Генератор одиночного импульса схема – Генераторы импульсов

Одновибратор на логических элементах К155ЛА3

Одновибратором именуют генератор, вырабатывающий одиночные электрические импульсы. Алгоритм работы одновибратора таков: при поступлении на вход одновибратора электрического сигнала, схема выдает на выходе короткий импульс, продолжительность которого определяется номиналами RC цепи.

После окончания формирования выходного  импульса, одновибратор вновь возвращается в свое первоначальное состояние, и процесс повторяется при поступлении нового сигнала на его входе. Поэтому данный одновибратор еще именуют ждущим мультивибратором.

На практике применяется множество разновидностей одновибраторов, таких как одновибратор на транзисторах, операционных усилителях и одновибратор на логических элементах.

Описание работы одновибратора на логических элементах

Одновибратор состоит из двух логических элементов микросхемы К155ЛА3: первый из них применен в роли 2И-НЕ элемента, второй подключен как инвертор. Подача входного сигнала осуществляется посредством кнопки SA1. Кнопка в данной схеме применяется только в качестве имитации входного сигнала. В действующих же устройствах на данный вход обычно поступает сигнал с каких-либо узлов схемы.

Для наглядности работы одновибратора, к его выходу можно подключить светодиод через токоограничивающий резистор. Чтобы видеть свечение светодиода, нужно чтобы выходной импульс был достаточно продолжительный, поэтому выберем конденсатор емкостью 500 мкф.

Подадим питание и замерим стрелочным вольтметром напряжение на выводах логических элементов DD1.1 и DD1.2 микросхемы К155ЛА3. На выходе логического элемента DD1.1 микросхемы К155ЛА3 должен быть логический ноль (не более 0,4 вольта) и  единица (более 2,4 вольта) на его входе 2. Так же на выходе 6 логического элемента DD1.2 будет единица и соответственно единица на выводе 1  на DD1.1.

Подключив вольтметр к выводу 6 логического элемента DD1.2 , как уже было сказано до этого,  на нем лог. 1. Теперь нажмем кратковременно кнопку SA1. Стрелка вольтметра резко отойдет практически до нуля. Примерно через 1-2 секунды она опять стремительно примет исходное положение. По такому движению стрелки можно сделать вывод, что мы наблюдали сигнал низкого уровня.

Одновременно с этим процессом загорится и светодиод, подсказывая нам, что на выходе одновибратора появился одиночный импульс высокого уровня. Если параллельно конденсатору С1 подключить конденсатор такой же емкости, то мы заметим, что продолжительность импульса возросла вдвое. Так же изменяя сопротивление резистора R1 можно добиться изменения длительности импульса.

Подведем итог:  Чем выше емкость конденсатора C1 и сопротивление R1, тем продолжительнее выходной импульс вырабатываемый одновибратором на К155ЛА3.

В данной схеме одновибратора сопротивление R1 и емкость Cl представляют собой времязадающую RC цепь. При малых значениях C1 и R1 длительность импульса будет настолько короткой, что визуально обнаружить его с помощью вольтметра или светодиода не реально. В этом случае наличие импульса можно зафиксировать с помощью осциллографа или логического  пробника.

В  ждущем состоянии вывод 2 микросхемы К155ЛА3 никуда не подсоединен, поскольку контакты SA1 еще незамкнуты. По сути, на входе находится единица. Зачастую вход в таком случае соединяют с плюсом питания через сопротивление 1 кОм.

Из-за подключенного сопротивления R1, на входе логического элемента DD1.2 находится лог. 0, а на его выходе лог. 1. Поскольку на обоих выводах конденсатора лог. 0, он полностью разряжен.

В момент нажатия SA1, на вход 2 логического элемента DD1.1 поступает электрический сигнал  низкого уровня. Поэтому на выводе 3 логического элемента DD1.1 единица. Положительный фронт через C1 подается на вход DD1.2. Соответственно с выхода его логический 0 поступит на вход DD1.1 и он будет присутствовать там даже после отпускания кнопки.

Одновременно через резистор происходит заряд конденсатора. И по окончании заряда напряжение на резисторе упадет и это переведет выход элемента DD1.2 в лог. 1. Одновибратор вернется в исходное состояние — в ждущий режим.

Следует заметить, то входной сигнал (нажатие кнопки) должен быть меньше по продолжительности, чем выходной иначе выходных импульсов не будет.

Источник: «Энциклопедия начинающего радиолюбителя»,  Никулин С.А.

www.joyta.ru

Ждущий мультивибратор, одновибратор, формирователь импульсов

Схемы формирователей импульсов на цифровых КМОП микросхемах, онлайн
расчёт времязадающих цепей и длительности выходных импульсов.

- Почему ждущий?
- Почему, почему? Потому что не спит ни днём, ни ночью - он на дежурстве, он ждёт!
  И ожидает он не трамвая на остановке, а внешнего сигнала запуска для формирования одиночного  выходного импульса фиксированной длительности, после чего возвращается в первоначальное   состояние самопроизвольно, без каких-либо воздействий и утомительных уговоров.
- А почему одновибратор?
- Ну, так как, почему? Выдержан, характер нордический, в генерацию, подобно мультивибратору, не   впадает, имеет одно устойчивое состояние... Говорили ж Вам - он на дежурстве, он ждёт!
- «Говорили ж бабы Вам, пиво с водкой, не для дам!». Второе-то состояние – неустойчивое!
- А тут уж, мил-человек, ничего не попишешь, в конце концов, он - одновибратор. У каждого свои   недостатки...

Итак, определимся. Одновибраторы (они же, ждущие мультивибраторы) - это устройства, выполняющие функцию формирования импульсов определённой длительности, задаваемую внешними времязадающими резисторами и конденсаторами

.

В зависимости от поставленной задачи и используемой схемотехники, одновибратор может выполнять функцию как укорачивающую, так и удлиняющую (расширяющую) по отношению к длительности поступающего на вход сигнала.

С укорачивающими формирователями, по большому счёту, всё понятно. После появления на входе управляющего сигнала - на выходе выскакивает укороченный импульс заданной длительности, передний фронт которого совпадает с началом (либо с концом) входного.

В расширяющих одновибраторах длительность входного импульса должна быть короче длительности формируемого импульса, и тут возникают варианты:

1. Ждущий мультивибратор не реагирует на входной сигнал до окончания своего выходного импульса - такое устройство называется одновибратором без перезапуска.

2. Ждущий мультивибратор запускается с каждым новым входным импульсом, независимо от того, возвратился ли он в первоначальное состояние после предыдущего срабатывания - такое устройство называется одновибратором с перезапуском. Если период следования входных импульсов меньше длительности, определяемой времязадающими цепями одновибратора, выходной импульс с перезапуском не прерывается.

Ну, а если период входных запускающих импульсов больше времени выдержки одновибратора, то оба типа одновибраторов работают одинаково.

Без баяна хрен разберёшься... Согласен, поэтому приведу поясняющие картинки.


Рис.1

Т - формируемая одновибраторами длительность, задаваемая внешними RC цепями.

В природе существует ряд разновидностей интегральных микросхем и таймеров, спроектированных специально для работы в качестве ждущих мультивибраторов и формирователей импульсов заданной длительности. Давайте забудем про них, а посвятим себя простым формирователям на логических КМОП элементах, которые, как правило, без труда отыскиваются в закромах радиолюбительского хозяйства.

Начнём с начала.    УКОРАЧИВАЮЩИЕ ФОРМИРОВАТЕЛИ ИМПУЛЬСОВ.

Формирователь импульсов 1Формирователь импульсов 1


Рис.2    Формирователь импульсов, построенный на основе логического элемента "Исключающее ИЛИ" и интегрирующей RC-цепи.
Начало выходного импульса соответствует переднему фронту входного сигнала.

Формирователь импульсов 2Формирователь импульсов 2
Рис.3    Всё то же самое, что и в предыдущей схеме, за той лишь разницей, что:
начало выходного импульса соответствует заднему фронту входного сигнала.

Формирователь импульсов 3Формирователь импульсов 3
Рис.4    Ещё более простая вариация предыдущих схем, формирует сразу два импульса:
первый - по переднему фронту входного сигнала, второй - по заднему.

Формирователь импульсов 4Формирователь импульсов 4


Рис.5    Формирователь, выполненный на простых инверторах, выполняющих логическую функцию НЕ, и дифференцирующих RC-цепей.
Имеет два выхода и, соответственно, формирует 2 импульса по переднему и заднему фронту входного сигнала, с возможностью раздельной регулировки их длительностей.

Формирователь импульсов 5Формирователь импульсов 5
Рис.6    Наиболее часто используемая схема укорачивающего формирователя импульсов, построенная на основе логического элемента "2И-HЕ" и интегрирующей RC-цепи.
Формирует импульс по переднему фронту входного сигнала.

Формирователь импульсов 6Формирователь импульсов 6
Рис.7    Ещё одна не менее часто используемая схема, на базе логического элемента "2ИЛИ-HЕ" и интегрирующей RC-цепи.
Формирует импульс по заднему фронту входного сигнала.

С укорачивающими устройствами давайте закончим и перейдём к примерам, когда из коротких входных импульсов требуется получить более широкие - выходные, заданной длительности.

РАСШИРЯЮЩИЕ ФОРМИРОВАТЕЛИ ИМПУЛЬСОВ.

По большому счёту, многие из расширяющих одновибраторов не чувствительны к длительности входного импульса и нормально могут трудиться и в качестве укорачивающих. Мы, естественно, об этом никому не скажем, но украдкой будем иметь в виду.

Одновибратор 1Одновибратор 1
Рис.8   
Одновибратор 2Одновибратор 2
Рис.9   
Одновибратор 3Одновибратор 3
Рис.10   

Одновибратор 4

Одновибратор 4
Рис.11   

Схемы, приведённые на Рис.8-11 и построенные на основе логических элементов "2И-HЕ", либо "2ИЛИ-HЕ", не чувствительны к длительности входного импульса и наиболее широко применяются в радиоаппаратуре.
Данные ждущие мультивибраторы срабатывают по переднему фронту входного сигнала и не реагируют последующие его изменения до окончания своего выходного импульса, т.е. являются одновибраторами без перезапуска.

Одновибратор 5Одновибратор 5
Рис.12   

Одновибратор 6Одновибратор 6
Рис.13   

При необходимости получить одовибраторы, обладающие свойствами перезапуска, следует обратить внимание на схемы, приведённые на Рис.12-13.
Данные ждущие мультивибраторы срабатывают по заднему фронту входного сигнала.

Ждущий мультивибратор 1Ждущий мультивибратор 1
Рис.14   

Выполнение одновибраторов на D-триггере, Рис.14, даёт возможность иметь два раздельных входа запуска (по переднему фронту импульса), а также сразу получать на выходах прямой импульс и импульс с инверсией.
Длительность подаваемых на вход S запускающих импульсов должна быть меньше формируемого (режим, когда на входах S и R одновременно присутствует лог. "1", является запрещённым). На входе С длительность запускающего импульса может быть любой. В случае отсутствия потребности в двух раздельных входах запуска, S-вход триггера следует посадить на землю.
Данный ждущий мультивибратор является одновибратором без перезапуска.

Ждущий мультивибратор 2Ждущий мультивибратор 2
Рис.15   

Если требуется иметь перезапуск одновибратора, построенного на триггере, следует обратить внимание на схему, приведённую на Рис. 15.

ОБЩЕЕ ДЛЯ ВСЕХ ФОРМИРОВАТЕЛЕЙ.

Чтобы выходное сопротивление микросхем не оказывало влияние на точность расчета длительности выходного импульса, резистор R1 должен быть номиналом не менее 10... 20 кОм.
Чтобы пренебречь при расчётах ёмкостями монтажа и собственными ёмкостями ИМС, номинал конденсатора С1 выбирается значением - не менее 200-600 пФ.

Если перед разработчиком стоит задача получения высокой температурной стабильности длительности выходного импульса - номинал R1 должен быть выбран

Длительность выходного импульса ждущего мультивибратора зависит как от скорости заряда (разряда) времязадающей цепи R1С1, так и от порога срабатывания логического элемента. Если заложиться 10-15% погрешностью в расчёте этого временного интервала, то можно принять Unop, равным половине напряжения питания микросхемы. В этом случае длительность формируемого импульса составит величину tи=0,69RC.

Ну и по традиции приведу незамысловатую таблицу.

РАСЧЁТ ДЛИТЕЛЬНОСТИ ВЫХОДНЫХ ИМПУЛЬСОВ ОДНОВИБРАТОРОВ НА ЛОГИЧЕСКИХ ИМС

 

vpayaem.ru

Лабораторный генератор ШИМ с широким диапазоном частот для проектирования высокочастотных импульсных стабилизаторов, преобразователей и испытания различных схем.

Лабораторный генератор ШИМ с широким диапазоном частот для проектирования высокочастотных импульсных стабилизаторов, преобразователей и испытания различных схем.

 

В наше время весь мир крутится вокруг широтно-импульсной модуляции (ШИМ), да что и говорить, даже день и ночь – и те подвластны ШИМу (зимой день короче чем ночь и наоборот J ). ШИМ сейчас используется везде, где только можно представить его применение: регуляторы, стабилизаторы, преобразователи, блоки питания и прочие устройства. Учитывая тенденцию увеличения мощности, неуклонного роста используемых частот в силовой и преобразовательной технике, а также уменьшению массо - габаритных показателей, я решил что иметь у каждого в домашней лаборатории широкодиапазонный генератор ШИМ просто обязательно. Но это, конечно же, должен быть не просто генератор. Нужно что бы он имел регулировку частоты в широком диапазоне, регуляторы коэффициента заполнения, регуляторы DEAD TIME, однотактный и двухтактный выходы, а также инверсию выходов  для каждого. Инверсия выходов необходима для проверки мостового преобразователя. Да и мало ли чего ещё захочется исследовать. Но в тоже время он должен быть простым для сборки, наладки и повторения. В данном случае будет достаточно перекрыть диапазон частот в однотактном режиме от 60  кГц до 2 МГц, в двухтактном режиме  от 30 кГц до 1 МГц. Регулировать коэффициент заполнения в  однотактном режиме от 1 % до 99%, а в двухтактном режиме  от 2 % до 98%, с возможностью регулирования паузы DEAD TIME («мертвая зона»). Генератор должен иметь минимальное число переключателей по диапазонам. Все должно регулироваться плавно и без скачков. Желательно иметь настройку грубо и точно на каждый параметр регулирования.

С помощью  такого генератора можно проверять качество работы драйверов управления полевых транзисторов, скоростные показатели работы различных компонентов и многое–многое другое.

Чтобы не утомлять прочтением всей статьи, сразу покажу, какой сигнал получился на выходах в разных режимах и на разных частотах:

 

 

С помощью этого генератора я запускаю любой блок питания, в котором микросхема не дает импульсов на запуск, или уходит в защиту по непонятной причине. Плавно увеличивая коэффициент заполнения, смотрю, что происходит на выходе блока, или токовом шунте ключевого транзистора. Отыскание неисправности в любых импульсных блоках с этим генератором - просто сказка и занимает по времени считанные минуты. Откидываю, например, затвор силового транзистора от родной микросхемы, и цепляю его к своему генератору с драйвером. Для того что бы подключаться например по высокой стороне к двухтактникам, иногда такое надо, необходимо использовать оптодрайвер на 6N137 или любых других быстрых оптопарах.

Ещё можно проверять на что годны операционные и аудио усилители. Поскольку самые низкие искажения имеют только повторители напряжения, проверку буду производить именно в этом режиме. Приведу пример проверки самого распространенного операционного усилителя типа LM358. Тем самым ввергну в шок некоторых аудиофилов. Так вот, использовать LM358 в аудиоусилителях даже низкого класса категорически не рекомендую.

 

 

Ради прикола, беру самый первый советский операционник К140УД1Б и загоняю его на испытания. Показатели у него значительно лучше, чем у LM358.

 

 

Можно проверять время задержки в логических элементах и минимальную длительность импульса для триггеров.

 

 

Даже проверил, как себя поведет стабилитрон TL431 на частоте 1,3 МГц:

 

 

Желтым - вход, синим - выход.

А также испытать и проверить многое другое…….

Вот, вкратце, возможности моего генератора.

Когда я поставил перед собой задачу, попробовал погуглить и найти готовое решение. Поиски не увенчались успехом. В итоге было решено самому создать схему отвечающую запросам. Теперь я ознакомлю вас с результатами моих исследований длившихся около года

Мои исследования

 

   На первый взгляд самой привлекательной и простой схемой, найденной в даташитах и интернете, показалась схема на основе готового PULSE WIDTH MODULATION контроллера типа TL494 и её аналогах КА7500.  TL 494 и ее последующие версии - наиболее часто применяемая микросхема для построения двухтактных преобразователей питания.

 Но на деле это решение подходит под наши задачи только на 1/10 решения и её нельзя использовать на частотах более 100 кГц - в однотактном режиме и до 50 кГц - в двухтактном режиме.  Почему? Хотя по даташиту она может использоваться и до 300кГц, мне не понравилось, как она себя ведет на частотах выше 100 кГц.

Что гласит даташит:

Допустимы рабочие частоты от 1 до 300 кГц, рекомендованный диапазон Rt = 1...500кОм, Ct=470пФ...10мкФ. При этом типовой температурный дрейф частоты без учета дрейфа навесных компонентов +/-3%, а уход частоты в зависимости от напряжения питания - в пределах 0.1% во всем допустимом диапазоне.  Да только дело то не в уходе частоты, а в непостоянстве регулирования коэффициента заполнения в зависимости от частоты.

Я попробовал испытать её возможности, и хотел перекрыть нужный мне диапазон в 2 МГц, но на частоте выше 1 МГц она нормально так и не запустилась. Пришлось пока ограничиться только 1 МГц. Сделал пять диапазонов регулирования частоты, поставил стабилизатор напряжения на 12 вольт по питанию с блокировочными конденсаторами, чтобы не нарушалась чистота эксперимента и начал испытание.

 

Схема:

 

 

Макетная плата подопытной схемы:

 

 

 

Джамперы для выбора частоты:

 

 

Результаты проведенного испытания возможностей TL494:

Данная микросхема для моего требования к генератору не подходит, и никакие средства и ухищрения разогнать её на большую частоту так ни к чему и не привели. Предел мечтаний с ней это 100 кГц (с большой натяжкой 150 кГц). На более высокой частоте даёт о себе знать очень уж медленный компаратор, использующийся в схеме кристалла. Также мешает повышению частоты и встроенная коррекция. Читаем из даташита особенности данной микросхемы:

Для стабильной работы триггера - время переключения цифровой части TL494 составляет 200 нс. На тактовых частотах до 150 кГц при нулевом управляющем напряжении фаза покоя = 3% периода (эквивалентное смещение управляющего сигнала 100..120 мВ), на больших частотах встроенная коррекция расширяет фазу покоя до 200..300 нс. Так как в ней очень медленные усилители ошибки  (фактически, операционные усилители с Ку = 70..95 дБ по постоянному напряжению, Ку = 1 на 300 кГц), я их не использую в схеме испытания вообще, и они заблокированы. Эти усилители не предназначены для работы в пределах одного такта рабочей частоты. При задержке распространения сигнала внутри усилителя в 400 нс они для этого слишком медленные, да и логика управления триггером не позволяет (возникали бы побочные импульсы на выходе). В реальных схемах преобразователей напряжения частота среза цепи ОС выбирается порядка 2  - 10кГц.

    Замечания по работе микросхемы 494 на повышенной частоте, которые меня не устраивают:

1. Встроенный генератор пилообразного напряжения на большое время замыкает конденсатор, вследствие этого перед новым циклом заряда появляется площадка с нулевым потенциалом.

    Осциллограммы работы генератора на разных частотах:

     

     2. Сильная зависимость коэффициента заполнения от частоты, которая проявляется с нарастающим эффектом после прохождения частоты 100 кГц.

      Рассматривая осциллограммы работы ШИМ регулятора с TL494 на разных частотах, при максимальном и минимальном коэффициенте заполнения, чётко заметны изменения минимального и максимального коэффициента заполнения в зависимости от частоты.

       

       

       

      Как видно, изменение минимального коэффициента заполнения на частоте 50 кГц =5% и на частоте 1 МГц = 14,3% отличаются почти в три раза. А вот изменение максимального коэффициента заполнения, тут вообще удивляет: на частоте 50 кГц = 93% и на частоте 1 МГц = 60,7% отличаются на 32%!!!

         Вот почему эту простую и удобную схему я отложил в сторонку. Она мне еще пригодится в дальнейшем: я к ней все-таки вернусь, но уже на дискретных быстрых компараторах и нормальных быстрых триггерах.

       

       

         Дальше на пути у меня была схема на NE555 таймере, которую я использовал лишь только в качестве генератора пилообразного напряжения. Я и не предполагал, что он тоже окажется довольно медленным, но все же, немного лучше, чем предыдущая TL494. С ним можно подняться к частотам около 200 кГц в однотактном режиме. Только надо добавить компаратор и триггер с логикой ИЛИ-НЕ.

      Схема генератора на 555 таймере:

       

       

      Осциллограммы работы генератора пилообразного напряжения на 555 таймере на частотах  332 кГц и 462 кГц.

       

       

      Тут видно округление вершин и спада импульса. На частоте более 500 кГц пила становится неузнаваема.

       

      Разочаровавшись в готовых решениях только на аналоговых элементах, я пробовал синтезировать ШИМ чисто на цифровых логических элементах и счетчиках с триггерами, без использования аналоговых компонентов, но там меня подстерегали другие, куда более сложные проблемы. Выравнивание задержек распространения сигнала по элементам и т.п. Особенно большую проблему составляют триггеры и счетчики, которые совсем не хотят щелкать на малой длительности импульса и просто тупо пропускают счет. А это значит, что ключам, на которые будет работать генератор, очень скоро придет конец. Отказался от этой затеи через неделю боя с 561 логикой. Она, оказывается, ну уж очень медленная для таких частот - 20 МГц при делении ШИМа по 10 %. Ещё через две недели отказался и от 1533 тоже.

      Финальная схема генератора.

       

           После нескольких неудачных попыток воплотить мечту в реальность (иметь в своей домашней лаборатории генератор с 2 МГц ШИМа), недельку- другую отдохнул, подумал, набрался сил и снова приступил к решению проблемы. На этот раз без выкрутасов и лёгких путей, учитывая предыдущие наработки и ошибки. Из всех опробованных решений самое большее удобство пользования предоставляла схема на TL494 или на таймере. Поэтому было решено клонировать начинку NE555 и TL494 на быстродействующих компонентах и собирать некий «симбиоз» двух микросхем на отдельных  компараторах и логике. Компараторы с ТТЛ выходом я взял те, что были у меня в столе - КР597СА2, но можно и любые другие, главное быстродействующие и с ТТЛ выходом. Ну, если вдруг захочется позверствовать, то ЭСЛ будет куда круче (тогда и 20 МГц не предел), но мне пока не нужна такая большая частота (разве для преобразователя с индуктивностью без ферритового сердечника). Тогда надо ставить КР597СА1, и логику серии К500.

      После первого запуска схемы обнаружилось много казусов, но по мере отладки многие грабли были убраны, и схема заработала как часы.

       

      Схема:

       

       

       

            Схема состоит из генератора пилообразного напряжения (состоящего из стабилизатора тока на транзисторах VT1, VT2, VT3; двух компараторов DA1, DA2; триггера DD1 и разрядного транзистора VT4), схемы выделения прямоугольных импульсов (с шириной зависящей от порогового напряжения на DA3), двух стабилизаторов опорного напряжения (2,5в и 2,9в), формирователя двухтактного сигнала (на триггере DD2  и элементах DD3 DD4 2-ИЛИ-НЕ), повторителя и инвертора для однотактного выхода (на DD5, DD6).

      Фото макетной платы:

       

       

      Для облегчения процесса настройки я приведу осциллограммы напряжений в каждой важной точке схемы. Итак…

      Генератор пилообразного напряжения. Конденсатор заряжается через стабилизатор тока. Канал 1 – напряжение на конденсаторе С5, канал 2 – напряжение на базе разрядного транзистора VT4.

       

       

       

       

      По графикам заметен необъяснимый факт ухода напряжения в область отрицательных значений, но это работе не мешает, так как в схему выделения прямоугольных импульсов в задающее напряжение позже я также внесу небольшое отрицательное смещение с помощью делителя R6, R10 для охвата всего диапазона изменения напряжения «пилы». R1 подбирается для ограничения верхней максимальной частоты (я ограничился лишь 2 МГц, хотя вся схема нормально работает и до 5 МГц).

      Осциллограммы напряжений на выходах компараторов DA1, DA2 на разной частоте. Канал 1 – напряжение на компараторе DA1 вывод 14, канал 2 – напряжение на компараторе DA2 вывод 14:

       

       

       

      Для борьбы со «звоном» компаратора вблизи зоны переключения, в схеме выделения прямоугольных импульсов на DA3, я ввел резисторы ПОС (положительной обратной связи) R16, R15 на одноименных входах - выходах компаратора. ПОС нужна на частоте ниже 1 МГц. На частоте в 2МГц данная цепь не требуется и сама перестает участвовать в работе, что видно по осциллограммам.  Осциллограммы напряжений на входах компаратора DA3 на разной частоте. Канал 2 – напряжение на компараторе DA3 вывод 2 – задание порога переключения, канал 1 – напряжение на компараторе DA3 вывод 3 с генератора «пилы». Осциллограмма на частоте 96 кГц. Канал 2 увеличено. Видна волнистая линия синхронно переключению компаратора – это и есть работа ПОС для задания гистерезиса. Глубину гистерезиса можно было бы и уменьшить, но на карту поставлены ключи, которыми будет управлять генератор, поэтому оставим все без изменения.

       

       

       

      Далее схема выделения прямоугольных импульсов с шириной зависящей от порогового напряжения на DA3. На прямой вход компаратора подается пилообразное напряжение, а на инверсный вход – напряжение задания порога переключения компаратора. На выходе получается прямоугольный импульс. Смотрим осциллограммы, разбираемся и вникаем.

       

       

       

      Здесь все понятно. Только если нужен для работы двухтактный выход, то увлекаться очень малым (99%) коэффициентом заполнения не стоит. Так как триггер на малой длительности входного импульса не успевает переключаться, и будет просто пропускать периоды,  выдавая на выходе вместо двухтактных импульсов по очереди – два одинаковых, однотактных, а это чревато нехорошими последствиями, типа сквозного пробоя одновременно открытых ключей.

      Дальше я покажу, как переключается триггер, когда длительность импульса достаточна для его нормальной работы на разных входных частотах. Частота на выходе D триггера равна половине  частоты на входе, и всегда имеет коэффициент заполнения 50% независимо от коэффициента заполнения на входе. Все это видно ниже на графиках.

       

      А вот так хулиганит триггер при входных импульсах недостаточной длительности:

       

      Видно как сбивается развертка и просматривается тот самый пропуск импульса. А это приводит например в полумостовом преобразователе к сквозному «кототоку».

       

      Далее покажу, как формируется полтакта двухтактного импульса, пройдя компаратор,  триггер и логический элемент 2ИЛИ-НЕ:

       

      То, что получилось на выходных контактах, я поместил в первой картинке. Внимательно смотрим, изучаем.  Как видно из графиков, минимальная длительность импульсов на двухтактном выходе завышена до 5%, для того, чтобы триггер четко переключался при входной частоте 2 МГЦ. На частотах до 500 кГц её можно установить и 1 % не опасаясь за пропуски импульса.

      Основной нюанс по настройке генератора: самое главное – чтобы стояли блокировочные керамические конденсаторы типа КМ-5 по 0,1 мкф минимум, или SMD импортные, на каждом корпусе микросхемы. Без них схема работает очень неустойчиво.  Одна сторона платы используется для дорожек, а вторая  используется как экран, её нужно соединить с корпусом в нескольких точках.

      Блок питания каких–либо особенностей не имеет. Для канала +12в используется КРЕНка или 7812, а для канала – 6в используется 7906

      Об выходных драйверах на 2 МГц напишу позже, а то и так много читать надо. Можно использовать готовые микросхемы драйверов, можно собирать на дискретных элементах.

      Спасибо за внимание, и за терпение, и за то, что хватило сил дочитать до этой строки.

      Ещё поздравляю и желаю много валерианки!!!

       

       

      Макетная плата в Layout 5, видео работы генератора в разных режимах и картинки отдельно в файлах.

      Файлы:
      плата
      архив картинок
      видео

      Все вопросы в Форум.

      www.radiokot.ru

      Генератор прямоугольных импульсов на логике HEF4011BP

      В радиолюбительской практике часто возникает потребность в настройке различных преобразовательных узлов схем, особенно если дело касается изобретательской деятельности, когда схема зарождается в голове. В такие моменты будет как нельзя кстати источник управляющего сигнала.

      Представляю Вашему вниманию генератор сигнала прямоугольной формы.

      Характеристики

      Питание: 10 ÷ 15 В постоянного тока.

      Три режима генерации:

      1 – симметричный (меандр), дискретное переключение диапазонов генерируемых частот, плавная регулировка частоты внутри диапазона;

      2 – независимый, дискретное переключение диапазонов генерируемых частот, плавная раздельная регулировка длительности импульса и паузы между импульсами внутри диапазона;

      3 – широтно-импульсная модуляция (ШИМ), дискретный выбор частоты переключателем диапазонов, плавная регулировка скважности импульсов.

      Два раздельных канала – прямой и инверсный.

      Раздельная регулировка уровня выходного сигнала каналов от 0 В до значения напряжения источника питания при подключении высокоомной нагрузки, и до половины напряжения источника питания при подключении нагрузки с входным сопротивлением 50 Ом.

      Выходное сопротивление канала примерно 50 Ом.

      Базовые схемы

      Рисунок 1. Мультивибратор на логических инверторах.

      Для построения генератора за основу взята схема автогенератора на двух логических инверторах (рисунок 1). Принцип её работы основан на периодической перезарядке конденсатора. Момент переключения состояния схемы определяется степенью заряда конденсатора C1. Процесс перезаряда происходит через резистор R1. Чем больше ёмкость C1 и сопротивление R1, тем дольше происходит процесс заряда конденсатора, и тем больше длительность периодов переключения состояния схемы. И наоборот.

       

      Для построения схемы генераторов в качестве логических элементов была взята микросхема с четырьмя элементами 2И-НЕ – HEF4011BP. Базовая схема, показанная выше, позволяет получать на выходе Q прямоугольный сигнал фиксированной частоты и скважности 50% (меандр). Для расширения возможностей устройства было принято решение объединить в нём три различных схемы, реализуемых на тех же двух логических инверторах.

      Схема генератора меандра

      Схема генератора меандра изображена на рисунке 2-а. Времязадающая ёмкость схемы может изменяться от значения C1 до суммарного значения C1 и ёмкости, подключаемой перемычкой П. Это позволяет изменять диапазон частот генерируемого сигнала.

      Рисунок 2. Принципиальные схемы генераторов на логических инверторах.

      Резистор R1 позволяет плавно изменять ток заряда (перезаряда) ёмкости. Резистор R2 является токоограничивающим, для исключения перегрузки выходного канала логического элемента DD1.1 в случае, когда ползунок резистора R2 находится в крайнем верхнем положение и его сопротивление приближено к нулю. Поскольку заряд и перезаряд конденсатора производится по одной цепочке с неизменными параметрами, длительности импульса и паузы между ними равны. Такой сигнал имеет симметричную прямоугольную форму и называется меандр. Регулировкой R1 изменяется только частота генерируемого сигнала в определённом диапазоне, заданном времязадающей ёмкостью.

      Схема генератора прямоугольных импульсов с раздельной регулировкой длительности импульса и паузы

      На рисунке 2-б цепь заряда и цепь перезаряда разделены диодами VD1 и VD2. Если импульс формируется во время заряда времязадающей ёмкости, его длительность характеризуется сопротивлением цепочки VD1-R2-R1. Длительность паузы между импульсами при обратном перезаряде ёмкости характеризуется сопротивлением цепи R1-R3-VD2. Так, изменяя положение ползунков резисторов R2 и R3 можно плавно раздельно задавать длительность импульса и паузы между ними.

      Диапазон частот генерируемого сигнала, как и в первом случае, переключается перемычкой П.

      Схема генератора с ШИМ

      Схема на рисунке 2-в имеет аналогичное разделение цепей прямого и обратного заряда времязадающей ёмкости с той разницей, что переменные сопротивления являются плечами переменного резистора R2, которые имеют обратную зависимость параметров по отношению друг к другу. Т.е., при увеличении одного плеча резистора прямопропорционально уменьшается второе, а общая сума их сопротивлений постоянна. Таким образом, регулируя соотношение плеч резистора R2 можно плавно изменять соотношение длительности импульсов к длительности пауз между ими, а время периода следования импульсов будет оставаться неизменным. Этот способ регулировки позволяет реализовать функцию широтно- импульсной модуляции (ШИМ)

      Частота генерируемого сигнала в данной схеме выбирается дискретно переключением перемычки П. При необходимости можно использовать несколько перемычек П для суммирования больших и малых значений ёмкостей, добиваясь более точной требуемой частоты генерации сигнала внутри всего диапазона.

      Окончательная схема генератора

      На рисунке 3 представлена схема генератора, в которой реализованы все три схемы, рассмотренные на рисунке 2. В основе генератора два логических инвертора на элементах DD1.1 и DD1.2. Выбор диапазона частот (частоты в режиме ШИМ) осуществляется переключением перемычки П.

      Рисунок 3. Схема генератора прямоугольных импульсов.

      Для сборки нужного варианта схемы генератора введены штыревые разъёмы, коммутируемые параллельными сборками перемычек, изображенных цветными линиями. Каждый цвет перемычек соответствует своей схеме соединений. Перемычки реализованы путём соединения пар контактов проволочками от шлейфа разъёма типа FC-10P A. Сами штыревые разъёмы расположены тремя группами по пять пар для удобства коммутации. Разъём-перемычки позволяет переключать режим генерации.

      Элементы DD1.3 и DD1.4 выполняют роль инвертирующих повторителей и служат для развязки времязадающих и выходных цепей генератора для исключения их взаимовлияния. С выхода DD1.3 берётся инвертированный сигнал, с выхода DD1.4 – основной.

      Резисторы R5 и R6 служат для регулировки уровня напряжения импульсов соответствующих каналов. Транзисторы VT1 и VT2 включены по схеме эмиттерного повторителя для усиления сигналов, снимаемых с ползунков резисторов  R5 и R6 соответственно. Транзисторы VT3 и VT4 шунтируют выходные цепи своих каналов, подтягивая к минусу питания. Их роль важна при подаче сигнала генератора на нагрузку с наличием ёмкости, когда в бестоковую паузу необходим разряд этой ёмкости, как например при управлении полевыми транзисторами. Диоды VD5 и VD6 отделяют базовые цепи шунтирующих транзисторов от выхода генератора, исключая влияние ёмкостной нагрузки на работу этих транзисторов. Резисторы R9 и R10 необходимы для согласования выходов генератора с сопротивлением нагрузки 50 Ом, а также для ограничения максимального тока транзисторов выходных каскадов каналов.

      Диод VD3 защищает схему от подключения питающего напряжения обратной полярности. Светодиод VD4 выполняет роль индикатора питания. Конденсатор C21 частично сглаживает пульсации при питании от нестабилизированного источника.

      Особенности схемы

      С целью уменьшения габаритов устройства для времязадающей ёмкости применены SMD конденсаторы C1-C20. При наименьшей ёмкости конденсатора C1=68 пФ генератор формирует сигнал частотой до 17÷500 кГц. При промежуточных значениях ёмкостей 3,3 нФ и 100 нФ генератор формирует сигналы в диапазонах частот 360÷20000 Гц и 6,25÷500 Гц соответственно. При наименьшей ёмкости С2=5,1 мкФ получается частота в диапазоне 0,2-10 Гц. Таким образом, при использовании всего четырёх конденсаторов можно перекрыть диапазонами частот интервал от 0,2 Гц до 500 кГц. Но при этом в режиме ШИМ будет доступна генерация сигнала всего четырёх значений частоты при использовании одной перемычки П. Поэтому, для улучшения характеристики генератора было принято решение ввести в схему 20 конденсаторов различной ёмкости с равномерным распределением значений по интервалам. Дополнительную точность установки частоты в режиме ШИМ можно получить, применяя несколько перемычек идентичных П, которые позволят корректировать частоту подключением емкостей меньших значений в сравнении с основной добавочной.

      Питание схемы имеет некоторые ограничения. Не смотря на достаточно широкий диапазон напряжения питания микросхемы 3÷15 В, как показал опыт, при напряжении питания схемы ниже 9 В не происходит запуск генератора. При напряжении 9 В запуск не стабилен. Поэтому рекомендуется использовать источник питания 12÷15 В.

      При напряжении питания 15 В, нагрузке сопротивлением 50 Ом подключенной к одному каналу генератора и максимальном выходном уровне сигнала, устройство потребляет не более 2,5 Вт мощности. При этом основная доля мощности рассеивается на нагрузке и согласующем выходном резисторе R9 (R10).

      Не рекомендуется включать генератор на короткозамкнутую нагрузку, поскольку выходной транзистор при этом работает в предельном режиме. Это касается и тестирования схем с биполярными ключами, не имеющими в цепи базы ограничивающего резистора. В таких случаях рекомендуется уровень выходного сигнала снижать как минимум за половину оборота ручки резистора, а потом по мере необходимости добавлять.

      В моём случае для варьирования частотных диапазонов генерации я использовал следующий ряд номиналов конденсаторов:
      С1 - 68 пФ;
      С2 - 100 пФ;
      С3 - 220 пФ;
      С4 - 330 пФ;
      С5 - 680 пФ;
      С6 - 1 нФ;
      С7 - 2,2 нФ;
      С8 - 3,3 нФ;
      С9 - 9,1 нФ;
      С10 - 22 нФ;
      С11 - 33 нФ;
      С12 - 47 нФ;
      С13 - 82 нФ;
      С14 - 100 нФ;
      С15 - 220 нФ;
      С16 - 330 нФ;
      С17 - 510 нФ;
      С18 - 1 мкФ;
      С19 - 2,4 мкФ;
      С20 - 5,1 мкФ.

      Вы из каких либо соображений можете применить номиналы, отличные от указанных. Единственное ограничение, минимальная ёмкость не должна быть меньше 68 пФ, иначе генератор на этой ёмкости может просто не запуститься, либо начать автогенерацию в ненасыщающемся режиме, при котором форма сигнала не прямоугольная, а искажённый прямоугольник, стремящийся к синусоиде.

      Красным цветом выделены номиналы, при которых перекрывается весь диапазон генерируемых частот.

      Фотогалерея

      Здесь показана укладка проводов-перемычек в разъём, собранный разъём и уже готовый разъём-перемычка с обрезанными проводниками.

        
      На этих фото генератор с разных ракурсов
       

       
      А это со стороны печатки. Качество дорожек получилось просто отвратительное, поэтому пришлось налудить так много олова.

      А это, собственно, перемычка переключения диапазонов и перемычка переключения режимов. Чуть правее выдны гнёзда и штыри, которые эти перемычки коммутируют.

      Печатную плату каждый может сделать под детали, которые есть в наличии. Кого интересует печатка моего варианта генератора, можете скачать архив по ссылке ниже. Там есть печатка в формате страници PDF, а так же в формате PCB для P-CAD версии не ниже 2010. Схема так же есть в архиве, можете не пытаться сохранять её со страницы, просто скачайте архив.

      Файлы проекта.

       

      volt-info.ru

      ГЕНЕРАТОР ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ

         В один прекрасный день мне понадобился срочно генератор прямоугольных импульсов со следующими характеристиками:

      --- Питание: 5-12в


      ---
      Частота: 5Гц-1кГц.


      ---
      Амплитуда выходных импульсов не менее 10в


      --- Ток: около 100мА.

         За основу был взят мультивибратор, он реализован на трех логических элементах микросхемы 2И-НЕ. Принцип которого при желании можно прочитать в Википедии. Но генератор сам по себе дает инверсный сигнал, что подтолкнуло меня применить инвертор (это 4-й элемент). Теперь мультивибратор дает нам импульсы положительного тока. Однако у мультивибратора нет возможности регулирования скважности. Она у него автоматически выставляется 50%. И тут меня осенило поставить ждущий мультивибратор реализованный на двух таких же элементах (5,6), благодаря которому появилась возможность регулировать скважность. Принципиальная схема на рисунке: 

      Принципиальная схема генератора прямоугольных импульсов

         Естественно, предел указанный в моих требованиях не критичен. Все зависит от параметров С4 и R3 – где резистором можно плавно изменять длительность импульса. Принцип работы так же можно прочитать в википедии. Далее: для высокой нагрузочной способности был установлен эммитерный повторитель на транзисторе VT-1. транзистор применен самый распостранненый типа КТ315. резисторов R6 служит для ограничения выходного тока и зашита от перегорания транзистора в случае КЗ .

      КМОП К561ЛА7 (она же CD4011)

         Микросхемы можно применять как ТТЛ , так и КМОП. В случае применения ТТЛ сопротивление R3 не более 2к. потому что: входное сопротивление этой серии приблизительно равно 2к. лично я использовал КМОП К561ЛА7 (она же CD4011) – два корпуса питание до 15в.

      генератора импульсов на основе микросхемы 561ЛА7

         Отличный вариант для использования как ЗГ для какого ни будь преобразователя. Для использования генератора среди ТТЛ – подходят К155ЛА3, К155ЛА8 у последней коллекторы открыты и на выхода нужно вешать резисторы номиналом 1к.

      САМОДЕЛЬНЫЙ ГЕНЕРАТОР ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ

         При правильной сборке схемы, генератор заводится незамедлительно. Схема настолько проста, что ее может повторить даже малограмотный школьник, не вникая в принцип работы схемы. Удачи… Автор схемы: товарищ bvz.

         Форум по микросхемам

         Обсудить статью ГЕНЕРАТОР ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ


      radioskot.ru

      Генератор импульсов с независимой регулировкой длительности и скважности

      Генератор импульсов с независимой регулировкой длительности и скважности и возможностью сгенерировать заданное число импульсов в пачке от 1 до 256 в режиме одиночного запуска или последовательности пачек. Частота генератора при данных RC цепях приблизительно от 1 МГц до единиц герц. В любом из режимов возможна регулировка параметров импульсов. Кроме того есть возможность циклической генерации пачек с заданным количеством импульсов в пачке. В этом режиме есть возможность регулировать расстояние (задержку) между сформированными пачками.

      Этот генератор отстраивался и испытывался отдельными узлами на макетных платах. После чего был собран воедино в единственном экземпляре . Теперь он честно трудится при проведении научных изысканий в Воронежском строительном институте на кафедре сварки.

      Схема принципиальная генератора

      Схему нарисовал достаточно информативно, дополнив диаграммами ключевых процессов, потому надеюсь в понимании принципа работы вопросов возникнуть не должно.

      В верхней части схемы на к155аг3 собран собственно сам генератор с раздельной регулировкой длительности и скважности импульсов. В режиме формирования пачки, число импульсов в пачке формируется и определяется DIP-переключателями S1-S8. НО это число в двоичном коде. Т.е. если нужно 2 импульса, то надо замкнуть переключатель S2. Если нужно 5 импульсов в пачке- замкнуть S1 и S3 . И так далее... Максимальное число импульсов определяется количеством счетчиков, и в данной схеме это 256.

      В нижней части схемы на к155аг3 собран узел формирования временного расстояния между пачками.Задержка плавно регулируется переменным резистором

      Теперь про перемычки.

      1. Перемычка "калибровка генератора". Если ее снять,то задающий генератор "отвязывается" от схемы и работает как простой генератор прямоугольных импульсов с регулируемыми длительностью и скважностью.
      2. Перемычка "однократный запуск пачки". Для однократного запуска пачки нужно снять перемычку и нажать одноименную кнопку. По нажатию кнопки на выходе генератора сформируется пачка из заданного количества импульсов с заданными длительностью и скважностью.

      Если обе перемычки установлены, то генератор после нажатия кнопки "старт пачек" будет выдавать непрерывные пачки импульсов.

      Схема получилась очень надежной и стабильной.Фронты не подрезаются,что было одним из условий техзадания. Кроме того, ее можно гибко наращивать и оптимизировать. В первом варианте генератора использовались 2 мс 555. Но на частотах к 100 кГц первые два импульса в пачке "слипались" После чего и было принято решение перейти на к155аг3.

      radioskot.ru

      5.6 Генераторы импульсов. | Техническая библиотека lib.qrz.ru

      5.6 Генераторы импульсов

      Генераторы импульсов используют во многих радиотехнических устройствах (электронных счетчиках, реле времени), применяют при настройке цифровой техники. Диапазон частот таких генераторов может быть от единиц герц до многих мегагерц.

      На рис. 116 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки SB1. На логических элементахDD1.1 и DD1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки SB1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 - напряжение низкого уровня; при нажатой кнопке - наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.

      На рис. 117 показана схема простейшего генератора импульсов на электромагнитном реле. При подаче питания конденсатор С1 заряжается через резистор R1 и реле срабатывает, отключая источник питания контактами К 1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К 1.1 опять замкнутся, снова начнет заряжаться конденсатор - цикл повторяется.

      Частота переключении электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использовании реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно один раз в секунду.

      Такой генератор можно использовать, например, для коммутации гирлянд на новогодней елке, для получения других световых

      5-61.jpg

      эффектов. Его недостаток - необходимость использования конденсатора значительной емкости.

      На рис. 118 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада.

      Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15...17 В и токе 20...50 мА.

      В генераторе импульсов, схема которого приведена на рис. 119, использованы логические элементы микросхемы DD1 и полевой транзистор VT1. При изменении номиналов конденсатора С1 и резисторов R2 и R3 генерируются импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность напряжения высокого уровня на выходе генератора, а резистор R3 - длительность напряжения низкого уровня. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1...2 мкФ. Сопротивления резисторов R2, R3 - 10...15 МОм. Транзистор VT1 может быть любым из серий КП302, КП303

      5-62.jpg

      5-63.jpg

      При наличии микросхемы КМОП (серия К176, К561) можно собрать широкодиапазонный генератор импульсов без применения полевого транзистора.

      Схема приведена на рис. 120. Для удобства установки частоты емкость конденсатора времязадающей цепи изменяют галетным переключателем SA1. Диапазон частот, формируемых генератором, составляет 1...10 000 Гц.

      На рис. 121 представлена схема генератора импульсов с регулируемой скважностью. Скважность, т. е. отношение периода следования импульсов к длительности напряжения высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.

      Генератор, схема которого приведена на рис. 122, вырабатывает импульсы как прямоугольной, так и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3. На конденсаторе С2 и резисторе R2 собрана дифференцирующая цепь, благодаря которой на выходе логического элемента DD1.5 форми-

      5-64.jpg

      руются короткие положительные импульсы (длительностью около 1 мкс). На полевом транзисторе VT2 и переменном резисторе R4 выполнен регулируемый стабилизатор тока. Этот ток заряжает конденсатор С3, и напряжение на нем линейно возрастает. В момент поступления на базу транзистора VT1 короткого положительного импульса транзистор VT1 открывается, разряжая конденсатор СЗ. На его обкладках таким образом формируется пилообразное напряжение.

      Резистором R4 регулируют ток зарядки конденсатора и, следовательно, крутизну нарастания пилообразного напряжения и его амплитуду. Конденсаторы С1 и СЗ подбирают исходя из требуемой частоты импульсов.

      Иногда возникает необходимость в построении генератора, который формирует число импульсов, соответствующее номеру нажатой кнопки.

      Принципиальная схема устройства (первый вариант), реализующего такую возможность, приведена на рис. 123. Функционально оно включает генератор импульсов, счетчик и дешифратор. Генератор прямоугольных импульсов собран на логических элементах DD1.3 и DD1.4. Частота следования импульсов около 10 Гц. С выхода генератора импульсы поступают на вход двоично-десятичного счетчика, выполненного на микросхеме DD2. Четыре выхода счетчика соединены со входами микросхемы DD3, представляющей собой дешифратор на 4 входа и 16 выходов.

      При подаче питающего напряжения на правых (по схеме) контактах всех пятнадцати кнопок SB I-SB 15 будет напряжение низкого уровня, обеспечиваемое наличием низкоомного резистора R5. Это напряжение подается на вход ждущего мультивибратора, выполненного на элементах DD1.1, DD1.2 и конденсаторе С1, и

      5-65.jpg

      гасящего импульсы дребезга контактов кнопок. На выходе ждущего мультивибратора - напряжение низкого уровня, поэтому генератор импульсов не работает. При нажатии одной из кнопок конденсатор С3 мгновенно заряжается через диод VD1 до напряжения высокого уровня, в результате чего на выводах 2 и 3 счетчика DD2 появляется напряжение низкого уровня, устанавливающее его в рабочее состояние. Одновременно через замкнутый контакт нажатой кнопки напряжение высокого уровня подается на вход ждущего мультивибратора, и импульсы генератора поступают на вход счетчика. При этом на выходах дешифратора последовательно появляется напряжение низкого уровня. Как только оно появится на выходе, с которым соединен контакт нажатой кнопки, подача импульсов на вход счетчика прекратится. С вывода 11 элемента DD1.4 будет снято число импульсов, соответствующее номеру нажатой кнопки. Если продолжать удерживать кнопку нажатой, то через некоторое время конденсатор СЗ разрядится через резистор R2, счетчик DD2 установится в нулевое состояние и генератор выдаст новую серию импульсов. До окончания серии импульсов кнопку отпускать нельзя.

      В устройстве использованы резисторы МЛТ-0,25; оксидные конденсаторы - К50-6. Транзисторы VT1, VT2 могут быть серий КТ312, КТ315, КТ503, КТ201, диод VD1 - серий Д7, Д9, Д311. Кнопки SB 1 -SB 15 - типов П2К, KM 1-1 и др.

      Настройка числоимпульсного генератора заключается в установке подбором резистора R1 и конденсатора С2 требуемой частоты следования импульсов генератора, которая может быть в пределах от единиц герц до десятков килогерц. При частоте выше 100 Гц для выдачи полной серии импульсов требуется время не более 0,15 с, поэтому кнопку можно не удерживать пальцем - короткого нажатия ее вполне достаточно для формирования пачки импульсов.

      На рис. 124 представлена схема еще одного числоимпульсного генератора (второй вариант), по принципу работы аналогичного описанному выше. Благодаря применению микросхем серии К176 схема генератора упростилась. Генератор формирует от 1 до 9 импульсов.

      В двух описанных выше вариантах числоимпульсных генераторов необходимо удерживать кнопку нажатой до окончания серии импульсов, в противном случае на выход поступит неполная пачка импульсов. Это является недостатком. На рис. 125 приведена схема третьего варианта числоимпульсного генератора, в котором импульсы начинают вырабатываться после отпускания кнопки.

      На микросхемах DD1, DD2 и диодах VD1-VD3 собран шифратор, преобразующий десятичное число в двоичный код. Сигналы с выходов шифратора подаются на входы D1, D2, D4, D8 микросхемы

      5-66.jpg

      DD4 (реверсивный счетчик) и на входы логического элемента 4ИЛИ-HE(DD3.1).

      Рассмотрим работу генератора при нажатии кнопки SB3. Когда кнопка нажата, на выходах логических элементов DD1.1 и DD1.2 установится напряжение высокого уровня, а на выходах DD2.1, DD2.2 сохранится напряжение низкого уровня. На выходе логического элемента DD3.1 появится напряжение низкого уровня, которое через дифференцирующую цепь C1R11 поступит на вход С реверсивного счетчика DD4 и установит его в состояние 1100. При этом на выходе логического элемента DD3.2 установится напряжение низкого уровня, которое инвертируется логическим элементом DD5.1 и подготавливает к работе генератор на логических элементах DD5.2-DD5.4. После отпускания кнопки SB3 на выходе элемента DD3.1 появится напряжение высокого уровня, которое будет подано на выход 12 микросхемы DD5; начнет работать генератор. Импульсы с его выхода (вывод 11 микросхемы DD5) поступают на вход -1 реверсивного счетчика. При этом происходит уменьшение числа, записанного в счетчике, и на выходах 1, 2, 4, 8 счетчика последовательно появляются комбинации логических уровней 0100, 1000, 0000. При установке счетчика в состояние 0000 на выходе логического элемента DD3.2 установится напряжение высокого уровня, и генератор остановится. На выход поступит три импульса.

      Частота импульсов генератора определяется элементами С2 и R 12 и может изменяться в широких пределах (от единиц герц до сотен килогерц).

      5-67.jpg

      В описанных здесь генераторах импульсов можно использовать резисторы МЛТ-0,25, конденсаторы К50-6, КМ-6. Транзисторы КТ315Б можно заменить транзисторами из серий КТ312, КТ315, КТ316, КТ503. Диоды - любые из серий Д7, Д9, Д311. Кнопки - типов П2К, КМ1 и др. Микросхемы могут быть серий К 133, К 134, К 136, К158, КР531, К555 для первого и третьего вариантов; К561 - для второго варианта.

       

      lib.qrz.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о