Как проверить обмотки электродвигателя – Проверка обмоток электродвигателя. Неисправности и методы

Проверка обмоток электродвигателя. Неисправности и методы

В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название мультиметр. Такой прибор имеется практически у каждого уважающего себя хозяина дома.

Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.

Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.

Виды обмоток

Если не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.

Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:

  • Материал провода обмотки должен быть однородным по всей длине.
  • Форма и площадь поперечного сечения провода должны иметь определенную точность.
  • На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
  • Провод обмотки должен обеспечивать прочный контакт при соединении.

Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.

Проверка обмоток электродвигателя 3-фазного мотора. Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим звезде или треугольнику.

Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).

На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.

Возможные неисправности

Визуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:

• Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
• Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
• Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
• Пробиванием изоляции между корпусом статора и обмоткой.

Способы
Проверка обмоток электродвигателя на обрыв

Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.

Проверка обмоток электродвигателя на короткое замыкание

При коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.

Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.

Проверка обмоток электродвигателя на межвитковое замыкание

Это самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.

Проверка обмоток электродвигателя способом омметра

Этот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.

Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.

Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.

Измерение тока в каждой фазе

Соотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.

Проверка обмоток электродвигателя переменным током

Не всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.

Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.

Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.

Проверка обмоток электродвигателя шариком

Этот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.

Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.

Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.

Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.

Определение полярности обмоток электрическим методом

У обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки. Чтобы определить маркировку, применяют некоторые способы:

Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.

Определение маркировки выводов обмотки амперметром и батарейкой

На наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.

Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.

Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.

Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.

Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.

Определение полярности вольтметром и понижающим трансформатором

Первый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.

Далее, произвольным образом маркируют выводы первой любой обмотки для соединения их с понижающим трансформатором (12 вольт).

Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.

Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.

Похожие темы:

electrosam.ru

Как прозвонить электродвигатель на целостность ?

При помощи мультиметра и нескольких приспособлений, не особо разбираясь в принципе работы электродвигателей, можно проверить:

  • Асинхронный трёхфазный двигатель с короткозамкнутым ротором – наиболее лёгкий для проверки, из-за его простого внутреннего устройства, благодаря которому, данный тип электродвигателя имеет наибольшую популярность;
  • Асинхронный однофазный (двухфазный, конденсаторный) электродвигатель с короткозамкнутым ротором – часто используется в различной бытовой технике, подключаемой в сеть 220 В. (стиральные машины, пылесосы, вентиляторы).
  • Коллекторный двигатель постоянного тока – массово применяется в автомобилях в качестве привода для стеклоочистителей (дворников), стеклоподъёмников, насосов, вентиляторов;
  • Коллекторный двигатель переменного тока – используется в ручных электрических инструментах (дрели, перфораторы, болгарки и т.д.)
  • Асинхронный двигатель с фазным ротором – в сравнении с электродвигателем с короткозамкнутым ротором, обладает мощным стартовым моментом, поэтому используется в в качестве привода силового оборудования — подъёмников, лифтов, кранов, станков.

Испытание изоляции обмоток

Независимо от конструкции, электродвигатель нужно проверить при помощи мегомметра на пробой изоляции между обмотками и корпусом. Проверки при помощи одного только мультиметра может быть недостаточно для выявления повреждения изоляции, поэтому используют высокое напряжение.

мегомметр для измерения сопротивления изоляции

В паспорте электродвигателя должно указываться напряжение для испытания изоляции обмоток на электрическую прочность. Для двигателей, подключаемых к сети 220 или 380 В, при их проверке используются 500 или 1000 Вольт, но за неимением источника, можно воспользоваться сетевым напряжением.

паспорт асинхронного двигателя

Изоляция обмоточных проводов низковольтных двигателей не рассчитана выдерживать такие перенапряжения, поэтому при проверке нужно свериться с паспортными данными. Иногда у некоторых электродвигателей вывод обмоток, соединённых звездой, может быть подключён на корпус, поэтому следует внимательно изучать подключение отводов, делая проверку.

Проверка обмоток на обрыв и междувитковое замыкание

Чтобы прозвонить обмотки на обрыв нужно переключить мультиметр в режим омметра. Выявить междувитковое замыкание можно сравнив сопротивление обмотки с паспортными данными или с измерениями симметричных обмоток проверяемого двигателя.

Нужно помнить, что у мощных электродвигателей поперечное сечение проводов обмоток достаточно большое, поэтому их сопротивление будет близким к нулю, а такую точность измерений в десятые доли Ома обычные тестеры не обеспечивают.

Поэтому нужно собрать измерительное приспособление из аккумулятора и реостата, (приблизительно 20 Ом) выставив ток 0,5-1А. Измеряют падение напряжения на резисторе, подключенном последовательно в цепь аккумулятора и измеряемой обмотки.

Для сверки с паспортными данными, можно рассчитать сопротивление по формуле, но, можно этого и не делать – если требуется идентичность обмоток, то достаточно будет совпадения падения напряжения по всем измеряемым выводам.

Измерения можно производить любым мультиметром

Цифровой мультиметр Mastech MY61 58954

Ниже приведены алгоритмы проверки электродвигателей, у которых необходимым условием работоспособности является симметричность обмоток.

Проверка асинхронных трёхфазных двигателей с короткозамкнутым ротором

У подобных двигателей можно прозвонить только статорные обмотки, электромагнитное поле которых в замкнутых накоротко стержнях ротора наводит токи, создающие магнитное поле, взаимодействующее с полем статора.

Неисправности в роторах данных электродвигателей случаются крайне редко, и для их выявления, необходимо специальное оборудование.

ротор двигателя

Чтобы проверить трёхфазный мотор, нужно снять крышку клеммника – там находятся клеммы подключения обмоток, которые могут быть соединены по типу «звезда»

или «треугольник».

Прозвонку можно сделать, даже не снимая перемычки –

достаточно измерить сопротивление между фазными клеммами – все три показания омметра должны совпадать.

При несовпадении показаний необходимо будет разъединить обмотки и проверить их по отдельности. Если расчётное сопротивление у одной из обмоток меньше, чем у остальных – это указывает на наличие междувиткового замыкания, и электродвигатель нужно отдавать на перемотку.

Проверка конденсаторных двигателей

Чтобы проверить однофазный асинхронный двигатель с короткозамкнутым ротором, по аналогии с трёхфазным мотором, необходимо прозвонить только статорные обмотки.

Но у однофазных (двухфазных) электродвигателей имеются только две обмотки – рабочая и пусковая.

Сопротивление рабочей обмотки всегда меньше, чем у пусковой

Таким образом, измеряя сопротивление, можно идентифицировать выводы, если табличка со схемой и обозначениями затёрлась или затерялась.

Часто у таких двигателей рабочая и пусковая обмотки соединены внутри корпуса, и от точки соединения сделан общий вывод.

Принадлежность выводов идентифицируют следующим образом – сумма сопротивлений, измеренных от общего отвода должна соответствовать суммарному сопротивлению обмоток.

Проверка коллекторных двигателей

Поскольку коллекторные электродвигатели переменного и постоянного тока имеют схожую конструкцию, то алгоритм прозвонки будет одинаков.

Сначала проверить обмотку статора (в двигателях постоянного тока её может заменять магнит). Потом проверяют роторные обмотки, сопротивление которых должно быть одинаково, коснувшись щупами щёток коллектора, или противоположных контактных выводов.

Удобней проверять обмотки ротора на выводах щёток, прокручивая вал, добиваясь, чтобы щётки контактировали только с одной парой контактов – таким способом можно выявить подгорание у некоторых контактных площадок.

Проверка моторов с фазным ротором

Асинхронный двигатель с фазным ротором отличается от обычного трёхфазного электродвигателя тем, что в роторе также имеются фазные обмотки,

соединённые по типу «звезда»,

которые подключаются при помощи контактных колец на вале.

Чтобы проверить роторные обмотки, нужно найти выводы от данных колец, и удостовериться в совпадении измеренных сопротивлений. Часто такие двигатели оснащаются механической системой отключения роторных обмоток при наборе оборотов, поэтому отсутствие контакта может быть из-за поломки в данном механизме.

Статорные обмотки проверяются как у обычного трёхфазного двигателя.

Фотографии позаимствованы с сайта http://zametkielectrika.ru

infoelectrik.ru

Как Проверить Трехфазный Двигатель Мультиметром ~ VESKO-TRANS.RU

Как проверить состояние обмотки электрического двигателя

На 1-ый взор обмотка представляет кусочек проволоки смотанной спецефическим образом и в ней нечему особо ломаться. Но у нее есть особенности:

серьезный подбор однородного материала по всей длине;

четкая калибровка формы и поперечного сечения;

нанесение в промышленных критериях слоя лака, владеющего высочайшими изоляционными качествами;

крепкие контактные соединения.

Если в каком-либо месте провода нарушена хоть какое из этих требований, то меняются условия для прохождения электронного тока и движок начинает работать с пониженной мощностью либо вообщем останавливается.

Чтоб проверить одну обмотку трехфазного мотора нужно отключить ее от других цепей. Какие электромоторы можно проверить мультиметром? Трехфазный как проверить изоляцию. Во всех электродвигателях они могут собираться по одной из 2-ух схем:

Концы обмоток обычно выводятся на клеммные колодки и маркируются знаками «Н» (начало) и «К» (конец). Как проверить двигатель мультиметром. Время от времени отдельные соединения могут быть спрятаны снутри корпуса, а для выводов употребляются другие методы обозначения, к примеру, цифрами.

У трехфазного мотора на статоре употребляются обмотки с схожими электронными чертами, владеющими равными сопротивлениями. Если при замере омметром они демонстрируют различные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Зрительно оценить качество обмоток не представляется вероятным из-за ограниченного допуска к ним. На практике инспектируют их электронные свойства, беря во внимание, что все неисправности обмоток появляются:

обрывом, когда нарушается целостность провода и исключается прохождение электронного тока по нему;

маленьким замыканием, возникающем при нарушении слоя изоляции меж входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

межвитковым замыканием, когда изоляция нарушается меж одним либо несколькими близлежащими витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электронное сопротивление и не создавая ими определенной работы;

пробоем изоляции меж обмоткой и корпусом статора либо ротора.

Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Устройство покажет огромное сопротивление — ∞, которое учитывает образованный разрывом участок воздушного места.

Проверка обмотки на возникновение короткого замыкания

Движок, снутри электронной схемы которого появилось куцее замыкание, отключается защитами от сети питания. Но, даже при резвом выводе из работы таким методом место появления КЗ отлично видно зрительно за счет последствий воздействия больших температур с ярко выраженным нагаром либо следами оплавления металлов.

При электронных методах определения сопротивления обмотки омметром выходит очень малая величина, очень приближенная к нулю. Ведь из замера исключается фактически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это более сокрытая и трудно определяемая неисправность. Для ее выявления можно пользоваться несколькими методиками.

Способ омметра

Устройство работает на неизменном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков делает существенно огромную индуктивную составляющую.

При замыкании 1-го витка, а их полное количество может быть несколько сотен, изменение активного сопротивления увидеть очень трудно. Ведь оно изменяется в границах нескольких процентов от общей величины, а тотчас и меньше.

Как прозвонить электродвигатель

Трёхфазный асинхронный электродвигатель, проверка тестером. На практике довольно проверить электродви.

Расположение контактов трехфазного двигателя и прозвонка обмоток

Рассматриваем размещение концов обмоток трехфазного двигателя, определяем, верно ли они подключены.

Можно испытать точно откалибровать устройство и пристально измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в данном случае не всегда будет видна.

Более четкие результаты позволяет получить мостовой способ измерения активного сопротивления, но это, обычно, лабораторный метод, труднодоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании меняется соотношение токов в обмотках, проявляется лишний нагрев статора. У исправного мотора токи схожи. Потому прямое их измерение в действующей схеме под нагрузкой более точно отражает реальную картину технического состояния.

Измерения переменным током

Найти полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда может быть. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы мотора можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток дозволит токоограничивающий резистор либо реостат соответственного номинала.

При выполнении замера обмотка находится снутри магнитопровода, а ротор либо статор могут быть извлечены. Баланса электрических потоков, на условие которого проектируется движок, не будет. Про то как проверить и двигатель от можно ли поверить мультиметром? И как можно. Потому употребляется пониженное напряжение и контролируются величины токов, которые не должны превосходить номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его остается сопоставить с чертами других обмоток.

Эта же схема позволяет снять вольтамперные свойства обмоток. Просто нужно выполнить замеры на различных токах и записать их в табличной форме либо выстроить графики. Если при сопоставлении с подобными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Метод основан на разработке вращающегося электрического поля исправными обмотками. Как проверить электродвигатель мультиметром пошаговая. Для этого на их подается трехфазное симметричное напряжение, но непременно пониженной величины. С этой целью обычно используют три схожих понижающих трансформатора, работающих в каждой фазе схемы питания.

Для ограничения токовых нагрузок на обмотки опыт проводят краткосрочно.

Маленькой металлической шарик от шарикоподшипника вводят во крутящееся магнитное поле статора сходу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превосходить ток в обмотках больше номинальной величины и следует учесть, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это сделает труднее корректность сборки.

На практике для поиска полярности употребляются 2 метода:

1. при помощи маломощного источника неизменного тока и чувствительного амперметра, показывающего направление тока;

2. способом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На наружной поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых нужно найти.

При помощи омметра вызванивают и отмечают вывода, относящиеся к каждой обмотке, к примеру, цифрами 1, 2, 3. Потом произвольно маркируют на хоть какой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой в центре шкалы, способной указывать направление тока.

Минус батарейки агрессивно подключают к концу избранной обмотки, а плюсом краткосрочно прикасаются к ее началу и сходу разрывают цепь.

При подаче импульса тока в первую обмотку он за счет электрической индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. При этом, если полярность обмоток угадана верно, то стрелка амперметра отклонится на право при начале импульса и отойдет на лево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто спутана. Остается только промаркировать выводы 2-ой обмотки.

Еще одна 3-я обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Тут тоже сначала вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Потом произвольно маркируют концы первой избранной обмотки для подключения к понижающему трансформатору напряжения, к примеру, на 12 вольт.

Две оставшиеся обмотки случайным образом скручивают в одной точке 2-мя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в другие обмотки с таковой же величиной, так как у их равное число витков.

За счет поочередного подключения 2-ой и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. Как проверить датчик парктроника мультиметром (тестером. В нашем случае при совпадении направления обмоток данная величина будет составлять 24 вольта, а при разной полярности — 0.

Остается промаркировать все концы и выполнить контрольный застыл.

В статье дан общий порядок действий при проверке технического состояния какого-то случайного мотора без определенных технических черт. Они в каждом личном случае могут изменяться. Смотрите их в документации на ваше оборудование.

vesko-trans.ru

Как прозвонить обмотки электродвигателя: все способы | ENARGYS.RU

Многие приборы, с которыми имеет дело человек, в своей конструкции предусматривают наличие электрического двигателя. В процессе работы, в нем могут возникать неисправности по различным причинам, которые придется выявлять и устранять.

Пошаговая инструкция. Рекомендации

Электрический двигатель занимается преобразованием электрической энергии в механическую, с целью приведения в движение различных механизмов и машин. Преобладающее большинство электрических двигателей являются двигателями вращательного движения.

Конструкция мотора

По своей механической конструкции любой электродвигатель складывается из двух элементов:

  • статора – неподвижной части мотора (индуктор). Включает в себя станину и магнитные полюса. В своей комплектации может включать постоянные магниты, электромагниты с обмотками, короткозамкнутые обмотки. Его назначение – создать в системе магнитный поток;
  • ротор – начинает вращение после подачи напряжения к обмоткам двигателя (якорь). Он представляет собой катушки с токопроводящими обмотками. Они способствуют устранению неравномерности крутящего момента и снижению коммутируемого тока, что приводит к нормальному взаимодействию магнитных полей индуктора и ротора.

Также имеется щеточно-коллекторный узел, который выступает между ротором и статором связующим звеном. В нем сконцентрированы все выводы роторных катушек. Этот участок является переключателем тока со скользящими контактами. Дополнительно выполняет функцию датчика углового положения ротора.

Существуют несколько вариантов обмотки катушки медной проволокой:

  • катушки только на роторе;
  • только на статоре;
  • обмотка на подвижной и неподвижной частях.

Катушка – это несколько витков, уложенных соответствующими сторонами в два паза и соединенные между собой последовательно. А обмоткой называют несколько катушечных групп, уложенных в пазы и соединенных по определенной схеме.

У большинства электродвигателей ротор размещен внутри статора.

Щетки являются неподвижным контактом, который подводит ток к ротору. Задачей щеточно-коллекторного узла является обеспечение вращения ротора в одном и том же направлении.

Важно! Самостоятельный ремонт электродвигателя неквалифицированными работниками, может закончиться трагически.

Трудности диагностирования

Целью любой диагностики является обнаружение и профилактика неисправностей. Что касается диагностики обмотки двигателя, то самой сложной задачей является добраться непосредственно до предмета диагностирования. Чтобы это произошло, понадобится не только демонтировать двигатель, но и разобрать его.

Учитывая то, что ротор находится внутри станины, то в процессе снимается и ротор, и подшипники. А в случае выявления сгоревшей обмотки статора, ремонт будет не только объемным, но и очень дорогим, так как не каждый специалист возьмется за перемотку двигателя.

Коммутирующая аппаратура

Такая аппаратура служит для управления агрегатами электрооборудования. В зависимости от способа управления они подразделяются на:

  • прямое – для коммутации цепей с током не больше 35 А. К ним относятся выключатели, переключатели и кнопки;
  • дистанционное – состоит из контактной группы, электромагнита и рычажнопружинного механизма;
  • автоматическое;
  • программное – происходит автоматическое включение, выключение и переключение.

По принципу своей работы выключатели и переключатели могут быть:

  • перекидными – имеют фиксированное положение контактов и рукояти управления, чтобы вернуть в исходное положение, понадобиться приложить усилие;
  • нажимными – процесс обеспечивается кинематической схемой самовозврата.

В зависимости от токовой нагрузки в цепи, коммутирующие устройства подразделяются на:

  • реле – нагрузка не больше 10 А;
  • контакторы – до 600 А.

Подробности диагностики электрической части

Чтобы найти поврежденный участок изоляции обмотки понадобится, разъединить фазные обмотки и измерить сопротивление на каждой обмотке. Проверку нужно начинать от магнитопровода, в результате чего выявляется участок с покоробленной изоляцией. Чтобы обнаружить такие места, можно применить несколько подходов:

  • измерить напряжение между концов обмотки и магнитопровода;
  • определить направление тока в частях обмотки;
  • делить обмотку на части;
  • способ «прожигания».

Первый способ предусматривает подачу пониженного напряжения (переменного либо постоянного) на фазную обмотку мотора с покоробленной изоляцией. Затем выполняют замеры напряжения между концами магнитопровода и обмотки. Соотношение полученных значений даст понимание о нахождении места повреждения.

При втором способе на концы фазной обмотки и магнитопровод подают постоянное напряжение. Подключают реостат, для того чтобы регулировать ток. Направления токов в обоих концах обмотки будут обратными. К концам каждой катушечной группы дотрагиваются двумя проводами милливольтметра. Стрелка прибора будет постоянно отклоняться в одну сторону до тех пор, пока не прикоснется концами к группе с покоробленной изоляцией. После этого участка стрелка прибора будет отклоняться в противоположную сторону.

Третий метод подразумевает разделение фазовой обмотки соединенной с магнитопроводом путем распайки междукатушечных соединений. Затем занимаются поиском покоробленной изоляции с помощью мегомметра или контрольной лампочки. Такие разделения делают до тех пор, пока не найдется неисправная катушка.

А вот если фазную обмотку с нарушенной изоляцией и магнитопровод присоединить к источнику пониженного напряжения (сварочному генератору или трансформатору), то постепенно нагреваясь в проблемном месте начнется дымление, а временами искрение (изоляция «прожигается»).

Диагностика асинхронных моторов

Для того что двигатель работал долго, следует обращать внимание на шум подшипников во время работы. Избегать свистящих, хрустящих или царапающих звуков. Они говорят о том, что смазки недостаточно и требуется ее восполнить. Повреждение обоймы, шариков, сепараторов отражаются глухими ударами.

Если наблюдается перегрев или нетипичный шум в работе подшипников, то следует обязательно их разобрать и осмотреть. Со всех деталей удаляется старая смазка и происходит их промывание бензином.

Перед тем как установить новые подшипники, их прогревают в масле, для того чтобы новая смазка заполнила их рабочую часть на треть.

Следует систематически проверять контактные кольца. Если обнаружены появления ржавчины, то поверхность зачищается мягкой наждачной бумагой, с последующим протиранием керосином.

При моторе постоянного тока

Чтобы выполнить проверку такого двигателя, делают замеры сопротивления его обмоток. Полученные результаты дадут возможность судить о техсостоянии контактных соединений обмоток.

С этой целью используются такие методы:

  • амперметра-вольтметра – применяется двухконтактный щуп с пружинами в изоляционной рукоятке. Этим способом замеряют сопротивления последовательной обмотки возбуждения;
  • одинарного или двойного моста и микроомметром;

Проверка прочности изоляции и измерение ее сопротивления выполняются также, как и у асинхронного двигателя.

Проверка мотора прямого привода

Существует два варианта проверки:

  • подать напряжение на стартерную и роторную обмотку двигателя, предварительно подсоединив поочередно эти элементы. Недостаток метода в том, что даже если он начнет вращаться, то это не говорит о его исправном функционировании;
  • требуется взять специальное оборудование – автотрансформатор мощностью от 500 ватт. Этот способ более безопасен, потому что дает возможность регулировать скорость оборотов.

Последовательность диагностики

При осуществлении диагностики совершаются такие операции:

  • электрическая машина отсоединяется от сети;
  • щетками производится очищение от пыли и грязи;
  • сжатым воздухом из компрессора обдуваются все элементы;
  • осматривается щеточно-коллекторный механизм на поломки щеткодержателя и сколов на щетках, износ щеток, царапины и выбоины на поверхности коллектора;
  • для обнаружения поломок в электрической части понадобиться прозвонить обмотку электродвигателя мультиметром. Возможны обрывы электрической цепи, замыкание отдельных цепей между собой, витковые замыкания;
  • замена неисправных участков обмотки;
  • осмотр подшипников и в случае необходимости заменить на новые;
  • сборка двигателя;
  • обследование вращающих узлов на наличие ровной нагрузки на двигатель;
  • испытание на холостом ходу и под нагрузкой.

Если выбивает защиту?

Чтобы защитить обмотки электродвигателя от перегрева и токовых перегрузок, подключается электротепловое реле. Мотор подсоединяется к выходным контактам реле. Данное реле внутри состоит из трех биметаллических пластин. Эти пластины взаимодействуют с механизмом подвижной системы, которая принимает участие в схеме защиты мотора через дополнительные контакты.

Под действием проходящего по пластине тока, она постепенно нагревается и выгибается, чем больший ток пройдет через нее, тем быстрее сработает защита и отключит нагрузку.

Рекомендации электрика

Если при работе электродвигателя отчетливо слышится визг или скрипение, которые отсутствовали на небольших оборотах, то причина очевидно в недостаточном количестве смазки в подшипниках, либо же их сильное загрязнение.

Также на изношенный подшипник указывает мощная вибрация вала, который вращается по инерции. Возможно, это говорит о дисбалансе колеса вентилятора. Допускается вариант, что у него отломилась одна из лопастей.

Важно! В случае обнаружения нарушений изоляции обмотки, ремонт двигателя лучше производить в специальных сервисных центрах.

Если ситуация требует проведения диагностики обмотки электродвигателя, то не имея общих понятий электротехники, желательно доверить эту работу настоящим профессионалам. Этот трудоемкий процесс требует не только навыков в работе, но также использования специальной техники, которая позволит провести качественный ремонт.

enargys.ru

Определение начала и конца обмоток электродвигателя

Здравствуйте, дорогие посетители и постоянные читатели сайта «Заметки электрика».

Продолжаю серию статей из раздела «Электродвигатели». В прошлых статьях я рассказывал Вам про устройство асинхронного двигателя, соединение в звезду и треугольник его обмоток, провел эксперимент подключения трехфазного двигателя в однофазную сеть.

Бывают ситуации, когда Вы подходите к двигателю с целью подключить его в сеть, а в клеммной колодке находятся 6 проводов, совершенно без бирочек и маркировки.

Что делать в такой ситуации? 

Делается это не очень трудно. В качестве примера я покажу Вам наглядно как определить начало и конец обмоток электродвигателя АИР71А4.

 

 Шаг 1

Самым первым шагом в определении начала и конца обмоток асинхронного двигателя является написание бирочек (кембриков). Для этого воспользуемся трубкой ПВХ диаметром 5 (мм) и маркером.

Нарезаем из трубки ПВХ шесть отрезков одинаковой длины и подписываем их маркером.

Про маркировку обмоток трехфазного асинхронного двигателя я Вам рассказывал в статье про соединение звездой и треугольником. Кто забыл, то переходите по ссылке и читайте.

Вот что получилось.

 Шаг 2

Вы уже знаете, что обмотка статора асинхронного двигателя состоит из 3 обмоток, сдвинутых относительно друг друга на 120 электрических градуса. Так вот вторым шагом в определении начала и конца обмоток асинхронного двигателя  является определение принадлежности всех шести выводов к соответствующим обмоткам.

Как это делается?

Можно воспользоваться обычным омметром, но я предпочитаю использовать цифровой мультиметр. Кстати, скоро в свет выйдет интересная и подробная статья о том, как пользоваться мультиметром при проведении различных видов электрических измерений.

Чтобы не пропустить выход новых статей на сайте, Вам необходимо подписаться на получение новостей в конце статьи или в правой колонке сайта.

Итак, с помощью мультиметра определяем первую обмотку. Переключатель режима работы  мультиметра ставим в положение 200 (Ом).

Одним щупом встаем на любой из шести проводников. Вторым ищем его конец. Как только попадаем на искомый проводник, показания мультиметра покажут нам значение отличное от нуля. В моем примере это 14,7 (Ом).

Это и есть первая обмотка статора нашего электродвигателя. Одеваем на нее бирки U1 и U2 в произвольном порядке.

Аналогично продолжаем искать остальные две обмотки.

На найденные обмотки одеваем бирочки (кембрики), соответственно, V1, V2 и W1, W2.

В итоге получаем шесть проводов с надетыми на них бирочками (кембриками) в произвольной форме.

Шаг 3

Чтобы перейти к третьему шагу определения начала и концов обмоток трехфазного электродвигателя необходимо вкратце вспомнить теорию электротехники.

Кстати, кое-что Вы уже можете почитать в разделе «Электротехника». Правда этот раздел еще не наполнен статьями, все руки до него не доходят. Также можете почитать мой отзыв про курс электротехники от Михаила Ванюшина. Я его приобрел в свой архив и совсем не пожалел.

Итак, две обмотки, находящиеся на одном сердечнике, можно подключить либо согласовано, либо встречно.

При согласованном включении двух обмоток возникнет электродвижущая сила ЭДС, состоящая из суммы ЭДС первой и второй обмоток. Таким образом, в этих обмотках возникает процесс электромагнитной индукции, который наводит в рядом расположенной обмотке ЭДС, т.е. напряжение.

Если же две обмотки подключить встречно, то сумма ЭДС этих двух обмоток будет равна нулю, т.к. ЭДС каждой обмотки будут направлены друг на друга, и тем самым компенсируют друг друга. Поэтому в рядом расположенной обмотке ЭДС не наведется или наведется, но очень малой величины.

Перейдем к практике.

Берем первую катушку (U1и U2) и соединяем ее со второй (V1 и V2) следующим образом. Напоминаю, что эти обозначения у нас условные.

Эта же схема на моем примере.

На вывод U1 и V2 подаем переменное напряжение порядка 100 (В). Можно подать напряжение и 220 (В), но я ограничился 100 (В).

После этого с помощью вольтметра или мультиметра производим измерение переменного напряжения на выводах W1 и W2.

Если мультиметр покажет некоторое значение напряжения, то первая и вторая обмотки включены согласовано. Если напряжение на выводах будет равняться нулю или иметь совсем маленькое значение, то значит обмотки включены встречно.

Смотрим, что получилось в нашем случае.

Замеряю напряжения на выводах W1 и W2. Получаю значение около 0,15 (В). Это очень маленькое значение, поэтому я делаю вывод, что обмотки я подключил встречно. Поэтому на второй обмотке я меняю местами бирочки V1 и V2 и снова провожу измерение.

После замены на выводах W1 и W2 я измерил напряжение порядка 6,8 (В). Это уже что-то похожее на правду.

Делаю вывод, что первая (U1 и U2) и вторая (V1 и V2) обмотки подключены согласовано, а значит, данная маркировка их начал и концов верна.

Осталось дело за малым – это найти начало и конец у третьей обмотки (W1 и W2). Все делаем аналогично, только подключаем их согласно схемы, приведенной ниже.

Измерение переменного напряжения проводим на выводах V1 и V2.

Получилось напряжение 6,8 (В). Значит маркировка начала и конца третьей обмотки верна.

 

 Шаг 4

После определения начала и конца обмоток трехфазного асинхронного двигателя необходимо проверить себя. Для этого соединяем звездой или треугольником обмотки в зависимости от типа двигателя и напряжения сети. В нашем случае обмотки двигателя я соединил треугольником.

Подаю питающее трехфазное напряжение на обмотки – двигатель работает.

Можно сделать вывод, что начала и концы обмоток двигателя мы нашли правильно.

Существует еще несколько способов определения начала и концов обмоток электродвигателя, но лично я пользуюсь именно этим.

Для наглядности предлагаю посмотреть видео:

P.S. Если статья оказалась Вам полезной. то поделитесь ей со своими друзьями в социальных сетях. А если возникли вопросы по материалу данной статьи, то задавайте их в комментариях.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Как проверить электродвигатель | Электрик

При поломке электродвигателя, бывает недостаточно просто осмотреть его, чтобы понять причину неисправности.
Постараемся использовать наиболее простые технические способы и минимум оборудования.

Механическая часть

Механическая часть электродвигателя, грубо говоря, состоит всего из двух элементов:

1. Ротор — подвижный, вращающий элемент, который приводит в движения вал двигателя.
2. Статор — корпус с обмотками в центре которого находится ротор.

Два этих элемента между собой не прикасаются и разделены только с помощью подшипников.

Проверка электродвигателя начинается с внешнего осмотра

Прежде всего двигатель осматривают на предмет любых заметных дефектов, это могут быть, например, сломанные монтажные отверстия и подставки,  потемнение краски внутри электродвигателя что явно говорит о перегреве, наличие загрязнений или посторонних веществ попавших внутрь двигателя, любые сколы и трещины.

Проверка подшипников

Большинство неисправностей электродвигателей вызваны неисправностью его подшипников. Ротор должен свободно втащатся внутри статора, подшипники которые расположены с двух сторон вала, должны минимизировать трение.
Есть несколько типов подшипников использующихся в электродвигателях. Два самых популярных типа: латунные подшипники скольжения и шарикоподшипники. Многие из них имеют фитинги для смазки, в другие смазка заложена при производстве и они как-бы «не обслуживаемые».

Для проверки подшипников, прежде всего, необходимо снять напряжение с электродвигателя и попробовать вручную прокрутить ротор (вал) двигателя.
Для этого поместите электродвигатель на твердую поверхность и положите одну руку на верхнюю часть двигателя, проверните вал другой рукой. Внимательно наблюдайте, старайтесь почувствовать и услышать трение, царапающие звуки, неравномерность вращения ротора. Ротор должен вращаться спокойно, свободно и равномерно.
После этого проверяют продольный люфт ротора, попробуйте потянуть-потолкать ротор в статоре. Характерный небольшой люфт допустим, но не более 3 мм, чем люфт меньше тем лучше. При большом люфте и неисправностях подшипников, двигатель «шумит» и быстро перегревается.

Часто проверить вращение ротора бывает проблематично из-за подключенного привода. Например, ротор двигателя исправного пылесоса довольно легко раскрутить одним пальцем. А чтоб провернуть ротор рабочего перфоратора, придется приложить усилие. Прокрутить вал двигателя, подключенного через червячный редуктор, вообще не получится из-за конструктивных особенностей этого механизма.
По этому проверять подшипники и легкость вращения ротора нужно только при отключенном приводе.

Причиной затрудненного движения ротора может быть отсутствие смазки в подшипнике, загустение солидола или попадание грязи в полость шариков, внутри самого подшипника.

Нездоровый шум во время работы электродвигателя создается неисправными, разбитыми подшипниками с повышенным люфтом. Для того чтоб убедится в этом достаточно пошатать ротор относительно стационарной части, создавая переменные нагрузки в вертикальной плоскости, и попробовать вставлять и вытаскивать его вдоль оси.

Электрическая часть электродвигателя

В зависимости от того, двигатель для постоянного или переменного тока, асинхронный или синхронный, отличается и его конструкция электрической части, но общие принципы работы, основанные на воздействии вращающегося электромагнитного поля статора на поле ротора который передает вращение (валу) приводу.

В двигателях постоянного тока магнитное поле статора создается не постоянными магнитами, а двумя электромагнитами, собранными на специальных сердечниках — магнитопроводах, вокруг которых расположены катушки с обмотками, а магнитное поле ротора создается током, проходящим через щетки коллекторного узла по обмотке, уложенной в пазы якоря.
В асинхронных двигателях переменного тока ротор выполнен в виде короткозамкнутой обмотки в которую не подается ток.

В коллекторных электродвигателях используется схема передачи тока от стационарной части на вращающиеся детали с помощью щеткодержателя.

Поскольку магнитопровод изготавливается из пластин специальных сталей, собранных с высокой надежностью, то поломки таких элементов происходят очень редко и под воздействием агрессивных условий работы или запредельных механических нагрузок на корпус. Потому проверять их магнитные потоки не приходится и основное внимание прикладывается состоянию электрообмоток.

Проверка щеточного узла

Графитовые пластины щеток должны создавать минимальное переходное сопротивление для нормальной работы двигателя, они должны быть чистыми и хорошо прилегать к коллектору.

Электродвигатель который много работал с серьезными нагрузками, как правило имеет загрязненные пластины на коллекторе с изрядно набитыми в пазах пластин, графитовыми стружками, что довольно сильно ухудшает изоляцию между пластинами.

Щетки усилием пружин прижимаются к пластинам коллекторного барабана. В процессе работы графит истирается а его стержень изнашивается по длине и прижимная сила пружин уменьшается, а это в свою очередь приводит к ослаблению контактного давления и увеличению переходного электрического сопротивление, что вызывает искрение в коллекторе. Начинается повышенный износ щеток и медных пластин коллектора.

Щеточный механизм осматривают на загрязненность, на выработку самых щеток, на прижимную силу пружин механизма, а также на предмет искрения в процессе работы.

Загрязнения убираются мягкой тряпочкой, смоченной спиртом. Зазоры (полости) между пластинами очищаются с помощью зубочистки. Щетки притирают мелкозернистой наждачной шкуркой.
Если на коллекторе имеются выбоины или выгоревшие участки, то его подвергают механической обработке и полировке до нужного уровня.

Проверка обмоток на обрыв или короткое замыкание

Большинство простых однофазных или трехфазных бытовых электродвигателей можно проверить обычным тестером в режиме омметра (в самом низком диапазоне). Хорошо если есть схема обмоток.
Сопротивление как правило небольшое. Большое значение сопротивления указывает на серьезную проблему с обмотками электродвигателя, которые могут иметь разрыв.

Проверка на короткое замыкание на корпус

Проверка производится с помощью мультиметра в режиме сопротивления. Зацепив один щуп тестера на корпус, поочередно прикасаются вторым щупом к выводам обмоток электродвигателя. В исправном электродвигателе сопротивление должно быть бесконечным.

Проверка изоляции обмоток относительно корпуса

Для нахождения нарушений диэлектрических свойств изоляции относительно статора и ротора применяют специальный прибор — мегомметр. Большинство бытовых мультиметров прекрасно справляются с замером сопротивления до 200МОм и хорошо подойдут для етой цели, но недостатком мультиметров есть низкое напряжение замера сопротивления, оно как правило не больше 10 вольт, а напряжение эксплуатации обмоток намного больше.
Но все же если не удалось найти «профессиональный прибор» замер сделаем тестером. Прибор выставляем в максимальное сопротивление (200МОм), один щуп фиксируем на корпусе двигателя или на заземляющем винте, обеспечив надежный контакт с металлом, а вторым поочередно, не прикасаясь руками, прижимаем щуп к контактам обмоток. Следует обеспечить надежную изоляцию щупов от рук и тела, так как измерения будут неверны.
Чем больше сопротивление тем лучше, иногда оно может составлять всего  100 МОм и ето может быть приемлемо.


Иногда в коллекторных двигателях графитовая пыль может «набиваться» между щеткодержателем и корпусом двигателя и можно будет увидеть куда меньшие показатели сопротивления, здесь следует обратить внимание не только на обмотки но и на потенциальные места «пробоя».

Проверка пускового конденсатора

Проверяют конденсатор тестером или же простым омметром.
Прикоснитесь щупами к выводам конденсатора, сопротивление должно начинаться с низких показателей и постепенно увеличиваться, так как небольшое напряжение, подающееся от батареек омметра, постепенно заряжает конденсатор. Если конденсатор остается короткозамкнутым или сопротивление не растет, то, вероятно, проблема с конденсатором, его необходимо заменить.

elektt.blogspot.com

Как проверить обмотку электродвигателя

Как проверить электрический двигатель, их обмотки на целостность

При помощи мультиметра и нескольких приспособлений, не особо разбираясь в принципе работы электродвигателей, можно проверить:

  • Асинхронный трёхфазный двигатель с короткозамкнутым ротором – наиболее лёгкий для проверки, из-за его простого внутреннего устройства, благодаря которому, данный тип электродвигателя имеет наибольшую популярность;
  • Асинхронный однофазный (двухфазный, конденсаторный) электродвигатель с короткозамкнутым ротором – часто используется в различной бытовой технике, подключаемой в сеть 220 В. (стиральные машины, пылесосы, вентиляторы).
  • Коллекторный двигатель постоянного тока – массово применяется в автомобилях в качестве привода для стеклоочистителей (дворников), стеклоподъёмников, насосов, вентиляторов;
  • Коллекторный двигатель переменного тока – используется в ручных электрических инструментах (дрели, перфораторы, болгарки и т.д.)
  • Асинхронный двигатель с фазным ротором – в сравнении с электродвигателем с короткозамкнутым ротором, обладает мощным стартовым моментом, поэтому используется в в качестве привода силового оборудования — подъёмников, лифтов, кранов, станков.

Испытание изоляции обмоток

Независимо от конструкции, электродвигатель нужно проверить при помощи мегомметра на пробой изоляции между обмотками и корпусом. Проверки при помощи одного только мультиметра может быть недостаточно для выявления повреждения изоляции, поэтому используют высокое напряжение.

мегомметр для измерения сопротивления изоляции

В паспорте электродвигателя должно указываться напряжение для испытания изоляции обмоток на электрическую прочность. Для двигателей, подключаемых к сети 220 или 380 В, при их проверке используются 500 или 1000 Вольт, но за неимением источника, можно воспользоваться сетевым напряжением.

паспорт асинхронного двигателя

Изоляция обмоточных проводов низковольтных двигателей не рассчитана выдерживать такие перенапряжения, поэтому при проверке нужно свериться с паспортными данными. Иногда у некоторых электродвигателей вывод обмоток, соединённых звездой, может быть подключён на корпус, поэтому следует внимательно изучать подключение отводов, делая проверку.

Проверка обмоток на обрыв и междувитковое замыкание

Чтобы прозвонить обмотки на обрыв нужно переключить мультиметр в режим омметра. Выявить междувитковое замыкание можно сравнив сопротивление обмотки с паспортными данными или с измерениями симметричных обмоток проверяемого двигателя.

Нужно помнить, что у мощных электродвигателей поперечное сечение проводов обмоток достаточно большое, поэтому их сопротивление будет близким к нулю, а такую точность измерений в десятые доли Ома обычные тестеры не обеспечивают.

Поэтому нужно собрать измерительное приспособление из аккумулятора и реостата, (приблизительно 20 Ом) выставив ток 0,5-1А. Измеряют падение напряжения на резисторе, подключенном последовательно в цепь аккумулятора и измеряемой обмотки.

Для сверки с паспортными данными, можно рассчитать сопротивление по формуле, но, можно этого и не делать – если требуется идентичность обмоток, то достаточно будет совпадения падения напряжения по всем измеряемым выводам.

Измерения можно производить любым мультиметром

Цифровой мультиметр Mastech MY61 58954

Ниже приведены алгоритмы проверки электродвигателей, у которых необходимым условием работоспособности является симметричность обмоток.

Проверка асинхронных трёхфазных двигателей с короткозамкнутым ротором

У подобных двигателей можно прозвонить только статорные обмотки, электромагнитное поле которых в замкнутых накоротко стержнях ротора наводит токи, создающие магнитное поле, взаимодействующее с полем статора.

Неисправности в роторах данных электродвигателей случаются крайне редко, и для их выявления, необходимо специальное оборудование.

ротор двигателя

Чтобы проверить трёхфазный мотор, нужно снять крышку клеммника – там находятся клеммы подключения обмоток, которые могут быть соединены по типу «звезда»

или «треугольник». Прозвонку можно сделать, даже не снимая перемычки –

достаточно измерить сопротивление между фазными клеммами – все три показания омметра должны совпадать.

При несовпадении показаний необходимо будет разъединить обмотки и проверить их по отдельности. Если расчётное сопротивление у одной из обмоток меньше, чем у остальных – это указывает на наличие междувиткового замыкания, и электродвигатель нужно отдавать на перемотку.

Проверка конденсаторных двигателей

Чтобы проверить однофазный асинхронный двигатель с короткозамкнутым ротором, по аналогии с трёхфазным мотором, необходимо прозвонить только статорные обмотки.

Но у однофазных (двухфазных) электродвигателей имеются только две обмотки – рабочая и пусковая.

Сопротивление рабочей обмотки всегда меньше, чем у пусковой

Таким образом, измеряя сопротивление, можно идентифицировать выводы, если табличка со схемой и обозначениями затёрлась или затерялась.

Часто у таких двигателей рабочая и пусковая обмотки соединены внутри корпуса, и от точки соединения сделан общий вывод.

Принадлежность выводов идентифицируют следующим образом – сумма сопротивлений, измеренных от общего отвода должна соответствовать суммарному сопротивлению обмоток.

Проверка коллекторных двигателей

Поскольку коллекторные электродвигатели переменного и постоянного тока имеют схожую конструкцию, то алгоритм прозвонки будет одинаков.

Сначала проверить обмотку статора (в двигателях постоянного тока её может заменять магнит). Потом проверяют роторные обмотки, сопротивление которых должно быть одинаково, коснувшись щупами щёток коллектора, или противоположных контактных выводов.

Удобней проверять обмотки ротора на выводах щёток, прокручивая вал, добиваясь, чтобы щётки контактировали только с одной парой контактов – таким способом можно выявить подгорание у некоторых контактных площадок.

Проверка моторов с фазным ротором

Асинхронный двигатель с фазным ротором отличается от обычного трёхфазного электродвигателя тем, что в роторе также имеются фазные обмотки,

соединённые по типу «звезда»,

которые подключаются при помощи контактных колец на вале. Чтобы проверить роторные обмотки, нужно найти выводы от данных колец, и удостовериться в совпадении измеренных сопротивлений. Часто такие двигатели оснащаются ме

www.autofluids.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о