=-0.9205
204° cos=-0.9135
205° cos=-0.9063
206° cos=-0.8988
207° cos=-0.891
208° cos=-0.8829
209° cos=-0.8746
210° cos=-0.866
211° cos=-0.8572
212° cos=-0.848
213° cos=-0.8387
214° cos=-0.829
215° cos=-0.8192
216° cos=-0.809
217° cos=-0.7986
218° cos=-0.788
219° cos=-0.7771
220° cos=-0.766
221° cos=-0.7547
222° cos=-0.7431
223° cos=-0.7314
224° cos=-0.7193
225° cos=-0.7071
226° cos=-0.6947
227° cos=-0.682
228° cos=-0.6691
229° cos=-0.6561
230° cos=-0.6428
231° cos=-0.6293
232° cos=-0.6157
233° cos=-0.6018
234° cos=-0.5878
235° cos=-0.5736
236° cos=-0.5592
237° cos=-0.5446
238° cos=-0.5299
239° cos=-0.515
240° cos=-0.5
241° cos=-0.4848
242° cos=-0.4695
243° cos=-0.454
244° cos=-0.4384
245° cos=-0.4226
246° cos=-0.4067
247° cos=-0.3907
248° cos=-0.3746
249° cos=-0.3584
250° cos=-0.342
251° cos=-0.3256
252° cos=-0.309
253° cos=-0.2924
254° cos=-0.2756
255° cos=-0.2588
256° cos=-0.2419
257° cos=-0.225
258° cos=-0.2079
259° cos=-0.1908
260° cos=-0.1736
261° cos=-0.1564
262° cos=-0.1392
263° cos=-0.1219
264° cos=-0.1045
265° cos=-0.0872
266° cos=-0.0698
267° cos=-0.0523
268° cos=-0.0349
269° cos=-0.0175
270° cos=0

Угол

Cos

271° cos=0.0175
272° cos=0.0349
273° cos=0.0523
274° cos=0.0698
275° cos=0.0872
276° cos=0.1045
277° cos=0.1219
278° cos=0.1392
279° cos=0.1564
280° cos=0.1736
281° cos=0.1908
282° cos=0.2079
283° cos=0.225
284° cos=0.2419
285° cos=0.2588
286° cos=0.2756
287° cos=0.2924
288° cos=0.309
289° cos=0.3256
290° cos=0.342
291° cos=0.3584
292° cos=0.3746
293° cos=0.3907
294° cos=0.4067
295° cos=0.4226
296° cos=0.4384
297° cos=0.454
298° cos=0.4695
299° cos=0.4848
300° cos=0.5
301° cos=0.515
302° cos=0.5299
303° cos=0.5446
304° cos=0.5592
305° cos=0.5736
306° cos=0.5878
307° cos=0.6018
308° cos=0.6157
309° cos=0.6293
310° cos=0.6428
311° cos=0.6561
312° cos=0.6691
313° cos=0.682
314° cos=0.6947
315° cos=0.7071
316° cos=0.7193
317° cos=0.7314
318° cos=0.7431
319° cos=0.7547
320° cos=0.766
321° cos=0.7771
322° cos=0.788
323° cos=0.7986
324° cos=0.809
325° cos=0.8192
326° cos=0.829
327° cos=0.8387
328° cos=0.848
329° cos=0.8572
330° cos=0.866
331° cos=0.8746
332° cos=0.8829
333° cos=0.891
334° cos=0.8988
335° cos=0.9063
336° cos=0.9135
337° cos=0.9205
338° cos=0.9272
339° cos=0.9336
340° cos=0.9397
341° cos=0.9455
342° cos=0.9511
343° cos=0.9563
344° cos=0.9613
345° cos=0.9659
346° cos=0.9703
347° cos=0.9744
348° cos=0.9781
349° cos=0.9816
350° cos=0.9848
351° cos=0.9877
352° cos=0.9903
353° cos=0.9925
354° cos=0.9945
355° cos=0.9962
356° cos=0.9976
357° cos=0.9986
358° cos=0.9994
359° cos=0.9998
360° cos=1
таблица косинусов, косинусы углов в угловых градусах ,cos α, cosinus, сколько составляет косинус?, узнать косинус, косинус градусов

Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π). Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций

Доп. Инфо:

  1. Таблица синусов углов от 0° - 360°. Углы с шагом в 1°. Таблица значений синусов.
  2. Таблица синусов, она-же косинусов точная.
  3. Таблица косинусов углов от 0° - 360°. Углы с шагом в 1°. Таблица значений косинусов.
  4. Таблица тангенсов углов углов от 0° - 360°. Углы с шагом в 1°. Таблица значений тангенса, tg
  5. Таблица котангенсов углов углов от 0° - 360°. Углы с шагом в 1°. Таблица значений котангенса, ctg
  6. Таблица тангенсов, она же котангенсов точная.
  7. Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π). Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций.
  8. Знаки тригонометрических функций синус, косинус, тангенс и котангенс по четвертям в тригонометрическом круге.
  9. Определение и численные соотношения между единицами измерения углов в РФ. Тысячные, угловые градусы, минуты, секунды, радианы, обороты.
  10. Таблица соответствия угловых градусов, радиан, оборотов, тысячных (артиллерийских РФ). 0-360 градусов, 0-2π радиан.

tehtab.ru

Таблица косинусов

Таблица косинусов — это удобное решение для проведения быстрых расчетов, когда нужно получить числовое значение косинуса того или иного угла. В статье мы узнаем, что такое косинус, чем похожи и как связаны таблица синусов и косинусов, как использовать таблицу синусов Брадиса для получения конкретных числовых значений косинуса того или иного угла.

Что такое косинус угла и как его применять в решении задач

Начнем с того, что каждый знает, что такое прямоугольный треугольник. Им называется такой треугольник, у которого один из углов (C) прямой (равен 90°), остальные два угла (𝛼 и 𝛽) острые. Он имеет стандартное обозначение углов и сторон. Тогда, что такое косинус угла, можно рассмотреть дальше.

Прямоугольный треугольник: стороны a (BC) и b (AC) — катеты, сторона с (AB) — гипотенуза

Прямой угол всегда равен 90°, острый — всегда меньше, а тупой — больше 90°

Согласно теореме косинусов, что бы рассчитать угол α или β, нужно знать длину гипотенузы (АВ) и прилежащий к этому углу катет.

Косинус — это отношение прилежащей стороны к гипотенузе:

  • cos α = b деленное на с;
  • cos β = а(BC)/с(AB) .

То есть, если вам нужно узнать, например, какой высоты делать крышу над домом, если известна ширина дома и угол наклона крыши, что бы снег не задерживался, то высоту конька рассчитать не составит труда, применяя теорему косинусов. Нужно помнить, что такие функции, как косинусы и синусы в формулах зависят от угла. Синус работает с противолежащей стороной, косинус с работает прилежащей.

Это тригонометрические формулы для вычисления углов в треугольнике через тригонометрические функции синус, косинус, тангенс, котангенс

Косинус — отношение прилежащего катета к гипотенузе

Если треугольник не прямоугольный, его параметры также можно рассчитать, используя теорему Евклида. Суть ее в том, что треугольник, лежащий на плоскости, и имеющий стороны а, b, с, а также углом α, который находится напротив стороны а, может быть рассчитан по следующей формуле:

а²= b²+с²-2²· b· cos α или:

Отсюда можем найти cos α, cos α =( b²+2²- а²) : 2bс.

Небольшое уточнение: если угол α менее 90°, тогда b²+2²- а² > 0, если α =90°, то b²+2²- а²=0, если α >90°,то есть угол тупой, то и b²+2²- а²< 0.

То же самые расчеты делаем для других углов треугольника:

  • с² = а² + b² — 2аb cosγ,
  • b² = а² + с² — 2ас cosβ.

Как рассчитать косинус угла без формул

Есть некоторые углы, рассчитать косинус которых можно без формул, применяя таблицу синусов и косинусов π. В ней расчет идет через число π, которое делится на целое число, в зависимости от размера угла, то есть sin 30° = π : 6 или 0,5, cos 30° = √3: 2. В такой таблице есть данные косинуса 30 градусов, косинуса 45 градусов, косинуса 60 градусов, косинуса 90 градусов, косинуса 120 градусов, косинус 180 градусов, косинус 270 градусов, косинус 360 градусов, косинус 0, а также аналогичные значения синусов.

Ниже приведена таблица косинусов, дополнительно указаны синусы в их числовом выражении.

Значение угла α (градусов) Значение угла α в радианах COS (косинус) 
Косинус 0 градусов01
Косинус 15 градусовπ/120.9659
Косинус 30 градусовπ/60.866
Косинус 45 градусовπ/40.7071
Косинус 50 градусов5π/180.6428
Косинус 60 градусовπ/30.5
Косинус 65 градусов13π/360.4226
Косинус 70 градусов7π/180.342
Косинус 75 градусов5π/120.2588
Косинус 90 градусовπ/20
Косинус 105 градусов 5π/12-0.2588
Косинус 120 градусов2π/3-0.5
Косинус 135 градусов3π/4-0.7071
Косинус 140 градусов7π/9-0.766
Косинус 150 градусов5π/6-0.866
Косинус 180 градусовπ-1
Косинус 270 градусов3π/20
Косинус 360 градусов1

Калькулятор расчета косинуса онлайн

Примеры решения задач по геометрии по нахождению неизвестных величин с применением таблицы косинусов Брадиса

Пример 1: Для примера решим следующую задачу. Берем прямоугольный треугольник, у него нужно найти оба угла, но известны гипотенуза с = 12 см, сторона b = 9,2 см. По теореме косинусов cos α = b : с, cos α = 9,2: 12 = 0, 7667. Далее открываем таблицу Брадиса и научимся, как ею пользоваться для нахождения косинуса угла. С левой стороны таблицы мы напротив косинусов находим ближайшее значение 0, 7672, которое соответствует 39°, поднимаем линию до значения минут и находим 54′.

Но наше значение меньше табличного на 0,0006, что становит 3′. Тогда мы вычитаем эту поправку 3′, 39°54′ — 3′ = 39°51′. Второй угол находим, исходя из того, что сумма всех углов в треугольнике не должна превышать 180°. Поэтому 180° — (90° + 39°51′) = 50° 09′. Угол β = 50° 09′. Решаем задачу дальше. Ищем сторону а. Для этого мы можем использовать два способа.

  1. по формуле а²= b²+с²-2²· b· cos α находим сторону а;
  2. по формуле cos β=sinα = а: с, а = с · cos β.

Второй вариант немного проще в вычислении. Обращаемся к таблице Брадиса снова. У нас ближайшее значение 50° 06′ = 0,6414. Поправка на 3′ составляет 0, 0007. Тогда 0, 6414 + 0,0007 = 0,6421.

По условию с = 12 см, тогда а = 12 · 0,6421 = 7,7 см. Задача решена. Если значения углов простые, таблица косинусов и синусов может упростить вычисление. Можно использовать следующие тождества: sin (90°+15°) = cos 15°= cos (90°-75°) = sin 75° Функции повторяются, только нужно учитывать знак. Если нужно найти косинус 145 градусов, находим угол до 90 градусов. 180 °– 145° = 35°. Косинус 35 градусов будет 0,8192 по таблице, если это 145°, это будет значение с отрицательным значением -0,8192.

Пример 2: Рассмотрим треугольник с произвольными углами, ни один из которых не равен 90°. Мы имеем две стороны с =12 см, b = 8,2 см, а также угол α, который равен 31°12′. Найти третью сторону. Формула, которая применялась в предыдущей задаче, не подходит, так как у нас треугольник не прямоугольный (по крайней мере мы это ещё не рассчитали). Используем формулу из теоремы косинусов:

а² = b²+с²-2²· b· cos α. Косинус угла находим на пересечении угла 31° и 12′. Он равен числу 0,8554, которое мы и подставляем в формулу.

а² = 67, 24 + 144 -4 · 8,2 · 0,8554 = 211,24 — 28,07 = 183,17. Находим а = √183,17 = 13, 54 (см)

Если будет стоять задание найти ещё и углы треугольника, используем формулу:

с² = а² + b² — 2аb cos γ, отсюда cos γ = (b² + а² — с²): 2 bс. cos γ = (8,2² + 13,54² — 12²): 2· 8,2·12 = (64,24 + 183, 17 – 144): 196,8 = 0, 5255. Открываем таблицу Брадиса. Это число соответствует 58° 18′. Согласно теореме о правилах трёх углов в треугольнике находим третий угол:

180° — 58° 18′-31°12′ =89° 30′. Задача решена!

Можно не рассчитывать самому, а использовать сервис и высчитать косинус онлайн, когда регистрируешься на сайте, и любое вычисление приходит автоматически. Минус такого сервиса, его нельзя применять на экзамене по математике. В качестве справочного материала таблицы предоставляются. Естественно, надо хорошо уметь ими пользоваться, так как на экзамен отводится ограниченное количество времени.

COS0'6'12'18'24'30'36'42'48'54'60'1'2'3' 
COS60'54'48'42'36'30'24'18'12'6'0'1'2'3'
90°0.0000
89°0.00001735527087105122140157175369
88°175192209227244262279297314332349369
87°349366384401419436454471488506523369
86°523541558576593610628645663680698369
85°6987157327507677858028198378540.0872369
84°0.0872889906924941958976993101110281045369
83°10451063108010971115113211491167118412011219369
82°12191236125312711288130513231340135713741392369
81°13921409142614441461147814951513153015471564369
80°15641582159916161633165016681685170217190.1736369
79°0.17361754177117881805182218401857187418911908369
78°19081925194219591977199420112028204520622079369
77°20792096211321302147216421812198221522332250369
76°22502267228423002317233423512368238524022419368
75°24192436245324702487250425212538255425710.2588368
74°0.25882605262226392656267226892706272327402756368
73°27562773279028072823284028572874289029072924368
72°29422940295729742990300730243040305730743090368
71°30903107312331403156317331903206322332393256368
70°32563272328933053322333833553371338734040.3420358
69°0.34203437345334693486350235183535355135673584358
68°35843600361636333649366536813697371437303746358
67°37463762377837953811382738433859387538913907358
66°30973923393939553971398740034019403540514067358
65°40674083409941154131414741634179419542100.4226358
64°0.42264242425842744289430543214337435243684384358
63°43844399441544314446446244784493450945244540358
62°45404555457145864602461746334648466446794695358
61°46954710472647414756477247874802481848334848358
60°48484863487948944909492449394955497049850.5000358
59°0.50005015503050455060507550905105512051355150358
58°51505165518051955210522552405255527052845299257
57°52995314532953445358537353885402541754325446257
56°54465461547654905505551955345548556355775592257
55°55925606562156355650566456785693570757210.5736257
54°0.57365750576457795793580758215835585058640.5878257
53°58785892590659205934594859625976599060046018257
52°60186032604660606074608861016115612961436157257
51°61576170618461986211622562396252626662806293257
50°62936307632063346347636163746388640164140.6428247
49°0.64286441645564686481649465086521653465476561247
48°65616574658766006613662666396652666566786691247
47°66916704671767306743675667696782679468076820246
46°68206833684568586871688468968909692169346947246
45°69476959697269846997700970227034704670590.7071246
44°0.70717083709671087120713371457157716971817193246
43°71937206721872307242725472667278729073027314246
42°73147325733773497361737373857396740874207431246
41°74317443745574667478749075017513752475367547246
40°75477559757075817593760476157627763876490.7660246
39°0.76607672768376947705771677277738774977607771246
38°77717782779378047815782678377848785978697880245
37°78807891790279127923793479447955796579767986245
36°79867997800780188028803980498059807080808090235
35°80908100811181218131814181518161817181810.8192235
34°0.81928202821182218231824182518261827182818290235
33°82908300831083208329833983488358836883778387235
32°83878396840684158425843484438453846284718480235
31°84808490849985088517852685368545855485638572235
30°85728581859085998607861686258634864386520.8660134
29°0.86608669867886868695870487128721872987388746134
28°87468755876387718780878887968805881388218829134
27°88298838884688548862887088788886889489028910134
26°89108918892689348942894989578965897389808988134
25°89888996900390119018902690339041904890560.9063134
24°0.90639070907890859092910091079114912191289135124
23°91359143915091579164917191789184919191989205123
22°92059212921992259232923992459252925992569272123
21°92729278928592919298930493119317932393309336123
20°93369342934893549361936793739379938393910.9397123
19°93979403940994159421942694329438944494490.9455123
18°94559461946694729478948394899494950095059511123
17°95119516952195279532953795429548955395589563123
16°95639568957395789583958895939598960396089613122
15°96139617962296279632963696419646965096550.9659122
14°96599664966896739677968196869690969496999703112
13°97039707971197159720972497289732973697409744112
12°97449748975197559759976397679770977497789781112
11°97819785978997929796979998039806981098139816112
10°98169820982398269829983398369839984298450.9848112
0.98489851985498579860986398669869987198749877011
98779880988298859888989098939895989899009903011
99039905990799109912991499179919992199239925011
99259928993099329934993699389940994299439945011
99459947994999519952995499569957995999609962011
99629963996599669968996999719972997399749976001
99769977997899799980998199829983998499859986000
99869987998899899990999099919992999399939994000
99949995999599969996999799979997999899980.9998000
999899999999999999991.00001.00001.00001.00001.00001.0000000
1.0000

themechanic.ru

Косинус

Примеры:

\(\cos{⁡30^°}=\)\(\frac{\sqrt{3}}{2}\)
\(\cos⁡\)\(\frac{π}{3}\)\(=\)\(\frac{1}{2}\)
\(\cos⁡2=-0,416…\)

Содержание:


Аргумент и значение


Косинус острого угла

Косинус острого угла можно определить с помощью прямоугольного треугольника - он равен отношению прилежащего катета к гипотенузе.

Пример:

1) Пусть дан угол и нужно определить косинус этого угла.


2) Достроим на этом угле любой прямоугольный треугольник.


3) Измерив, нужные стороны, можем вычислить косинус.



Косинус острого угла больше \(0\) и меньше \(1\)

Если при решении задачи косинус острого угла получился больше 1 или отрицательным, то значит где-то в решении есть ошибка.

Косинус числа

Числовая окружность позволяет определить косинус любого числа, но обычно находят косинус чисел как-то связанных с Пи: \(\frac{π}{2}\), \(\frac{3π}{4}\), \(-2π\).

Например, для числа \(\frac{π}{6}\) - косинус будет равен \(\frac{\sqrt{3}}{2}\). А для числа \(-\)\(\frac{3π}{4}\) он будет равен \(-\)\(\frac{\sqrt{2}}{2}\) (приблизительно \(-0,71\)).


Косинус для других часто встречающихся в практике чисел смотри в тригонометрической таблице.

Значение косинуса всегда лежит в пределах от \(-1\) до \(1\). При этом вычислен косинус может быть для абсолютно любого угла и числа.

Косинус любого угла

Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем \(360°\) (полный оборот). Как это делать - проще один раз увидеть, чем \(100\) раз услышать, поэтому смотрите картинку.


Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в \(150°\). Совмещаем точку О с центром окружности, а сторону ОК – с осью \(x\). После этого откладываем \(150°\) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.

Если же нас интересует угол с градусной мерой, например, в \(-60°\) (угол КОВ), делаем также, но \(60°\) откладываем по часовой стрелке.


И, наконец, угол больше \(360°\) (угол КОС) - всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол \(405°\) отложен как \(360° + 45°\).


Несложно догадаться, что для откладывания угла, например, в \(960°\), надо сделать уже два оборота (\(360°+360°+240°\)), а для угла в \(2640°\) - целых семь.

Стоит запомнить, что:

Косинус прямого угла равен нулю. Косинус тупого угла - отрицателен.

Знаки косинуса по четвертям

С помощью оси косинусов (то есть, оси абсцисс, выделенной на рисунке красным цветом) легко определить знаки косинусов по четвертям числовой (тригонометрической) окружности:

- там, где значения на оси от \(0\) до \(1\), косинус будет иметь знак плюс (I и IV четверти – зеленая область),
- там, где значения на оси от \(0\) до \(-1\), косинус будет иметь знак минус (II и III  четверти – фиолетовая область).


Пример. Определите знак \(\cos 1\).
Решение: Найдем \(1\) на тригонометрическом круге. Будем отталкиваться от того, что \(π=3,14\). Значит единица, примерно, в три раза ближе к нулю (точке «старта»).


Если провести перпендикуляр к оси косинусов, то станет очевидно, что \(\cos⁡1\) – положителен.
Ответ: плюс.

Связь с другими тригонометрическими функциями:

синусом того же угла (или числа): основным тригонометрическим тождеством \(\sin^2⁡x+\cos^2⁡x=1\)
тангенсом того же угла (или числа): формулой \(1+tg^2⁡x=\)\(\frac{1}{\cos^2⁡x}\)
котангенсом и синусом того же угла (или числа): формулой \(ctgx=\)\(\frac{\cos{x}}{\sin⁡x}\)
Другие наиболее часто применяемые формулы смотри здесь.

Функция \(y=\cos{x}\)

Если отложить по оси \(x\) углы в радианах, а по оси \(y\) - соответствующие этим углам значения косинуса, мы получим следующий график:


График данной функции называется косинусоида и обладает следующими свойствами:

      - область определения – любое значение икса:   \(D(\cos{⁡x} )=R\)
      - область значений – от \(-1\) до \(1\) включительно:    \(E(\cos{x} )=[-1;1]\)
      - четная:   \(\cos⁡(-x)=\cos{x}\)
      - периодическая с периодом \(2π\):   \(\cos⁡(x+2π)=\cos{x}\)
      - точки пересечения с осями координат:
             ось абсцисс:   \((\)\(\frac{π}{2}\)\(+πn\),\(;0)\), где \(n ϵ Z\)
             ось ординат:   \((0;1)\)
      - промежутки знакопостоянства:
             функция положительна на интервалах:   \((-\)\(\frac{π}{2}\)\(+2πn;\) \(\frac{π}{2}\)\(+2πn)\), где \(n ϵ Z\)
             функция отрицательна на интервалах:   \((\)\(\frac{π}{2}\)\(+2πn;\)\(\frac{3π}{2}\)\(+2πn)\), где \(n ϵ Z\)
      - промежутки возрастания и убывания:
             функция возрастает на интервалах:    \((π+2πn;2π+2πn)\), где \(n ϵ Z\)
             функция убывает на интервалах:    \((2πn;π+2πn)\), где \(n ϵ Z\)
       - максимумы и минимумы функции:
             функция имеет максимальное значение \(y=1\) в точках \(x=2πn\), где \(n ϵ Z\)
             функция имеет минимальное значение \(y=-1\) в точках \(x=π+2πn\), где \(n ϵ Z\).

Смотрите также:

Синус
Тангенс
Котангенс
Решение уравнения \(\cos⁡x=a\)

Скачать статью

cos-cos.ru

Таблица косинусов | umath.ru

cos(271°) = 0,017452
cos(272°) = 0,034899
cos(273°) = 0,052336
cos(274°) = 0,069756
cos(275°) = 0,087156
cos(276°) = 0,104528
cos(277°) = 0,121869
cos(278°) = 0,139173
cos(279°) = 0,156434
cos(280°) = 0,173648
cos(281°) = 0,190809
cos(282°) = 0,207912
cos(283°) = 0,224951
cos(284°) = 0,241922
cos(285°) = 0,258819
cos(286°) = 0,275637
cos(287°) = 0,292372
cos(288°) = 0,309017
cos(289°) = 0,325568
cos(290°) = 0,342020
cos(291°) = 0,358368
cos(292°) = 0,374607
cos(293°) = 0,390731
cos(294°) = 0,406737
cos(295°) = 0,422618
cos(296°) = 0,438371
cos(297°) = 0,453990
cos(298°) = 0,469472
cos(299°) = 0,484810
cos(300°) = 0,5
cos(301°) = 0,515038
cos(302°) = 0,529919
cos(303°) = 0,544639
cos(304°) = 0,559193
cos(305°) = 0,573576
cos(306°) = 0,587785
cos(307°) = 0,601815
cos(308°) = 0,615661
cos(309°) = 0,629320
cos(310°) = 0,642788
cos(311°) = 0,656059
cos(312°) = 0,669131
cos(313°) = 0,681998
cos(314°) = 0,694658
cos(315°) = 0,707107
cos(316°) = 0,719340
cos(317°) = 0,731354
cos(318°) = 0,743145
cos(319°) = 0,754710
cos(320°) = 0,766044
cos(321°) = 0,777146
cos(322°) = 0,788011
cos(323°) = 0,798636
cos(324°) = 0,809017
cos(325°) = 0,819152
cos(326°) = 0,829038
cos(327°) = 0,838671
cos(328°) = 0,848048
cos(329°) = 0,857167
cos(330°) = 0,866025
cos(331°) = 0,874620
cos(332°) = 0,882948
cos(333°) = 0,891007
cos(334°) = 0,898794
cos(335°) = 0,906308
cos(336°) = 0,913545
cos(337°) = 0,920505
cos(338°) = 0,927184
cos(339°) = 0,933580
cos(340°) = 0,939693
cos(341°) = 0,945519
cos(342°) = 0,951057
cos(343°) = 0,956305
cos(344°) = 0,961262
cos(345°) = 0,965926
cos(346°) = 0,970296
cos(347°) = 0,974370
cos(348°) = 0,978148
cos(349°) = 0,981627
cos(350°) = 0,984808
cos(351°) = 0,987688
cos(352°) = 0,990268
cos(353°) = 0,992546
cos(354°) = 0,994522
cos(355°) = 0,996195
cos(356°) = 0,997564
cos(357°) = 0,998630
cos(358°) = 0,999391
cos(359°) = 0,999848
cos(360°) = 1,0

umath.ru

Основные формулы тригонометрии | umath.ru


1. Определения синуса, косинуса, тангенса и котангенса угла.

Синус угла  (обозначается ) – ордината точки , полученной поворотом точки вокруг начала координат на угол .

Косинус угла (обозначается ) – абсцисса точки , полученной поворотом точки вокруг начала координат на угол .

Тангенс угла (обозначается ) – отношение синуса угла к его косинусу, т.е.


Котангенс угла (обозначается ) – отношение косинуса угла к его синусу, т.е.
2. Основное тригонометрическое тождество:
3. Зависимость между синусом, косинусом, тангенсом и котангенсом:
4. Чётность, нечётность и периодичность тригонометрических функций.

Косинус – чётная функция, а синус, тангенс и котангенс – нечётные функции аргумента :


Синус и косинус – периодические с периодом 2\pi функции, а тангенс и котангенс – периодические с периодом функции:Число является наименьшим положительным периодом синуса и косинуса, а число – наименьшим положительным периодом тангенса и котангенса.
Для любого целого справедливы равенства
5. Формулы сложения:
6. Формулы двойного и тройного аргумента:
7. Формулы понижения степени:
8. Формулы приведения:
9. Формулы суммы и разности синусов:
10. Формулы суммы и разности косинусов:
11. Формулы суммы и разности тангенсов:
12. Преобразование произведения синусов и косинусов в сумму (разность):
13. Выражение синуса и косинуса через тангенс половинного аргумента:

umath.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о