Ветроустановки – принципы выбора, виды и различия

принципы выбора, виды и различия

Изучая вопрос выбора ветроустановок, мы можем встретить довольно много разных видов. Основной тип деления — горизонтальные и вертикальные. В чем же разница, какие плюсы и минусы их использования?

Ветряки всевозможных форм и размеров сейчас все чаще и чаще можно наблюдать над жилищами наших граждан. Если вы заинтересовались возможностью изготовления ветроустановки, использования силы ветра, данная статья поможет систематизировать знания, полученные из различных источников, и созданное вами детище будет выполнять свое предназначение, а не окажется изначально пустым экспонатом домашнего музея.

Ветроустановки призваны помогать решать самые разнообразные проблемы, стоящие перед человеком. Чаще всего её используют для выработки электроэнергии, что в некоторых районах может оказаться жизненной необходимостью, а вот ветряная мельница (это, согласитесь тоже своего рода − ветроустановка) приводит в действие жернова без лишних посредников − ньютоновская механика в чистом виде.

к содержанию ↑

Принципы выбора

Для начала формулируем задачу, которую беремся решать: для чего именно вам необходима энергия ветра, какой процесс она станет обеспечивать. Иными словами, что будет являться потребителем. Далее, процесс создания проекта будущей ветроустановки: придется решить какого она будет типа, как конкретно будет передаваться энергия к конечному потребителю (электрический ток или механически − в виде крутящего момента, поступательных движений, как-то по-другому).

В статье мы расскажем о типах самого важного элемента ветроустановки — ротора, разберем плюсы и минусы каждого варианта. Также затронем тему применения вырабатываемой энергии. Надеемся, эта информация поможет вам на стадии проектирования агрегата.

к содержанию ↑

Виды

Основное деление на две большие группы ветроустановки имеют по расположению оси вращения: горизонтальные и вертикальные.

к содержанию ↑

Горизонтальные

Прототип − ветряная мельница. Огромные лопасти-крылья ветроустановки вращаются в вертикальной плоскости, преобразуя кинетическую энергию ветра в энергию вращающегося вала. Ось вращения такой машины всегда должна быть направлена строго навстречу ветру. Это достигается установкой на оси позади лопастей большого хвостового стабилизатора либо применением автомата, отслеживающего направление ветра, и снабженного механическим приводом.

к содержанию ↑

Вертикальные

Ось вращения перпендикулярна поверхности земли, вращение лопастей происходит параллельно земле.


Сравним эти два типа конструкций. Есть мнение, что горизонтальные ветроустановки значительно более эффективны, так как вся энергия воздушных масс, сталкивающаяся с лопастями, расходуется со знаком плюс, то есть создает вращательный момент нужной направленности. Чего не скажешь о другой конструкции. Примерно 30…40 % воздушного потока, воздействующего на вертикальный ротор, работает со знаком минус, снижая КПД установки.

Еще одним плюсом горизонтальной ветроустановки является большая скорость вращения винта, а это важно, если целью является выработка электроэнергии. Ведь самодельная ветроэлектрическая установка включает генератор, который чаще всего берется готовый, к примеру, автомобильный. И если генератор ВАЗ 2108 для выработки электричества требует от 1500 об/мин, то горизонтальная ветроустановка выдаст всего лишь 100, а вертикальная и того меньше − 15…20. Следовательно, в случае применения готового генератора для авторской ветроэлектростанции, для горизонтального винта потребуется мультипликатор (редуктор − наоборот) с меньшим передаточным числом, меньшей массы.

к содержанию ↑

Различия

Главный недостаток горизонтальной ветроустановки — изменяющееся во времени направление оси вращения. Вот список узлов, от которых можно отказаться, если применяется ветроустановка с расположением оси перпендикулярно земле;

1. Механизм доворота ветроустановки навстречу ветру, автоматический с приводом или хвостовой стабилизатор. Вертикальная ветроустановка работает при любом направлении ветра, и поворачивать ось никуда не нужно;

2. Система щеток и контактных колец. Ветроустановка не может без них работать, ведь генератор вращается наверху высокой мачты влево − вправо, а вырабатываемое электричество нужно внизу. К тому же некоторые генераторы требуют подачи тока на обмотки возбуждения;

3. Громоздкая высокая мачта также не требуется. Вертикальные турбины можно располагать как угодно низко, они сохраняют постоянное положение, не требуют запаса места для поворотов за ветром. Как вариант: расположение на крышах зданий и сооружений. Расчеты показывают, что у установок одинаковой мощности для горизонтальной − потребуется мачта вдвое выше. И вдобавок обслуживание узлов и агрегатов, расположенных на земле или на десятиметровой мачте − вещи, согласитесь, разные по сложности;

4. Считается, что большая вертикальная ветроустановка выходит на номинальную мощность при меньшей скорости ветра;

5. По опыту применения ветроустановок отмечено: у горизонтальных ветрогенераторов значительно выше уровень шума. Тем более что сейчас при создании ветряков все шире используется принцип магнитной левитации, сводящий шумы практически к нулю.

к содержанию ↑

Применение

Теперь о применении полученной энергии. Использование ее в чисто механическом виде − дело весьма проблемное. Ведь вряд ли кого-то устроит ожидать неделю, пока скорость ветра достигнет необходимой силы, чтобы приводимый им в действие насос наполнил ваш бассейн, купаться ведь хочется здесь и сейчас.

Поэтому чаще всего ветроустановку используют для выработки электрического тока. Электричество можно запасать, преобразовывать, передавать на любые расстояния. Одно НО. Для того чтобы электричество, добытое с помощью самодельной ветроустановки, можно было запасать, а затем питать им привычные бытовые приборы, необходимо дополнительно:

  1. Блок аккумуляторных батарей немаленькой емкости;
  2. 2. Контроллер напряжения. Ведь если АКБ скажем 12В, то заряжать их нужно напряжением 13,6…14,5В, но никак не 10 и не 40;
  3. 3. И, наконец, преобразователь с 12В постоянного на 220В переменный.

Все перечисленное стоит не малых денег.

Есть вариант не требующий такой тщательной обработки получаемого электричества. Ветроэлектрическая установка служит для отопления здания. Тут можно применять успешно и грязную электроэнергию: с усилением ветра электронагревательный элемент (встроенный в систему парового отопления, или отдельный калорифер) будет сильнее греть.

mirenergii.ru

Принцип действия и устройство ветрогенератора (общие понятия)

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Принципиальная схема ветрогенератора

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Система торможения вращения лопастей

Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.

Конструкция ветрогенератора и узлов

При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.

Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер

Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:

  • установка экологически чистая;
  • отсутствует потребность её заправки топливом;
  • не накапливаются какие-либо отходы;
  • устройство работает очень тихо;
  • имеет большой срок эксплуатации.

Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.

Увеличение мощности установки

Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.

Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.

Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.

Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.

Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.

Схема увеличения мощности и емкости ветрогенератора

Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.

tcip.ru

Ветряные турбины или ветрогенератор третьего поколения

Невероятно! Но скоро это произойдет. Альтернативные источники энергии третьего поколения перевернут мир в целом. Начало уже заложено. Ветряные турбины — вот электроэнергетическое будущее человечества.

к содержанию ↑

Введение

Несмотря на то что альтернативным видам энергетики, таким как ветряные турбины, например, все еще незаслуженно мало уделяется внимания, они продолжают усиленно развиваться. Возможно, в скором времени сильные мира сего поймут, что невменяемая добыча полезных ископаемых больше приносит вреда, чем пользы, и природные виды энергетики прочно войдут в нашу повседневную жизнь. Такая надежда тесно связана с тем, что некоторое время назад было объявлено о появлении ветрогенератора третьего поколения.

к содержанию ↑

Что такое ветряной генератор третьего поколения

Традиционно принято считать, что устройствами первого поколения, которые преобразовывали энергию ветра, были обычные корабельные паруса и мельничные крылья. Чуть более века назад, с развитием авиации, появился ветрогенератор второго поколения — механизм, в основе работы которого лежали принципы аэродинамики крыла.

Это был прорыв того времени! Хотя, если взять в целом, то ветряки второго поколения маломощны, так как из-за конструктивных особенностей не могут работать при сильных ветрах. Поэтому для того чтобы получать больше электроэнергии приходилось увеличивать лопастной ветрогенератор в размерах, что тянуло за собой дополнительные финансовые расходы на разработку, производство, установку и его эксплуатацию. Естественно, что долго так оставаться не могло.

В начале 2000-х готов специалисты-разработчики объявили о появлении ветрогенератора третьего поколения — ветротурбины. Конструкция, принцип работы, установка, а самое главное мощность нового устройства коренным образом отличается от его предшественников.

к содержанию ↑

Устройство

Простота. Это именно то слово, которым можно охарактеризовать конструкцию ветротурбинного генератора. По сравнению с лопастными ветрогенераторами, ветряная турбина имеет гораздо меньшее количество рабочих узлов и гораздо больше неподвижных элементов, благодаря чему более стойко переносит различные статические и динамические нагрузки.

Устройство ветротурбины:

  • обтекатель, бывает внутренний и наружный;
  • обтекатель узла турбогенератора;
  • гондола;
  • турбина;
  • генератор;
  • динамичный крепежный узел.

Из дополнительных систем ветрогенератор оснащен блоками инвертирования, аккумуляции и управления. Отсутствуют традиционные для лопастного ветрогенератора системы регулировки лопастей и ориентации на ветер. Последнюю заменяет обтекатель, который также выступает в роли сопла, улавливает ветер и увеличивает его мощность. Если учитывать, что энергия ветряного потока равняется его скорости в кубе V3, то благодаря наличию сопла эта формула выглядит следующим образом: V3х4 = Eх64. При этом благодаря своей цилиндрической конструкции обтекатель имеет свойство самонастраиваться на направление ветра.

к содержанию ↑

Преимущества

Любой новый продукт или изобретение всегда должны существенным образом выделяться на фоне своих предшественников, и обязательно в лучшую сторону. Все это можно сказать и про новый ветрогенератор с турбоконструкцией. Одно из главных преимуществ ветротурбины — это ее устойчивость к сильным ветрам. Ее конструкция устроена таким образом, что она будет эффективно и безопасно работать за пределами, которые для обычных лопастных ветряков, являются критическими: от 25 м/сек до 60 м/сек. Но это не единственное преимущество, которыми обладает ветряная турбина, их несколько:

  1. Отсутствие инфразвуковых волн. Наконец-то ученым удалось решить одну из важных проблем, которыми обладают ветрогенераторные установки. Именно из-за существования такого побочного эффекта ВСУ (ветросиловая установка) подвергалось критике со стороны противников альтернативной энергетики, инфразвук отрицательно сказывается на окружающей живой среде. Но теперь ветрогенератор турбинного типа благодаря отсутствию инфразвуковых волн, могут устанавливать даже в городской черте.
  2. Отсутствие лопастей снимает сразу несколько задач, которые стояли перед конструкторами и изготовителями ветрогенератора. Первое, снимаются значительные затраты сил и средств на эксплуатационный контроль лопастных ветряков. Второе, лопасть ветряного колеса — это самый сложный элемент ветрогенератора в изготовлении. Львиную долю стоимости обычной ВЭУ составляют затраты именно на изготовление лопастей. К тому же известны случаи, когда при сильных порывах ветра, лопасть ломалась, разбрасывая осколки на сотни метров.
  3. Простота сборки и установки. Все сложные конструкции или узлы изготавливает и собирает завод-производитель, на месте происходит лишь последний этап сборки и установка на мачту. Плюс легкость конструкционных элементов, позволяет использовать при монтаже ветрогенераторасамую обычную грузоподъемную технику.
  4. Схема подключения. В отличие от лопастной ВСУ турбина подключается по стандартной схеме. На этот факт никак не влияют те технические условия, который выдвигает будущий владелец ВЭУ.
  5. Большой срок эксплуатации обусловлен материалами, из которых изготавливается ветрогенератор и его отдельные части. Учитывая профилактические работы, которые обязательны при эксплуатации ветротурбины, срок службы устройства может составлять до 50 лет.

к содержанию ↑

География эксплуатации турбинной ВСУ

Самым реальным и оптимальным местом установки турбинного ветрогенератора будет берег озера или моря. Рядом с водоемами такой ветрогенератор будет работать практически круглый год, потому что благодаря своему сопельному устройству, он является очень чувствительным к легким бризам и другим малейшим проявлениям ветра скоростью от 2 м/сек.

С таким же успехом ВСТ будут работать и в черте города, там, где обычный ветрогенератор работать, неспособен по ряду известных причин:

  1. Небезопасность лопастных ВЭУ.
  2. Инфразвук, который они издают.
  3. Минимальная скорость ветра для работы лопастного ветрогенератора 4 м/сек.

к содержанию ↑

Интересный факт, который доказывает преимущество ВТУ

Одним из краеугольных камней, на которых базируется позиция противников альтернативной энергетики, заключается в том, что ветряные электростанции препятствуют работе локационного оборудования. Во время работы ветрогенератор создает помехи, для прохождения радиоволн. Учитывая размеры отдельных ветроэлектростанций, а они могут составлять от нескольких десятков до сотен квадратных километров, понятно, почему правительства многих стран начали блокировать проекты альтернативной энергетики на государственном уровне — это прямая угроза национальной безопасности.

По этой причине французская компания, производящая комплектующие на ветрогенератор, взялась за непростую задачу с точки зрения исполнения — сделать невидимыми для радаров непосредственно ветросиловые установки, а не пространство вокруг ветрогенератора. Для этого будет использоваться опыт, полученный при изготовлении самолетов Стелс. Новые комплектующие планируют выпустить на рынок уже в 2015 году.

Но где, же факт, который доказывает преимущество ВСТ перед лопастной ВЭУ? А факт заключается в том, что ветротурбины не создают помех, для работы локационного оборудования и без дорогостоящей технологии Стелс.

к содержанию ↑

Перспективы развития альтернативной ветроэнергетики

Первые попытки начать использовать ветрогенератор в промышленных масштабах предпринимались еще в середине прошлого века, но оказались неудачными. Это было обусловлено тем, что нефтяные ресурсы были сравнительно дешевыми, а строительство ветроэнергетических станций было нерентабельно затратным. Но буквально через 25 лет ситуация в корне изменилась.


Альтернативные источники энергии усилено начали развиваться в 70-х годах прошлого века, после того, как в мире резко выросли темпы машиностроения и страны столкнулись с дефицитом нефти, что привело к нефтяному кризису 1973 года. Тогда впервые сектор нетрадиционной энергетики в некоторых странах получил государственную поддержку и ветрогенератор стал использоваться в промышленных масштабах. В 80-х годах мировая ветроэнергетика начала выходить на самоокупаемость, и сегодня такие страны, как Дания, Германия и Австралия почти на 30% обеспечивают себя за счет альтернативных источников энергии, в числе которых и ветроэлектростанции.

К сожалению, а возможно, и к счастью, прошлогодняя тенденция нефтяного рынка с нестабильной ценой на нефть, заставляют всерьез задуматься о том, что времена, когда дешевая нефть — это было хорошо остались в прошлом. Сегодня для многих стран, чем дешевле нефть, тем выгоднее развивать нетрадиционную энергетику в первую очередь это касается стран СНГ. Поэтому предпосылки для того, что ветроэнергетика будет развиваться — есть. Как это будет — посмотрим.

mirenergii.ru

Ветрогенератор — как выбрать ветряк

С целью экономии расходов на электроснабжение на производствах и в частных домах устанавливают ветрогенераторы. В данной статье рассмотрим основные характеристики, разновидности и принцип работы ветрогенераторов.

Оглавление:

  1. Устройство и принцип работы ветрогенератора
  2. Разновидности ветряков
  3. Рекомендации по выбору ветрогенератора
  4. Обзор производителей ветрогенераторов

Устройство и принцип работы ветрогенератора

Основные составляющие ветрогенератора:

1. Генератор — преобразователь механической энергии в электрическую. Генератор заряжает аккумуляторные батареи. Чем выше скорость ветра, тем быстрее заряжаются батареи.

2. Лопасти ветрогенератора — часть ветрогенератора, которая подвергается силе ветра, а затем воздействует на генераторный вал.

3. Мачта — устройство на котором крепится генератор и лопасти. От высоты мачты зависит скорость и устойчивость работы ветрогенератора.

Дополнительные компоненты ветрогенератора:

1. Контроллеры — устройство управления ветрогенератором, отвечающее за направление лопастей, особенности заряда аккумулятора, защиту ветрогенератора. Основной функцией контроллера является преобразование переменной энергии в электрическую постоянную.

2. Батареи аккумулятора — приборы для накапливания энергии, которую используют в то время когда отсутствует ветер. Еще одной функцией аккумулятора выступает выравнивание и стабилизация энергии, вырабатываемой генератором. Аккумуляторные батареи обеспечивают электропитание.

3. Анемоскопы или устройства измерения направления ветра — собирают и обрабатывают данные о скорости, направлении и порывах ветра. Анемоскопы устанавливают на более мощных ветрогенераторах, предназначенных для переработки большого количества энергии.

4. Автоматические регуляторы питания предназначены для объединения ветрогенератора, электросети, дизельного генератора или других источников энергии.

5. Инверторы — устройства для переработки постоянного тока в переменный, предназначенный для работы бытовой и электротехники.

При попадании ветра на лопасти ветрогенератора происходит вращение устройства. Во время работы ветрогенератора вырабатывается переменный ток, который попадает в контроллер и перерабатывается в постоянный. Постоянный ток заряжает аккумуляторы, которые обеспечивают электричеством частный дом или большое предприятие. Но, для работы большинства электроприборов необходим переменный однофазный или трехфазный ток, который образуется в инверторе.

Варианты использования ветрогенератора в системе электроснабжения:

  • работа ветряка с аккумулятором в автономном режиме;
  • параллельная работа ветрогенератора на аккумуляторах и солнечных батареях;
  • работа ветрогенератора с параллельным использованием резервного (дизельного, бензинового или газового) генератора;
  • параллельная работа ветрогенератора и обычной электросети.

Преимущества использования ветрогенератора:

  • получение экологически чистой, безопасной и надежной электроэнергии,
  • снижение расходов оплаты за электричество;
  • бесшумность работы устройства;

  • наибольшее количество энергии ветрогенератор производит осенью или зимой, во время большей востребованности электричества для обогрева помещений;
  • цена на ветрогенераторы намного ниже, чем стоимость альтернативных источников получения электроэнергии;
  • возможность ветрогенератора параллельно работать с другими источниками электроэнергии;
  • возможность выбора мощности ветроустановки, в зависимости от типа местности и количества необходимой электроэнергии;
  • возможность использования ветрогенераторов на яхтах или кораблях;
  • потратившись один раз на ветроустановку, обеспечивается электроснабжение минимум на 20 лет.


Разновидности ветряков

В зависимости от размещения турбин выделяют ветрогенераторы:

  • вертикального типа,
  • горизонтального типа.

Ветрогенератор вертикального типа имеет вертикально размещенную турбину, по отношению к поверхности земли, а горизонтальный наоборот. Вертикальный ветрогенератор легко улавливает самые малейшие дуновения ветерка, а горизонтальный — более мощный, по преобразованию энергии.

Разновидности вертикальных ветрогенераторов:

1. Изобретение вертикального ветрогенератора принадлежит шведскому изобретателю Савониусу. Вертикальный ветряк состоит из двух цилиндров, которые имеют вертикальную ось вращения. Независимости от силы и направления ветра вертикальный ветряк постоянно вращается вокруг своей оси. Основным недостатком вертикального ветрогенератора является неполное использование ветровой энергии. Во время исследований было выявлено, что вертикальный ветряк использует только третью часть ветровой энергии.

2. Вертикальный ветряк с наличием ротора Дарье был изобретен на несколько десятков лет позже обычного. Роторный ветрогенератор имеет две или три лопасти и ротор. Ветрогенераторы с ротором просты в изготовлении и легки в монтаже. Главным недостатком такого ветрогенератора является то, что ротор нужно запускать вручную.

3. Ветрогенератор с вертикальной осью вращения и с наличием геликоидного ротора — имеет закрученные лопасти. которые обеспечивают равномерное вращение ветрогенератора. Преимущество: уменьшение нагрузки на подшипники, тем самым увеличение срока службы устройства. Недостатки: высокая стоимость, сложность монтажа.

4. Вертикальный ветрогенератор с наличием многопластного ротора — самое эффективное устройство по переработке ветровой энергии. Имеет сложный ротор, который состоит из большого количества лопастей.

5. Ортогональные ветрогенераторы не требуют большой скорости ветра. Для работы такого устройства подойдет скорость ветра от 0,7 м/с. Ортогональные вертикальные ветроустановки имеют высокие технические характеристики, бесшумное вращение мотора и интересный дизайн. Устройство ортогонального ветрогенератора основывается на вертикальной оси вращения и на нескольких лопастях, которые удалены от оси на определенном расстоянии. Несмотря на большое количество преимуществ, ортогональная ветроустановка имеет недостатки:

  • небольшой строк службы опорных узлов;
  • лопасти более массивные, чем у обычных ветрогенераторов;
  • большой вес установки затрудняет монтаж устройства.

Горизонтальные ветрогенераторы имеют более высокий коэффициент полезного действия. Главным недостатком горизонтальных ветрогенераторов является необходимость в постоянном поиске ветра при помощи флюгеля, который устанавливается отдельно от устройства.

Горизонтальные ветрогенераторы разделяют на:

  • устройства однолопастного типа — характеризуются высокими оборотами вращения, имеют небольшой вес и легкую конструкцию;
  • ветрогенераторы двухлопастного типа — по устройству схожи с однолопастными, только отличаются количеством лопастей;
  • ветряки трехлопастного типа имеют наибольшую мощность около 7 мВт, считаются одними из самых популярных среди ветрогенераторов, предназначенных для дома;
  • многолопастные ветрогенераторы имеют от четырех до пятидесяти лопастей, данные устройства используют для обеспечения работы водяных установок.

В соотношении с количеством лопастей все ветрогенераторы подразделяются на:

  • однолопастные,
  • двухлопастные,
  • трехлопастные,
  • многолопастные.

По материалам, из которых состоит ветрогенераторная установка выделяют:

  • ветрогенераторы парусного типа,
  • ветрогенераторы жесткого типа, изготовлены из стекловолокна или металла.

В зависимости от шагового признака винта ветрогенераторы разделяют на:

  • устройства измеряемого шага,
  • устройства фиксированного шага.

Ветрогенератор на основе изменяемого шага имеет довольно сложную конструкцию, но в то же время увеличенную скорость вращения. Ветрогенератор с фиксированный шагом отличается надежностью и простотой.

Все ветрогенераторы условно разделяют на два вида:

  • ветрогенераторы промышленного типа;
  • домашние ветрогенераторы.

Промышленные ветряки используют для получения большого количества электроэнергии. Для устройства ветрового парка, состоящего из нескольких десятков или сотен ветрогенераторов требуется тщательное обследование местности, которое проводят на протяжении года или двух. Промышленные ветрогенераторы позволяют получать электроэнергию для обеспечения электричеством нескольких десятков домов или определенного производства.

Ветрогенератор для дома — позволяет значительно снизить расходы на электроснабжение и обеспечивает независимость от работы общей электросети.


Рекомендации по выбору ветрогенератора

1. Перед выбором ветрогенератора следует определиться с мощностью и функциональным назначением данного устройства.

2. Внимательно изучите разновидности ветряков и ознакомьтесь с климатическими условиями данного региона, в котором планируется установка ветрогенератора.

3. Определите выходную мощность ветряка, которая напрямую зависит от мощности преобразователя (инвертора). Второе название выходной мощности — пиковая нагрузка — совокупность количества приборов, которые одновременно будут работать с ветрогенератором. То есть, выходная мощность определяется как общая мощность ветряка. Даже при редком, но большом потреблении электроэнергии следует выбирать ветрогенератор с большой мощностью. Чтобы увеличить выходную мощность, следует установить несколько инверторов.

4. Время на непрерывную работу устройства — определяют мощностью аккумулятором, которые устанавливаются на ветряк. При безветренной погоде аккумуляторы обеспечивают помещение электричеством.

5. Темпы заряда аккумулятора определяются мощностью устройства, скоростью ветра, высотой установки и рельефом территории, на которой установлен ветрогенератор. Чем выше мощность ветрогенератора, тем быстрее происходит заряд батарей. При постоянном потреблении электроэнергии или при слабом ветре выбирайте более мощные модели ветряков. Чтобы увеличить скорость заряда батарей, следует подключить несколько генераторов к ветроустановке.

6. Не следует покупать много аккумуляторных батарей, при слабой силе ветра, так как ветрогенератор не успеет заряжать все батареи. Если батареи не до конца заряжаются это приводит к быстрому выходу их строя, поэтому количество батарей следует рассчитывать из потребляемой мощности всех электроприборов в доме.

7. Чтобы ветряк купить, следует обратить внимание на главный фактор — вырабатываемую энергию устройства. Этот критерий указан в технических характеристиках ветрогенератора.

8. Чтобы определить потребляемую мощность дома, в котором будет производиться установка ветряка, следует просмотреть счета за электричество за последние 12 месяцев, и вывести минимальный, средний и максимальный коэффициент потребления энергии.

9. С помощью исследований ближайшей метеорологической станции, узнайте о среднегодовой скорости ветра на предполагаемом участке установки ветряка. Оптимальная работа ветрогенератора обеспечивается при ветре 5 м/с.

10. Лучше устанавливать ветрогенератор как дополнительный источник питания в паре с дизельным или бензиновым генератором.

11. Испытайте ветрогенератор в работе, обратите внимание на уровень шума и необходимость в техническом обслуживании ветряка. Некоторые мощные ветрогенераторы имеют достаточно высокий уровень шума, что приводит к дискомфорту и проблемам с соседями.

12. Средний срок эксплуатации ветрогенератора составляет шесть-семь лет.

13. Лучше отдать предпочтение ветрогенератору, лопасти которого изготовлены из твердых материалов: стекловолокна или металла.

14. Обратите внимание на оптимальную работу ветрогенератора при средней скорости ветра, которая характерна для данного региона.

15. Безредукторные ветрогенераторы намного проще в установке, легко собираются и не требуют дополнительного техобслуживания, в то время как редукторные несмотря на сложность монтажа обеспечивает большую мощность и лучшее качество работы ветряка.

16. Не следует обращать внимание на такие рекламные лозунги о том, что ветрогенератор имеет улучшенную конструкцию, магнитную левитацию или большой контроллер, в большинстве случаи такая реклама, направлена на то, чтобы за обычный ветрогенератор получить больше денег.

17. При покупке ветрогенератора, потребуйте гарантию и выполнение всех обязательств производителя ветрогенераторов перед покупателем. Например, наличие креплений — комплект ветрогенератора, который включает все комплектующие: инверторы, генераторы, аккумуляторы. При покупке данных устройств у разных производителей, риск неправильной работы ветрогенератора увеличивается.

18. Формула расчета мощности ветрогенератора: Р = 0,5 * rho * S * Ср * V3 * ng * nb. Р — мощность ветрогенератора, rho — величина обозначения плотности воздуха, S — величина площади метания ротора, Ср — коэффициент аэродинамического действия, V — величина скорости ветра, ng — радиаторный коэффициент полезного действия, nb — при наличии редуктора. КПД редуктора.

19. Стоимость ветрогенератора напрямую зависит от таких факторов:

  • количество лопастей,
  • мощность аккумуляторов,
  • мощность генератора,
  • количество инверторов,
  • материал изготовления лопастей,
  • наличие редуктора,
  • номинальная мощность ветряка,
  • тип ветрогенератора: горизонтальный, вертикальный,
  • материал, из которого изготовлена установка,
  • наличие дополнительных комплектующих.

Обзор производителей ветрогенераторов

Чтобы ветрогенератор купить, нужно предварительно рассчитать мощность ветрогенератора и потребляемое электричество. После проведения расчетов обратите внимание на стоимость ветряка.

Первые позиции по производству ветрогенераторов занимает Германия, Дания и Франция. Несколько десятков лет назад началось изготовление российских ветрогенераторов, которые, по сравнению с зарубежными моделями, требуют усовершенствования.

Рассмотрим основных популярных производителей ветрогенератовор для дома:

1. AEOLOS (Дания)

Особенности ветрогенераторов AEOLOS:

  • компания занимается разработкой ветрогенераторов более 35 лет;
  • мощность вертикальных ветрогенераторов составляет от 500 Вт до 500 кВт;
  • мощность горизонтальных ветряков — 300-10000 Вт;
  • сфера применения ветрогенераторов: частный сектор, фермерское хозяйство, обеспечение электричеством поселков и школ;
  • высокий уровень выработки электроэнергии;
  • использование генератора без редуктора обеспечивает высокий уровень надежности ветроустановки;
  • небольшая стоимость технического обслуживания;
  • высокий уровень безопасности обеспечивает функция контроля положения устройства ветрогенератора;
  • наличие электронной системы торможения.

Технические характеристики AEOLOS Н 1кВт:

  • величина номинальной мощности: 1 кВт;
  • величина максимальной мощности: 1,5 кВт;
  • выходное напряжение: 48 В;
  • характеристика лопастей: 3 штуки, материал — стекловолокно;
  • особенности генератора: генератор трехфазного магнитноэлектрического типа, который обеспечивает постоянный ток;
  • коэффициент полезного действия: менее 0,95;
  • гарантийный строк: 5лет;
  • максимальный строк эксплуатации: 20 лет.

2. ENERCON (Германия)

Особенности:

  • мощность ветрогенераторов компании ENERCON от 330 Вт до 7,58 мВт;
  • наличие кольцевого генератора;
  • отсутствие трансмиссии;
  • выполнение мировых стандартов качества: надежность и долговечность.

Технические особенности ENERCON Е80:

  • величина номинальной мощности: 80 кВт;
  • величина высоты башни: 53 м;
  • величина номинальной скорости ветра: 12 м/с;
  • минимальная скорость ветра: 3 м/с;
  • максимальная скорость ветра: 30 м/с;
  • количество лопастей: 3 штуки;
  • величина диаметра ротора: 18 м.

3. AMPAIR (Великобритания)

Характеристика сферы использования:

  • катера;
  • лодки;
  • удаленные автономные системы питания.

Особенности:

  • небольшой размер;
  • легкий монтаж;
  • возможность установки на ограниченном пространстве;
  • высокое качество и надежность.

Технические особенности Ampair 100:

  • величина номинальной мощности: 100 Вт;
  • величина напряжения генератора: 12 Вт;
  • характеристика лопастей: 6 штук;
  • необходимая скорость ветра: от 3 м/с;
  • стоимость: 2700 $.

4. Fair Wind (Бельгия)

Особенности:

  • возможность использования в частном доме, отеле, АЗС, на ферме;
  • высокий уровень европейского качества;
  • изготовление лопастей — бельгийское;
  • происхождение генераторов — финское;
  • производством инверторов и контроллеров занимается немецкая компания;
  • произведение тестирования и проверки каждой ветроустановки;
  • максимальные порывы ветра 55 м/с;
  • система безопасности имеет полную автоматизацию;
  • присутствует пассивное аэродинамическое торможение;
  • ветроустановки Fair Wind используют вместе с установками солнечных батарей;
  • большая вариация мощностей поможет подобрать ветроустановку для каждого участка индивидуально.

Технические особенности Fair Wind F16:

  • величина номинальной мощности: 10 кВт;
  • величина диаметра ветроколеса: 4 м;
  • величина номинальной скорости ветра: 15 м/с;
  • минимальная скорость ветра: 3 м/с;
  • количество лопастей: 3 штуки, выполнены из авиационного алюминия;
  • величина диаметра ротора: 18 м;
  • стоимость: 20000 $.

5. Fuller Wind (США)

Особенности:

  • полное отсутствие лопастей;
  • компактность использования;
  • небольшая стоимость, по сравнению с классическими ветрогенераторами;
  • основа ветрогенератора — Турбина Теслы, которая состоит из большого количества металлических дисков, которые разделены кольчатыми прокладками;
  • высокий уровень производительности электроэнергии.

6. Fortiss (Нидерланды)

Особенности:

  • использование: электроснабжение домов, снабжение телекоммуникационного оборудования, водоочистительные системы;
  • обеспечение полной независимости от промышленных источников электроэнергии;
  • возможно совместное использование ветроустановок и традиционных источников электропитания;
  • стабильное электроснабжение и понижение расходов на электричество;
  • простота конструкции и легкость монтажа ветрогенераторов;
  • возможность использования солнечных батарей или дизельных генераторов;
  • низкий уровень шума;
  • высокий уровень безопасности.

Технические особенности Fortiss Montana 5,8:

  • характеристика генератора: генератор синхронного магнитного типа;
  • максимальная скорость ветра: 55 м/с;
  • количество лопастей: 3 штуки;
  • необходимая скорость ветра: от 2,5 м/с;
  • варианты системы торможения: механический, электрический;
  • стоимость: 20000 $.

strport.ru

Ветряки для дома: достоинства и недостатки

Для того, чтобы подобрать наиболее оптимальный вариант ветряка для своего дома, необходимо знать некоторые особенности устройства и работы ветряков их достоинства и недостатки, а также метеорологические особенности местности.

Потребность установить ветряк возле частного дома может возникнуть в двух случаях — если централизованного электроснабжения нет совсем или оно оставляет желать лучшего либо же вы решили существенно сэкономить на оплате за электроэнергию. Строительство ветрогенератора — довольно масштабное мероприятие и по средствам, и по трудозатратам, поэтому требует предварительных расчетов и уточнения множества факторов.

Ветер — экологически чистый бесконечный источник энергии, которым человечество пользуется уже тысячи лет. Для получения электроэнергии его начали использовать около века назад, но не везде ветер имеет достаточные показатели, чтобы было выгодно устанавливать ветрогенератор.

Поиск по специализированным сайтам с метеорологической статистикой, визит на местную метеостанцию, сбор и проверка данных по силе и направлению ветра своими руками на месте планируемой установки, например, при помощи анемометра с самописцем, поднятого над землей на уровень ротора будущего генератора будет первоочередной задачей.

Если в вашей местности ветер имеет среднегодовую скорость меньше чем 4—4,5 м/с (14,4—16,2 км/ч), ветряк скорее всего окажется нерентабельным. Лучше всего устанавливать ветрогенераторы на возвышенностях, побережьях, в степи — там, где постоянно дует сильный ветер и нет никаких природных или искусственных препятствий для него.

Если присутствует ветровая тень от холма, высоких деревьев, придется либо увеличивать высоту расположения ветрогенератора, что существенно удорожает конструкцию, либо переключиться на другие альтернативные источники для снабжения дома теплом и электроэнергией.

к содержанию ↑

Некоторые формальности

Следует обратиться к местным властям и уточнить перечень требований и разрешений, которые нужно получить. Максимальная высота конструкции, которая не будет мешать полетам малой авиации, отсутствие помех для радиосвязи и телевещания, создаваемых ветрогенератором с металлическими лопастями, предельный безопасный уровень шума, а также согласие соседей на установку ветряка неподалеку от их домов.

Согласитесь — обидно будет, когда построенный своими руками и уже действующий ветряк придется демонтировать или переделывать по решению суда. Поэтому чем больше разрешений удастся собрать — тем лучше. Многих проблем удастся избежать, если оформлением разрешений на ветряк будет заниматься фирма, которая его и будет устанавливать — но это также дополнительные затраты.

к содержанию ↑

Компоненты и расчеты

Стоимость постройки варьируется в самых широких пределах, в зависимости от выбранной конструкции ветряка и использованных компонентов. Есть два основных типа ветрогенераторов — с горизонтальной осью вращения (обязательно располагать на высоте, оптимально 25-35 м) и с вертикальной осью, которые допустимо размещать просто на уровне земли.

Кроме самого генератора для ветряков с горизонтальной осью вращения необходим ротор с лопастями, редуктор и поворотный хвост, а также защитный кожух. Все это, обычно, устанавливается на высокую мачту. Поскольку мачта, как правило, довольно массивное и высокое сооружение, под него придется закладывать фундамент, а также закреплять ее дополнительными тросами-растяжками.

Дополнительно к суммарной цене конструкции добавляется стоимость монтажа при помощи крана. Чтобы избежать строительства высокой и дорогой мачты, для небольших ветряков все чаще используют варианты конструкции с вертикальной осью вращения ротора, которые способны работать на меньшей высоте при скоростях ветра от 1 м/с. Но такие системы относительно новые, поэтому однозначной статистики их эксплуатации еще не накоплено. Они дают меньше электроэнергии, зато существенно дешевле и не такие шумные, их проще изготовить своими руками.

На земле, в помещении располагается инвертор для превращения постоянного тока от генератора в переменный, комплект аккумуляторов, разъединители и автоматические выключатели, нужные для перераспределения полученной электроэнергии и отключения устройства при аварийных ситуациях либо для ремонта.

Примерное количество энергии, вырабатываемое на протяжении года ветряком с горизонтальной осью вращения можно подсчитать по такой эмпирической формуле: E = 1.64 * D*D * V*V*V. Где: E — электроэнергия за год (кВт*ч/год), D — диаметр ротора (в метрах), V — среднегодовая скорость ветра (м/сек). После этого подсчитываем количество и стоимость потребляемой вашим домом за год электроэнергии, а затем множим полученные цифры на 25-30 лет — оценочный срок службы ветряка. Исходя из этого, рассчитываем необходимый размер лопастей и примерную общую стоимость конструкции, в зависимости от стоимости компонентов.

Если мачту можно построить самостоятельно, то электрооборудование и сам ветряк целесообразно покупать серийные, заводской сборки. Хотя, народные умельцы не раз демонстрировали примеры самостоятельной постройки ветрогенераторов для дома на основе компонентов из других устройств (электрогенераторов автомобилей, промышленного оборудования, даже умудряются пускать в дело переделанные электродвигатели от бытовой техники), использовать самодельные лопасти ротора и хвостовое оперение.

Схемы, методики и советы несложно найти в интернете или специализированных технических журналах, но в таком случае вся ответственность за работоспособность и безопасность построенного ветрогенератора будет лежать только на вас.

Очевидно, что с увеличением диаметра лопастей ротора и высоты мачты и соответственно большей собираемой энергии ветра возрастает генерируемая мощность, но пропорционально растет окончательная стоимость конструкции.

По разным оценкам стоимость постройки небольшого ветрогенератора для дома составляет в пределах 2-8 тыс. долларов за 1 кВт электроэнергии. Если у вас дома нет централизованного электроснабжения, ветряк, скорее всего, будет стоить дешевле самостоятельной прокладки линии электропередач или топлива для дизель-генератора.

Если же он задумывался как средство экономии — считайте и делайте выводы о его необходимости для дома. Кстати, уже сейчас полученная на крупных промышленных ветрогенераторах электроэнергия за 1 кВт получается дешевле, чем электроэнергия, выработанная на классических тепловых электростанциях. Себестоимость электроэнергии на малых ветрогенераторах немного выше, но все последние годы она неуклонно снижается.

В любом случае, если сегодня ветряк окажется нерентабельным, не выбрасывайте сделанные своими руками расчеты — через некоторое время появление новых моделей генераторов с большими показателями КПД, изменение тарифов на электроэнергию могут кардинально изменить ваше предыдущее решение.

Также наблюдайте за ситуацией с зеленым тарифом, который применяется во многих странах. По этому тарифу электроэнергию, сгенерированную дома при помощи альтернативных источников, в том числе энергии ветра, можно возвращать в электросеть, получая за нее доплату. Появление в стране зеленого тарифа или изменение его ставки может существенно повлиять на время окупаемости ветряка и проносимую им экономию для дома.

к содержанию ↑

Оптимальные режимы использования

Ветер дует неравномерно, и повышенная генерация электроэнергии с его помощью редко будет совпадать с периодами максимального потребления в доме. Поэтому желательно чтобы у вас была возможность обеспечить необходимую нагрузку и использовать всю лишнюю наработанную ветрогенератором электроэнергию — на подогрев воды в бойлере, дополняющие систему отопления электронагреватели внутри дома, насос в колодце, качающий воду в бак на крыше, или же на еще более экзотичные задачи вроде подзарядки аккумуляторов электромобиля — все они должны включаться автоматически при сильном ветре и при маленьком общем потреблении.

Вообще, в условиях российского климата с длинной холодной зимой и относительно небольшими скоростями ветра наиболее энергоэффективной и дешевой представляется схема из ветрогенератора с вертикальной осью вращения, установленного на уровне грунта либо на небольшой мачте в 5-10 м высотой, поднимающей его над крышей дома и кронами плодовых деревьев. Ветряк напрямую подключается к отдельному электронагревателю и бойлеру внутри помещения, без преобразователей тока и аккумуляторов.

Такую схему вполне реально реализовать своими руками, не привлекая монтажников. В этом случае ветрогенератор вырабатывает по сути тепло для обогрева дома, который, в свою очередь, служит безразмерным тепловым аккумулятором и позволяет не слишком беспокоиться из-за нерегулярных перепадов силы ветра, полностью используя всю наработанную ветрогенератором электроэнергию. Причем такая система получается саморегулируемой — сильный ветер быстрее охлаждает дом, но одновременно он же дает возможность тандему из ветрогенератора и электронагревателя лучше его отапливать изнутри.

к содержанию ↑

Проблемы на этапе проектирования

Шум в пределах 40-60 Дб, который может мешать не только соседям, но и вам. При возможности, если позволяет конфигурация земельного участка, ветряк стоит максимально отдалить от дома. Оптимально на 200-300 м.

  1. При некоторых режимах работы ветрогенератора или неудачной конструкции мачты ветряк может издавать инфразвук, вызывающий ощущение страха и дискомфорта;
  2. Высокая мачта, требующая обязательного заземления и наличия молниеотвода, а также наличия сигнальной лампы на вершине для безопасности полетов малой авиации;
  3. При работе ротора возникает вибрация, поэтому мачта ветряка должна располагаться отдельно, не соприкасаясь со стенами и перекрытиями дома или с другими строениями;
  4. Необходимость регулярного техобслуживания частей генератора, осмотров и замены смазки, которые нужно проводить на высоте. Примерно раз в 10 лет требуют замены лопасти и подшипники, независимо от того самодельные они или нет. Такие ремонты не всегда возможно выполнить своими руками и возникает необходимость привлекать специалистов. Мачту также придется регулярно красить и осматривать, чтобы избежать коррозии;
  5. Возможность повреждения мачты, лопастей и генератора в случае ураганного ветра или при обледенении;
  6. Аккумуляторы также требуют регулярной замены раз в несколько лет, располагать их нужно внутри дома;
  7. При подборе готовых серийных ветрогенераторов нужно очень внимательно вычитывать их технические характеристики — в разных странах и у разных производителей выходная мощность, указанная в описании изделия и в его техпаспорте вычисляются по различным методикам, сильно зависящих от принятой за базовую силы ветра;
  8. Расположенные неподалеку от места установки ветрогенератора маленькие деревья со временем вырастут и начнут создавать помехи для ветра;
  9. Если вы решились изготавливать ветряк своими руками, очень сложно наперед предсказать и рассчитать его итоговую выработку электроэнергии и его степень эффективности.

Тенденции развития техники однозначно указывают на перспективность использования для полного или частичного снабжения дома электроэнергией и теплом разнообразных альтернативных источников: солнечных панелей, ветровых генераторов, тепловых конвекторов, новых эффективных материалов для термоизоляции. Недорогая и эффективная система для создания полностью энергонезависимого жилища из научной фантастики постепенно превращается в довольно распространенное техническое решение, и ветряк может оказаться в нем одним из значимых элементов.


mirenergii.ru

Ветрогенераторы. Устройство и виды. Работа и применение

Электричество сегодня считается чем-то обыденным, ведь оно есть в каждом доме. И никто не задумывается, откуда оно берется. Электричество в основной массе вырабатывается электростанциями, работающими на нефти, природном газе, ядерном топливе или угле. Эти традиционные источники представляют определенную опасность для окружающей среды, вследствие чего все большее внимание уделяется альтернативным видам энергии. К последним можно отнести ветрогенераторы, которым для выработки электричества нужен лишь ветер.

Устройство

Конструктивно ветрогенераторы в большинстве случаев предполагают наличие следующих элементов:

  • Лопасти турбины (пропеллер).
  • Турбина (вращающаяся часть).
  • Электрогенератор.
  • Ось электрогенератора.
  • Инвертор, преобразующий переменный ток в постоянный, для возможности зарядки батареи.
  • Механизм вращения лопастей.
  • Механизм вращения турбины.
  • Аккумулятор.
  • Мачта.
  • Контроллер вращения(анемометр).
  • Демпфер.
  • Датчик ветра и анемоскоп.
  • Хвостовик анемоскопа.
  • Гондола и ряд других элементов.

В зависимости от вида ветрогенератора конструкция и входящие в него элементы могут разниться. К примеру, промышленные устройства также предусматривают наличие системы молниезащиты, силового шкафа, поворотного механизма, надежного фундамента, системы пожаротушения, системы изменения угла атаки лопасти, телекоммуникационной системы для передачи информации о работе ветрогенератора и так далее.

Принцип действия

Ветрогенератор представляет устройство, преобразующее энергии ветра в электрическую энергию. Прародителями современных видов ветрогенераторов являются ветряные мельницы, которые применялись для получения муки из зерен. И принцип их работы изменился ненамного: лопасти вращают вал, который передает необходимую энергию на другие элементы.

  • Ветер вращает лопасти, передавая крутящий момент через редуктор на вал генератора.
  • При вращении ротора образуется трехфазный переменный ток.
  • Полученный ток направляется на аккумуляторную батарею через контроллер. Аккумуляторы применяют для создания стабильности работы ветрогенератора. Генератор заряжает аккумуляторы при наличии ветра. При его отсутствии всегда можно взять энергию с аккумулятора, чтобы потребитель не прекращал получать электричество.
  • С целью защиты от ураганов в ветрогенераторах применяется система с уводом ветроколеса от ветра при помощи складывания хвоста, либо торможения ветроколеса электротормозом.
  • Для зарядки аккумуляторов ставится контроллер между ветряком и АКБ. Он отслеживает зарядку АКБ, чтобы не испортить аккумуляторы. При необходимости он может сбрасывать лишнюю энергию на определенный балласт, к примеру, большой резистор или тэны для отопления.
  • В аккумуляторах имеется лишь постоянное низкое напряжение рядностью 12/24/48 вольт. Однако потребителю нужно напряжение в 220 вольт, именно поэтому ставится инвертор. Это устройство преобразует постоянное напряжение в переменное, создавая напряжение в 220 вольт. Естественно, что можно обойтись и без инвентора, но придется использовать электрические приборы, специально рассчитанные на низкое напряжение.
  • Преобразованный ток направляется потребителю, чтобы питать отопительные батареи, освещение, телевизор и иные устройства.

В промышленных ветряках могут применяться и другие элементы, которые обеспечивают автономную работу устройства.

Типы и виды ветрогенераторов

Классифицировать ветряки можно по материалам, количеству лопастей, шагу винта и оси вращения.

Выделяют два основных типа ветрогенераторов по оси вращения:

  1. С горизонтальной осью круглого вращения, то есть крыльчатые.
  2. С вертикальной осью вращения, то есть «лопастные» ортогональные, «карусельные».

Горизонтальные классические ветрогенераторы имеют пропеллер (в большинстве случаев трехлопастной), а вертикальные ветряки обладают ветроколесом, которое вращается вертикально.

По количеству лопастей ветряки могут быть:

  • Трехлопастные и двухлопастные.
  • Многолопастные.

Вращение многолопастных ветряков начинается при слабом ветре, тогда как для двухлопастных и трехлопастных устройств требуется более сильный ветер. Однако каждая
дополнительная лопасть создает дополнительное
сопротивление ветроколеса, вследствие чего достигнуть рабочих оборотов генератора становится сложнее.

По материалам лопастей ветряки могут быть:

  • Парусные генераторы.
  • Жесткие лопасти ветрогенератора.

Парусные лопасти дешевле и проще в изготовлении, однако, когда необходима стабильная и надежная работа для автономного электроснабжения они не подойдут.

По шагу винта:

  • Изменяемый шаг винта.
  • Фиксированный шаг винта.

Изменяемый шаг винта дает возможность повысить диапазон эффективных скоростей работы. В то же время данный механизм неизбежно:

  • Усложняет конструкции лопасти.
  • Снижает общую надежность ветрогенератора.
  • Утяжеляет ветроколесо и требует дополнительного усиления конструкции.
Применение

Устройства могут использоваться в различных местах. В большинстве случаев в открытые пространства, где большой потенциал ветров:

  • Горы.
  • Мелководье.
  • Острова.
  • Поля.

В то же время ветрогенераторы современных конструкций дают возможность задействовать энергию даже слабых ветров – от 4 м/с. Благодаря им можно решать задачи электроснабжения и энергосбережения объектов любой мощности.

  • Стационарные ветряные электростанции в виде альтернативных источников энергии способны полностью обеспечить электрической энергией небольшой производственный объект или жилой дом. В периоды отсутствия ветра необходимый запас электроэнергии будет выбираться из аккумуляторных батарей. Они отлично могут сочетаться с фотоэлектрическими батареями, газовым или дизельным генератором.
  • Ветрогенераторы могут использоваться и для экономии при наличии центральной электросети.
  • Ветроустановки средней и малой мощности часто используются владельцами фермерских хозяйств и домов, удаленных от централизованных электросетей, в качестве автономного источника.
Достоинства и недостатки

К преимуществам можно отнести:

  • Энергия ветра является возобновляемой энергией. Ветер создается бесплатно и постоянно, без ущерба окружающей среде. Энергия ветра доступна в любом месте на планете.
  • Энергия ветра является достаточно дешевой.
  • Ветряные турбины находятся на мачтах, им требуется минимум места. Благодаря этому их можно устанавливать совместно с иными объектами и строениями.
  • Ветрогенераторы в процессе эксплуатации не производят вредных выбросов.
  • Энергия ветра в особенности требуется в удаленных местах, куда затруднена доставка электричества иными привычными способами.

К недостаткам можно отнести:

  • Сила ветра очень переменчива и непредсказуема, вследствие чего требуется дополнительный буфер для накапливания электроэнергии, либо дублирования источника.
  • Высокая начальная стоимость создания и установки ветрогенераторов.
  • Ветряные турбины создают шум, который сравним с шумом автомобиля, перемещающегося со скоростью 70 км/ч. Это отпугивает животных и создает определенный дискомфорт для людей.
  • Вращающиеся лопасти представляют потенциальную опасность для птиц.
Похожие темы:

electrosam.ru

Выбор ветроустановок для систем автономного электроснабжения


 


В статье представлен анализ современных конструкций ветроустановок. Выделены критерии оценки, положительные и отрицательные стороны каждого вида.


Ключевые слова: ветроустановка, горизонтально-осевые, вертикально-осевые, ротор Савониуса, ротор Дарье, ротор Горлова, ветроустановки с многолопастным ротором, ветер, скорость, момент


 


Развитие ветроэнергетики в последнее время все более ускоряется что обусловлено желанием иметь независимую генерацию мощности, повышением тарифов, а также износом отечественных сетей. В данной статье исследуется применение ветроустановки (ВЭУ) для индивидуального пользования.


Все ВЭУ характеризуются положением оси ветроколеса относительно поверхности. Эффективности установки определяется КИЭВ — коэффициент использования энергии ветра, теоретически максимально возможный КИЭВ 60 %.


Наиболее применимым типом ветроэнергетических установок является горизонтально-осевой ветродвигатель, рис. 1, ось вращения ветроколеса которого располагается параллельно направлению скорости ветра. Вращающийся момент создаться аэродинамическими подъёмными силами. [1]


Рис. 1. Горизонтально-осевые ветродвигатели


 



Конструктивно более распространены трехлопастные установки с номинальной мощностью до 10 МВт. Ротор этих ветрогенераторов обладает большим моментом инерции, и как следствие, обладает более малыми скоростями вращения, но за счет своих размеров, формирует более высокий крутящий момент.


Другим основным видом являются ветродвигатели с вертикальной осью вращения, рис. 2.


Рис. 2. Вертикально-осевые ветроустановки


 


Генерация начинается при скорости ветра около 5 м/с, а на номинальную мощность установка выходит при 11 м/с. Максимально установленная мощность до 20 МВт. [2]


Ротор Савониуса имеет лопасти в виде цилиндрических поверхностей, рис. 3. [3]


Рис. 3. Ветроустановка с ротором Савониуса


 


Вращающийся момент создаться различными силами сопротивления воздушному потоку. Наиболее мощные рассчитаны на 5 кВт.



Ротор Дарье состоит из двух лопастей-пластин и вертикальной оси, рис. 4. [4]


Рис. 4. Ветроустановка с ротором Дарье


 


Ротор Горлова это всего лишь разновидность вертикально-осевой ветроустановки, рис. 5. [5]


Рис. 5. Ветроустановка с ротором Горлова


 


Многолопастные ветрогенераторы с направляющим аппаратом, конструктивно обладают двумя линиями лопастей, неподвижно закреплённый внешний ряд это концентрирующее ветрозахватное устройство. Ускоренный поток воздуха под наилучшим углом податься на лопасти генератора, рис. 6. [6]


Рис. 6. Ветроустановки с многолопастным ротором с направляющим аппаратом



 


В таблице 1 приведено сравнение наиболее распространённых конструкций ветроэнергетических установок.


 


Таблица 1


Характеристики ветроустановок









Тип ветроустановки


Преимущества


Недостатки


Горизонтально-осевая


                    КИЭВ порядка 47–48 %;


                    Малое число лопастей;


                    Простой процесс монтажа;


                    Дешёвые генераторы;


                    Большая стоимости системы в целом;


                    Необходимость ориентации на ветер;


                    Сложный механизм поворота лопастей;


Вертикально-осевая


                    Отсутствие механизма, ориентирующего на ветер;


                    Удобство эксплуатации;


                    Низкая надежность;


                    Массивная лопастная конструкция;


                    Отсутствие регулировки угла лопастей;


Ротор Савониуса


                    Само запуск при низких скоростях ветра;


                    Высокая материалоемкость;


                    Слабый КИЭФ — 15 %;


Ротор Дарье


                    КИЭВ 36 %-40 %;


                    Простое обслуживание;


                    Проблемы с самозапуском;


Ротор Горлова


                    Большой срок службы;


                    Высокая эффективность;


                    Сложная конструкция лопастей;


                    Высока цена;


Многолопастная с направляющим аппаратом


                    КИЭФ до 50 %;


                    Работа с низкими скоростями ветра;


                    Большая стоимость;


                    Значительная металлоемкость;


 


В целом, можно сказать, что ветроустановки с вертикальной осью вращения наиболее рекомендуемы для применения в автономном электроснабжении. При недостаточных скоростях ветра, а это 5 м/с и ниже, предпочтительным является использование комбинированных устройств, состоящих из ротора Дарье и ротора Савониуса, данное сочетание позволяет иметь достаточно низкий момент трогания и сохранять вырабатываемую энергию на приемлемом для потребителя уровне. Также перспективным направление — это развитие принципиально новых конструкций ветроколес, основанных на применение концентраторов и конфузоров, что еще более расширит, сферу применяя ветроэнергетики даже в регионах с относительно низкими скоростями ветра. [7–9]


 


Литература:


 


  1.                HOME: Inhalt der Website Windenergie Technik // Windenergie Technik URL: http://www.windenergie-technik-crome.de/ (датаобращения 13.11.2015)

  2.                Энергетика, ресурсосбережение, экономика // SimpleMachinesURL: http://vedomo.ru/index.php?topic=491.0 (дата обращения 13.11.2015)

  3.                Возобновляемые источники энергии. Часть 2. Ветер // URL: http://www.science-techno.ru/nt/article/vozobnovlyaemye-istochniki-energii-chast-2-veter/page/1 (дата обращения 13.11.2015)

  4.                Анализ ветроустановок с вертикальной осью вращения для электростанций малой мощности // URL: http://www.rusnauka.com/27_NNM_2011/Tecnic/5_92716.doc.htm (дата обращения 13.11.2015)

  5.                Gorlov helical turbine // URL: http://winddose.com/wind-turbine-techologies.html (дата обращения 13.11.2015)

  6.                Ветрогенераторы с многолопастным ротором с направляющим аппаратом // URL: http://reon.by/ob-energetike/energiya-vetra/80–002 (дата обращения 13.11.2015)

  7.                Дайчман, Р. А. Возможности современной ветроэнергетики / Р. А. Дайчман // Актуальные вопросы современной науки. — 2015. –№ 4(8). — С. 11–14.

  8.                Дайчман, Р. А. Использование ветроэнергетических установок в Российской Федерации / Р. А. Дайчман // Апробация. — 2015. –№ 11(38). — С. 13–15.

  9.                Дайчман, Р. А. Современная ветроэнергетика в Российской Федерации / Р. А. Дайчман // Научная перспектива. — 2015. — № 11(69). — С. 98–99.

moluch.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о