Ибп для усилителя – Импульсный источник питания для УМЗЧ на IR2153 (300-500Вт)

Переделка дешевого ИБП для УМЗЧ


Для изготовления блоков питания усилителей мощности как правило применяются низкочастотные 50-герцовые трансформаторы. Они надежные, не создают вч-помех и сравнительно просты в изготовлении. Но есть и минусы – габариты и вес. Иногда такие недостатки оказываются решающими и приходится искать другие решения. Частично вопрос габаритных размеров (точнее, только высоты) решается применением торроидального трансформатора. Но такой трансформатор из-за сложности в изготовлении стоит немалых денег. И при этом все так же имеет значительный вес. Решением данной проблемы может стать использование импульсного блока питания.

Но тут свои особенности: сложность в изготовлении, или переделке. Чтобы приспособить под питание УМ компьютерный блок питания, необходимо перепаять половину платы и скорее всего, перемотать вторичную обмотку трансформатора. Но современная китайская промышленность выпускает в большом количестве 12-вольтовые блоки питания Ташибра и им подобные, обещая приличную выходную мощность, 50, 100, 150 Вт и выше. При этом стоимость таких блоков питания смешная.

На рисунке пара таких блоков, выше BUKO, ниже Ultralight, но по сути та же самая Ташибра. Они имеют небольшие отличия (возможно, были сделаны в разных провинциях Китая): вторичная обмотка Ташибры имеет 5 витков, а в BUKO – 8 витков. Кроме того, у Ultralight плата немного больше, предусмотрены места для установки дополнительных деталей. Несмотря на это, переделываются они идентично. Во время процесса доработки необходимо быть предельно аккуратным, поскольку на плате присутствует высокое напряжение, после диодного моста это 300 вольт. Кроме того, если случайно закоротить выход, то сгорят транзисторы.

Теперь о схеме.

Переделка дешевого ИБП для УМЗЧ
Схема блоков питания от 50 до 150 ватт одинаковая, отличие только в мощности использованных деталей.

Что нужно доработать?
1. Нужно подпаять электролитический конденсатор после диодного моста. Емкость конденсатора должна быть как можно больше. При данной переделке был применен конденсатор 100мкФ на напряжение 400вольт.
2. Нужно заменить обратную связь по току обратной связью по напряжению. Для чего это нужно? Для того, чтобы блок питания запускался без нагрузки.
3. Если это необходимо, то перемотать трансформатор.
4. Нужно будет выпрямить выходное переменное напряжение диодным мостом. Для этих целей можно применить отечественные диоды КД213, или импортные, высокочастотные. Лучше конечно же Шоттки. Также необходимо сгладить пульсации на выходе конденсатором.

Вот схема переделанного блока питания.


Синим кружочком отмечена катушка обратной связи по току. Чтобы ее отключить, нужно обязательно выпаять один конец, чтобы не создать короткозамкнутой обмотки. После этого можно смело замыкать контактные площадки катушки на плате. После этого необходимо организовать обратную связь по напряжению. Для этого берется кусок провода от витой пары и на силовой трансформатор мотается 2 витка. Затем тем же проводом мотается 3 витка на трансформатор связи Т1. После этого к концам этого провода припаивается резистор 2,4 — 2,7 Ом, мощностью 5 – 10 Ватт. К выходу преобразователя подключается 12-вольтовая лампочка, а в разрыв провода питания включается лампочка на 220 Вольт, 150 Ватт. Первая лампочка используется в качестве нагрузки, а вторая в качестве ограничителя потребляемого тока. Включаем преобразователь в сеть. Если сетевая лампочка не засветилась, значит с преобразователем все нормально и можно эту лампочку убирать. Снова включаем в сеть, уже без нее. Если 12-вольтовая лампочка на нагрузке не засветилась, значит не угадали с направлением намотки катушки связи на трансформаторе связи Т1 и ее нужно будет намотать в другую сторону. Не забываем после отключения питания разряжать сетевой конденсатор резистором на 1 кОм.

Блок питания для УНЧ обычно биполярный, в данном случае необходимо получить 2 напряжения по 30 вольт. Вторичная обмотка силового трансформатора имеет 5 витков. При выходном напряжении 12 вольт получается 2,4 вольта на один виток. Чтобы получить 30 вольт, нужно намотать 30 Вольт/2,4Вольт = 12,5 витков. Следовательно, необходимо намотать 2 катушки по 12,5 витков. Для этого необходимо отпаять трансформатор от платы, временно смотать два витка обратной связи по напряжению и смотать вторичную обмотку. После этого наматываются простым многожильным проводом рассчитанные две вторичные обмотки. Вначале мотается одна катушка, потом другая. Соединяются два конца разных обмоток – это будет нулевой вывод.
Если будет необходимо получить другое напряжение, мотается больше/меньше витков.

Частота работы блока питания с катушкой связи по напряжению где-то 30 кГц.

Затем собирается диодный мост, подпаиваются электролиты и параллельно им керамические конденсаторы для гашения высокочастотных помех. Вот еще варианты соединения вторичных обмоток.


Нужно помнить, что при закорачивании выхода блок питания сгорает – выгорают транзисторы, диоды и базовые резисторы.
Ну и пара фотографий переделанного блока питания.

Красной черточкой на плате отмечено место зкорачивания обмотки обратной связи по току.

Источник

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

500 Ватт импульсный блок питания для аудиоусилителей

Многие знают как я люблю разбираться с разными блоками питания. В этот раз у меня на столе несколько необычный блок питания, по крайней мере такой я еще не тестировал. Да и по большому счету вообще не встречал ранее обзоров блоков питания подобной разновидности, хотя вещь по своему интересная и я раньше делал подобные блоки питания сам.
Заказать я его решил из чистого любопытства, решил что может быть полезным. Впрочем подробнее в обзоре.

Вообще стоит наверное начать с небольшого лирического вступления. Много лет назад я довольно сильно увлекался аудиотехникой, прошел как через полностью самодельные варианты, так и «гибриды», где использовались УМ мощностью до 100 Ватт из магазина Юный техник, и полуразобранная Радиотехника УКУ 010, 101 и Одиссей 010, потом был Феникс 200У 010С.

Даже пробовал собрать УМЗЧ Сухова, но что-то тогда не пошло, уже и не вспомню что именно.

Акустика также разная была, как самодельная, так и готовая, например Романтика 50ас-105, Кливер 150ас-009.

Но больше всего запомнились Амфитон 25АС 027, правда они у меня были несколько доработаны. Попутно к небольшим изменениям схемы и конструкции я заменил родные динамики 50 ГДН на 75 ГДН.

Это и предыдущие фото не мои, так как моя аппаратура давно продана, а я потом перешел на Sven IHOO 5.1, а затем вообще стал слушать только мелкие компьютерные колоночки. Да, вот такой регресс.

Но вот что-то начали бродить в голове мысли, сделать что нибудь, например усилитель мощности, возможно просто так, возможно вообще все делать по другому. Но в итоге решил я заказать блок питания. Конечно я могу его сделать сам, мало того, в одном из обзоров я не только это делал, а и выложил подробную инструкцию, но к этому я еще вернусь, а пока перейду к обзору.

Начну со списка заявленных технических характеристик:

Напряжение питания — 200-240 Вольт

Выходная мощность — 500 Ватт

Выходные напряжения:

Основное — ±35 Вольт

Вспомогательное 1 — ± 15 Вольт 1 Ампер

Вспомогательное 2 — 12 Вольт 0.5 Ампера, гальванически отвязано от остальных.

Размеры — 133 x 100 x 42 мм

Каналы ± 15 и 12 Вольт имеют стабилизацию, основное напряжение ±35 Вольт не стабилизировано. Здесь я наверное выскажу свое мнение.

Меня часто спрашивают, какой блок питания купить для одного либо другого усилителя. На что я обычно отвечаю — проще собрать самому на базе известных драйверов IR2153 и их аналогов. Первый же вопрос, который следует после этого — так у них же нет стабилизации напряжения.

Да, лично на мой взгляд — стабилизация напряжения питания УМЗЧ не только не нужна, а иногда и вредна. Дело в том, что стабилизированный БП обычно больше шумит на ВЧ и кроме того, могут быть проблемы с цепями стабилизации, потому как усилитель мощности потребляет энергию не равномерно, а всплесками. Мы же слушаем музыку, а не одну частоту.

БП без стабилизации обычно имеет немного выше КПД, так как трансформатор всегда работает в оптимальном режиме, не имеет обратной связи и потому больше похож на обычный трансформатор, но с меньшим активным сопротивлением обмоток.

Вот собственно перед нами и пример БП для усилителей мощности.

Упаковка мягкая, но замотали так, что вряд ли получится его повредить в процессе доставки, хотя противостояние почты и продавцов наверное будет вечным.

Внешне выглядит красиво, особо и не придерешься.

Размер относительно компактный, особенно если сравнивать с обычным трансформатором соответствующей мощности.

Более понятные размеры есть на странице товара в магазине.

1. На входе блока питания установлен разъем, что оказалось довольно удобным.

2. Присутствует предохранитель и полноценный входной фильтр. Вот только про термистор, защищающий от бросков тока как сеть, так и диодный мост с конденсаторами, забыли, это плохо. Также в районе входного фильтра расположены контактные площадки, которые надо замкнуть для перевода БП на напряжение 110-115 Вольт. Перед первым включением лучше проверить, не замкнуты ли площадки если у вас в сети 220-230.

3. Диодный мост KBU810, все бы ничего, но он без радиатора, а при 500 Ватт он уже желателен.

4. Входные фильтрующие конденсаторы имеют заявленную емкость 470 мкФ, реальная около 460 мкФ. Так как они включены последовательно, то общая емкость входного фильтра составляет 230мкФ, маловато для выходной мощности в 500 Ватт. Кстати плата предполагает установку и одного конденсатора. Но в любом случае поднимать емкость без установки термистора я бы не советовал. Причем справа от предохранителя есть даже место для термистора, надо только впаять его и перерезать под ним дорожку.

В инверторе применены транзисторы IRF740, хоть и далеко не новые транзисторы, но раньше я их также широко применял в подобных применениях. Как альтернатива, IRF830.

Транзисторы установлены на отдельных радиаторах, сделано это отчасти не просто так. Радиаторы соединены с корпусом транзистора, причем не только в месте крепления самого транзистора, а и монтажные выводы радиатора соединены на самой плате. На мой взгляд плохое решение, так как будет лишнее излучение в эфир на частоте преобразования, по крайней мере нижний транзистор инвертора (на фото он дальний) я бы отвязал от радиатора, а радиатор от схемы.

Управляет транзисторами неизвестный модуль, но судя по наличию резистора питания, да и просто моему опыту, думаю что не сильно ошибусь, если скажу что внутри стоит банальная IR2153. правда зачем делать такой модуль, для меня осталось загадкой.

Инвертор собран по полумостовой схеме, но в качестве средней точки используется не точка соединения фильтрующих электролитических конденсаторов, а два пленочных конденсатора емкостью 1мкФ (на фото два параллельно трансформатору), а первичная обмотка подключена через третий конденсатор, также емкостью 1мкФ (на фото перпендикулярно трансформатору).

Решение известное и по своему удобное, так как позволяет весьма просто не только увеличить емкость входного фильтрующего конденсатора, а и применить один на 400 Вольт, что может быть полезным при апгрейде.

Габарит трансформатора весьма скромный для заявленной мощности в 500 Ватт. Я конечно протестирую еще его под нагрузкой, но уже могу сказать, что на мой взгляд его реальная длительная мощность на более 300-350 Ватт.

На странице магазина, в перечне ключевых особенностей, было указано —

3. Transformers 0.1 mm * 100 multi-strand oxygen-free enameled wire, heat is very low, efficiency is more than 90%.

Что в переводе означает — в трансформаторе использована обмотка из 100 штук бескислородных проводов диаметром 0.1мм, уменьшен нагрев и КПД выше 90%.
Ну КПД я проверю потом, а вот насчет того, что обмотка многопроволочная, факт. Я конечно их не пересчитывал, но жгут довольно неплохой и данный вариант намотки действительно положительно сказывается на качестве работы трансформатора в частности и всего БП в целом.

Не забыли и про конденсатор, соединяющий «горячую» и «холодную» сторону БП, причем поставили его правильного (Y1) типа.

В выходном выпрямителе основных каналов применены диодные сборки MUR1620CTR и MUR1620CT (16 Ампер 200 Вольт), причем производитель не стал колхозить «гибридные» варианты, а поставил как положено, две комплементарные сборки, одна с общим катодом, а другая с общим анодом. Обе сборки установлены на отдельных радиаторах и также как в случае с транзисторами, они не изолированы от компонентов. Но в данном случае проблема может быть только в плане электробезопасности, хотя если корпус закрыт, то ничего страшного в этом нет.

В выходном фильтре задействовано по паре конденсаторов 1000мкФ х 50 Вольт, что на мой взгляд маловато.

Кроме того, для уменьшения пульсаций между конденсаторами установлен дроссель, а конденсаторы, стоящие после него, дополнительно зашунтированы керамическим 100 нФ.

Вообще на странице товара было написано —

1. All high-frequency low-impedance electrolytic capacitors specifications, low ripple.

В переводе — все конденсаторы имеют низкий импеданс для уменьшения пульсаций. В общем-то так то оно и есть, применены Cheng-X, но это по сути просто немного улучшенный вариант обычных китайских конденсаторов и я бы лучше поставил мою любимую Samwha RD или Capxon KF.

Параллельно конденсаторам нет разрядных резисторов, хотя место на плате для них имеется, потому вас могут ждать «сюрпризы», так как заряд держится довольно долго.

Дополнительные каналы питания подключены к своим обмоткам трансформатора, причем канал 12 Вольт гальванически отвязан от остальных.

Каждый канал имеет независимую стабилизацию напряжения, дроссели для уменьшения помех и керамические конденсаторы по выходу. Но вы наверное заметили, что диодов в выпрямителе пять. Канал 12 Вольт питается от однополупериодного выпрямителя.

По выходу, как и по входу, стоят клеммники, причем весьма неплохого качества и конструкции.

На странице товара есть фото сверху, где видно все и сразу. Уже потом заметил, что в магазине на всех фото есть монтажные стойки, в моем комплекте их не было 🙁

Печатная плата двухсторонняя, качество весьма высокое, использован стеклотекстолит, а не привычный гетинакс. В одном из узких место сделана защитная прорезь.

Снизу также обнаружилась пара резисторов, предположу, что это примитивная схема защиты от перегрузки, которую иногда добавляют к драйверам на IR2153. Но честно говоря, я бы на нее не рассчитывал.

Также снизу печатной платы присутствует маркировка выходов и варианты выходных напряжений, под которые изготавливаются данные платы. Немного заинтриговали две вещи — два одинаковых варианта ± 70 Вольт и заказной вариант.

Перед тем, как перейти к тестам, немного расскажу о своем варианте подобного БП.

Примерно три с половиной года назад я выкладывал обзор регулируемого БП, где использовался блок питания собранный примерно по такой же схеме.

В собранном виде он также выглядел довольно похоже, извините за плохое качество фото.

Если убрать из моего варианта все «лишнее», например узел регулировки оборотов вентилятора в зависимости от температуры, а также умощненный драйвер транзисторов и схему дополнительного питания от выхода инвертора, то мы получим схему обозреваемого БП.

По сути это тот же БП, только выходных напряжений больше. Вообще схемотехника данного БП совсем простая, проще только банальный автогенератор.

Кроме того обозреваемый БП снабжен примитивной схемой ограничения выходной мощности, подозреваю что реализована она так, как показано на выделенном участке схемы.

Но посмотрим на что способна данная схема и ее реализация в обозреваемом блоке питания.

Здесь надо отметить, что так как стабилизация основного напряжения отсутствует, то оно напрямую зависит от напряжения в сети.

При входном напряжении 223 Вольта выходное составляет 35.2 в режиме холостого хода. Потребление при этом 3.3 Ватта.

При этом присутствует заметный нагрев резистора питания драйвера транзисторов. Его номинал 150 кОм, что при 300 Вольт дает рассеиваемую мощность порядка 0.6 Ватта. Данный резистор греется независимо от нагрузки блока питания.

Также заметен небольшой нагрев трансформатора, фото сделано примерно через 15 минут после включения.

Для нагрузочного теста была собрана конструкция, состоящая из двух электронных нагрузок, осциллографа и мультиметра.

Мультиметр измерял один канал питания, второй канал контролировался вольтметром электронной нагрузки, которая была подключена короткими проводами.

Не буду утомлять читателя большим перечислением тестов, потому сразу перейду к осциллограммам.

1, 2. Разные точки выхода БП до диодных сборок, и с разным временем развертки. Частота работы инвертора составляет 70 кГц.

3, 4. Пульсации перед дросселем канала 12 Вольт и после него. После КРЕНки вообще все гладко, но есть проблема, напряжение в этой точке всего около 14.5 Вольта без нагрузки основных каналов и 13.6-13.8 с нагрузкой, что мало для стабилизатора 12 Вольт.

Нагрузочные тесты проходили так:

Сначала нагружал один канал на 50%, затем второй на 50%, потом нагрузку первого поднимал до 100%, а затем и второй. В итоге получалось четыре режима нагрузки — 25-50-75-100%.

Сначала что на выходе по ВЧ, на мой взгляд очень даже неплохо, пульсации минимальны, а при установке дополнительного дросселя их вообще можно свести почти до нуля.

А вот на частоте 100 Гц все довольно грустно, маловата емкость по входу, маловата.

Полный размах пульсаций при 500 Ватт выходной мощности составляет около 4 Вольт.

Нагрузочные тесты. Так как напряжение под нагрузкой проседало, то я по мере этого поднимал тока нагрузки чтобы выходная мощность примерно соответствовала ряду 125-250-375-500 Ватт.

1. Первый канал — 0 Ватт, 42.4 Вольта, второй канал — 126 Ватт, 33.75 Вольта

2. Первый канал — 125.6 Ватта, 32.21 Вольта, второй канал — 130 Ватт, 32.32 Вольта.

3. Первый канал — 247.8 Ватта, 29.86 Вольта, второй канал — 127 Ватт, 30.64 Вольта.

4. Первый канал — 236 Ватт, 29.44 Вольта, второй канал — 240 Ватт, 29.58 Вольта.

Вы наверное заметили, что в первом тесте напряжение не нагруженного канала больше 40 Вольт. Это обусловлено выбросами напряжения, а так как нагрузки нет совсем, то напряжение плавно поднималось, даже небольшая нагрузка возвращала напряжение в норму.

Одновременно измерялось потребление, но так как есть относительно большая погрешность при измерении выходной мощности, то расчетные значения КПД я также буду приводить ориентировочно.

1. 25% нагрузки, КПД 89.3%

2. 50% нагрузки, КПД 91.6%

3. 75% нагрузки, КПД 90%

4. 476 Ватт, около 95% нагрузки, КПД 88%

5, 6. Просто ради любопытства измерил коэффициент мощности при 50 и 100% мощности.

В общем-то результаты примерно похожи на заявленные 90%

Тесты показали довольно неплохую работу блока питания и все было бы замечательно, если бы не привычная «ложка дегтя» в виде нагрева. Еще в самом начале я оценил примерно мощность БП в 300-350 Ватт.

В процессе привычного теста с постепенным прогревом и интервалами по 20 минут я выяснил, что при мощности 250 Ватт Бп ведет себя просто отлично, нагрев компонентов примерно такой:

Диодный мост — 71

Транзисторы — 66

Трансформатор (магнитопровод) — 72

Выходные диоды — 75

Но когда я поднял мощность до 75% (375 Ватт), то через 10 минут картина была совсем дургая

Диодный мост — 87

Транзисторы — 100

Трансформатор (магнитопровод) — 78

Выходные диоды — 102 (более нагруженный канал)

Попытавшись разобраться с проблемой, я выяснил, что идет сильный перегрев обмоток трансформатора, в следствие этого прогревается магнитопровод, снижается его индукция насыщения и он начинает входить в насыщение в итоге резко увеличивается нагрев транзисторов (позже я регистрировал температуру до 108 градусов), затем я остановил тест. При этом тесты » на холодную» с мощностью в 500 Ватт проходили нормально.

Ниже пара термофото, первое при мощности нагрузки 25%, второе при 75%, соответственно через пол часа (20+10 минут). Температура обмоток достигла 146 градусов и был заметный запах перегретого лака.

В общем теперь подведу некоторые итоги, отчасти неутешительные.

Общее качество изготовления очень хорошее, но есть некоторые конструктивные нюансы, например установка транзисторов без изоляции от радиаторов. Радует большое количество выходных напряжений, например 35 Вольт для питания усилителя мощности, 15 для предварительного усилителя и независимые 12 Вольт для всяких сервисных устройств.

Есть схемные недоработки, например отсутствие термистора по входу и малая емкость входных конденсаторов.

В характеристиках было заявлено что дополнительные каналы 15 Вольт могут выдать ток до 1 Ампера, реально я бы не ждал больше 0.5 Ампера без дополнительного охлаждения стабилизаторов. Канал 12 Вольт скорее всего вообще не выдаст более 200-300мА.

Но все эти проблемы либо не критичны, либо легко решаются. Самая сложная проблема — нагрев. БП может длительно отдавать до 250-300 Ватт, 500 Ватт только относительно кратковременно, либо придется добавлять активное охлаждение.

Попутно у меня возник небольшой вопрос к уважаемой общественности. Есть мысли сделать свой усилитель, соответственно с обзорами. Но какой был бы интереснее, усилитель мощности, предварительный, если УМ, то на какую мощность и т.п. Лично мне он не особо нужен, но вот поковыряться настроение есть. Обозреваемый БП к этому имеет слабое отношение 🙂

На этом у меня все, надеюсь что информация была полезна и как обычно жду вопросов в комментариях.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Импульсный блок питания для УНЧ

Импульсный блок питания для УНЧ — 600 Вт

Импульсный блок питания для УНЧ сконструирован для обеспечения напряжением питания двух канальный УМЗЧ. БП рассчитан на работу усилителя с выходной мощностью 200 Вт на каждый канал. Данное устройство состоит из двух печатных плат. На одной плате реализован фильтр сетевого напряжения, электромагнитное реле, трансформатор, диодный мост с фильтрующим конденсатором 1000 мкФ х 25v в его цепи. На другой плате собран модуль управления, трансформатор выпрямителя, а также в цепи фильтра конденсаторы и дроссели.

Биполярные транзисторы КТ626, а также мощные 2SK1120 MOSFET либо КП707В2 должны быть установлены на радиаторах с достаточной площадью рассеивания тепла. Наиболее эффективными радиаторами охлаждения являются теплоотводы из толстого алюминия, прошедшие фрезерную обработку. Их эффективность заключается в том, что помимо охлаждения электронных компонентов, они еще являются боковыми элементами корпуса усилителя. Модуль управления мощными выходными ключами смонтирован на небольшой самостоятельной плате, которая в свою очередь вмонтирована в модуль выпрямителя.

Модернизация ИБП

Чтобы обеспечить более корректную и надежную работу конструкции, импульсный блок питания для УНЧ был несколько модернизирован. В частности во вторичных обмотках трансформатора были установлены шунты в виде подавляющей помехи RC-цепи. Также была увеличена емкость фильтрующих конденсаторов до 10000 мкФ х 50v и зашунтированны конденсаторами 3,3 мкф 63v. Которые имеют очень малые потери и высокое сопротивление изоляции. Защита на входе не была задействована, но в случае необходимости ее можно применить в качестве защиты от пикового тока. Для этого нужно подать сигнал на вход из цепи шунта либо от трансформатора по току.

Предупреждение

Особое внимание! Все силовые тракты данного блока питания, за исключением вторичных цепей, находятся по высоким потенциалом сетевого напряжения, представляющего опасность для жизни! В процессе налаживания конструкции необходимо соблюдать максимально возможную осторожность. Желательно при настроечных работах, устройство подключить к сети через разделительный трансформатор.

Перед тем как впервые запустить импульсный блок питания, предохранитель на 2А в цепи напряжения 320v устанавливать пока не нужно. Вначале нужно произвести отладку схемы управления, а уже потом на место предохранителя 2А устанавливается лампа накаливания 220v мощностью 60 Вт. Но наиболее эффективный способ, при котором гарантируется целостность транзисторов — это включить устройство через понижающий напряжение трансформатор. Только когда полностью будет выполнены наладочные работы, тогда предохранитель ставится на место. Теперь импульсный блок питания можно испытать с нагрузкой.


На снимке: модуль инвертора, выпрямителя и цепи фильтров


На снимке: модуль фильтра сетевого напряжения и выпрямителя


На снимке: компоновка силовых ключей и диодов

Трансформатор

Трансформатор Т1 намотан на трех кольцах диаметром 45 мм из феррита 2000НМ1. Первичная обмотка содержит 2×46 витков изолированного провода 0,75 мм2 (мотается сразу двумя проводами). Вторичная обмотка намотана косой из 16 проводов диаметром 0,8 мм. Она содержит шесть витков, после намотки она делится на две группы, начала одной группы соединяются с конном другой. Дроссели DB3 и DR2 намотаны на ферритовом стержне 8 мм и выполнены проводом D=1,2 мм.

usilitelstabo.ru

РадиоКот :: ИБП для УМЗЧ сабвуфера.

РадиоКот >Схемы >Питание >Блоки питания >

ИБП для УМЗЧ сабвуфера.

Всем доброго дня! Прошлый раз Aleks-23 опубликовал схему УМЗЧ для сабвуфера мощностью 150Вт. Такой УМЗЧ отлично работает в составе аудиоресивера системы 2+1. (Сделано три таких ресивера и две активных колонки, где в НЧ канале работает такой же усилитель).
Теперь настало время смастерить для него импульсный блок питания мощностью 300Вт. Основой данному блоку питания послужил БП АТХ на микросхеме 2003. Это усечённый вариант известной CG6105D. Ранее были опробованы варианты с IR2151, TL494. В БП с IR2151 нет стабилизации выходного напряжения. В БП на TL494 необходимо добавлять узел защиты от перегрузки, что не всегда удобно. В микросхеме 2003 уже есть встроенная защита от перегрузки. При использовании 2003 в блоке питания, схема включения которой, проще чем наTL494, получается не сложное и вполне надёжное устройство.
Как видим, схема довольно таки проста. Теперь о функциональном составе блока питания. Блок питания состоит из входного фильтра, выпрямителя, емкостей фильтра (одновременно являющихся емкостным делителем напряжения), вспомогательного импульсного блока питания (для питания 2003 и схемы управления инвертором), инверторного каскада, схемы управления инвертором, выходных цепей (вторичных выпрямителей и фильтров).
Схема БП.

Итак сетевое напряжение ~220В через разъём JP1, через бареттер R1 (бареттер служит для ограничения тока заряда конденсаторов С3, С4 при включении устройства, на дальнейшую работу блока питания не влияет), через предохранитель, через фильтр L1, C1 (служит для предотвращения попадания помех от блока питания в сеть) поступает на выпрямительный мост VD1. Далее выпрямленное напряжение поступает на емкостной делитель RU1, RU2, R2, R3, C3, C4.
Делитель необходим для работы полу мостового инвертора. С2 срезает постоянную составляющую, препятствуя попаданию её на импульсный трансформатор TV1. Элементы VT1, VT2, VD4, VD5 вместе с RU1, RU2, R2, R3, С2, C3, C4 образуют полу мостовой инвертор. TV2, VD2, VD3, R4, R5, R6, R7, R8, R9, C5, C6 схема формирования импульсов управления ключевыми транзисторами. С обмоток TV1 2-4, снимаются вторичные напряжения, и через выпрямители VD8-VD19 поступает в нагрузку. В канале +/-50В, L2 является дросселем групповой стабилизации. На микросхеме DD1 2003 собран драйвер управления блоком питания. Частота преобразования 65Кгц. Питание +5В поступает от вспомогательного блока питания на вывод 1 и 4 микросхемы. На вывод 14 через делитель R11, R11-1, R3 поступает напряжение на схему стабилизации выходного напряжения +/-50В. Стабилизация осуществляется по каналу +50В. На вывод 5 поступает сигнал перегрузки блока питания от ТV2 через VD7, R13, R14, R15. C выводов 7, 8 снимается парафазный сигнал и через усилитель тока VT1, VT2, разделительный трансформатор TV2, поступает на ключевые транзисторы полу мостового инвертора.
Резисторами R11и R11-1 устанавливается напряжение +/-50В. Резистором R14 устанавливается ток срабатывания защиты от перегрузки. Ток срабатывания устанавливается примерно 5А.
При срабатывании защиты от перегрузки блок питания переходит в режим ожидания. Защита сбрасывается при отключении питания.
На транзисторах VT3, VT4 и трансформаторе TV3 собран вспомогательный блок питания, от которого питается драйвер инвертора.
Разъём JP2 12В для питания защиты от постоянного напряжения. Разъёмы JP3, JP4 12В для схемы охлаждения УМЗЧ и блока питания. +/-50В подключаются к УМЗЧ при помощи «пап» и «мам» от автопроводки.
Конструкция и детали.
Большая часть элементов взята от старого блока питания АТХ на микросхеме 2003. Эта микросхема очень надёжная и в неисправном блоке питания, как правило исправна. От блока питания применён дроссель фильтра L1, радиаторы, выпрямительный мост, трансформаторы TV2 – TV3, дроссели L3, L4 и пр. Трансформатор TV1 ERL-35 требует доработки. Также доработки потребует дроссель L2. Полностью от блока питания АТХ взят блок питания дежурного режима. При изменении рисунка печатной платы можно применять и другие схемы дежурного режима.
Драйвер блока питания собран на отдельной плате, которая впаивается в основную плату. Выпрямительные диоды VD8-VD11 установлены на отдельный радиатор, закреплённый над платой блока питания.
В трансформаторе TV1 необходимо перемотать вторичные обмотки. Для этого его нужно разобрать. О том, как разобрать трансформатор обсуждалось на различных форумах. Самый простой способ это варить на медленном огне минут 20. После чего аккуратно разъединяем половинки магнитопровода. Если не получается варим ещё. После того как магнитопровод демонтирован, разматываем половину первичной обмотки, как правило 20 витков. Необходимо запомнить фазировку этой обмотки, так ка она потом наматывается вновь. Далее снимаем экран и разматываем полностью вторичные обмотки до следующего экрана. Потом необходимо высушить трансформатор феном. Проводом диаметром 1 мм наматываем 18 витков, потом ещё 18 витков. Средняя точка оставляется длинной 7см. Далее мотаем проводом 0,59мм две обмотки по 4 витка. Потом ворачиваем назад экран и половину первичной обмотки, обязательно соблюдая фазировку. Между обмотками прокладываем изолирующий скотч, который удаляли при разматывании трансформатора. Для фиксации обмоток удобно использовать липкую ленту (скотч) шириной 10мм. Далее собираем магнитопровод, снова используя 10мм скотч, которым скрепляем половинки магнитопровода.
Дроссель групповой стабилизации L2 от блока питания АТХ (желтое кольцо диаметром 28мм). Удаляем с него все обмотки и наматываем одновременно двумя проводами диаметром 1мм 26 витков.

Дроссель L3, L4 готовые от БП АТХ.
Диоды выпрямителя VD8-VD11 устанавливаются на отдельный радиатор через слюдяную прокладку, смазанную теплопроводной пастой КПТ-8. Диоды прижимаются к радиатору алюминиевой пластиной.
У микросхемы 2003 удалены неиспользуемые ножки.
Блок питания в сборе.

Печатная плата блока питания.

Печатная плата драйвера.

 

Порядок сборки и наладка.
Печатные платы можно изготовит разными способами. В моём варианте это медицинский шприц с иглой, у которой напильником спилено остриё. В шприц наливается нитролак НЦ-218 разбавленный растворителем 646 и для цвета добавлены чернила от шариковой ручки. Игла выбирается из расчёта толщины проводников. Лак течёт самотёком. Наловчившись можно нанести рисунок дорожек. При слипании дорожек или монтажных площадок после просыхания лака, можно при помощи шила подкорректировать рисунок, удалив лишнее. Может, получается не так красиво как лутом, но надёжно. Когда платы вытравлены, лак снимается растворителем 646 и зачищается мелкой шкуркой. Затем платы покрываются спирто-канифольным флюсом и лудятся.
Монтаж начинают с перемычек, потом впаиваются резисторы, конденсаторы, разъёмы. Транзисторы VT1 и VT2 инвертора не впаиваются, плата драйвера то же. В первую очередь впаивают детали фильтра, диодный мост, конденсаторы делителя, варисторы и R1, R2, R3. Затем впаиваются детали вспомогательного блока питания. После его сборки нужно его проверить. Для проверки на выход 12В впаивают резистор 0,5Вт 1,5К (параллельно С31). На выход 5В (параллельно С34) впаивают маломощную лампу накаливания 12-28В или резистор 2Вт 470Ом…1К. Лампочка нагляднее. Питание ~220В на блок питания подают через лампу накаливания 40Вт. Включаем БП и замеряем выходные напряжения. На С34 4,8…5,2В, а С31 примерно 18В. Если блок питания не заработал, ищем ошибки.
Далее паяем плату драйвера. После сборки платы драйвера её нужно проверить. Для проверки необходимо на гибких проводниках от вспомогательного БП на плату драйвера подать 12В и 5В согласно схеме. Вывод PR замкнуть на массу. Подать питание на БП и замерить напряжение на выводах 7 и 8 микросхемы 2003. Должно быть примерно 1,4В. Далее вывод +12В через резистор 2,2К соединяем с выводом платы Vin. Замеряем напряжение на 7 и 8 ноге 2003. Должно быть примерно 2,2В. Резистор отпаиваем и снова на выводах 7 и 8 1,4В. Отпаиваем перемычку на землю с вывода РR платы и снова меряем напряжение на 7 и 8 ноге 2003. Должно быть 2,2В. На этом проверка платы драйвера закончена. Плату желательно покрыть лаком НЦ-218. После высыхания лака, плату драйвера можно впаять на своё место.
Далее впаиваем всё остальное.
Для наладки блока питания, потребуются 4 лампы накаливания 24В 5Вт. 2 лампы накаливания 12В с приборной панели автомобиля с током не более 1А. Последовательно с блоком питания в разрыв сетевого провода подключаем лампу накаливания 60Вт. R11 впаиваем 39К. Вместо R11-1 перемычка. R14 пока не впаиваем. К разъёмам JP3, JP4 подключаем лампочки 12В. К выходам +/-50В подключаем лампочки 24В по две включённые последовательно. Включаем питание. Лампа накаливания, включённая последовательно с БП должна загореться и погаснуть. Лампы на выходах должны загореться. Если лампа, включённая последовательно с БП светится в полный накал, необходимо искать проблему в монтаже. Если всё нормально, тогда отключаем питание и вместо лампы 60Вт впаиваем резистор 2Вт 1…6,2Ом, на всякий случай. Включаем питание и замеряем напряжение на выходах +/-50В. Впаивая вместо перемычки R11-1 резистор, увеличивая его сопротивление, подгоняем напряжение +/-50В. Далее подбирая сопротивление R14, добиваются срабатывания защиты при токе примерно 5А. Для этого потребуется регулируемая нагрузка.

Блок питания в сборе с радиатором.

 

 

 

 На фото вариант блока питания, где вместо КД213А применено четыре диодных сборки MOSPEC F12C20C (12А 200В). Оба диода в сборке запараллелены. Два прибора распоожены с верху радиатора, два с низу.
Ну, вот и всё, пожалуй! Вопросы и комментарии приветствуются!

 




Все вопросы в
Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

cxema.org — Импульсный источник питания для усилителей

Импульсный источник питания для усилителей


Сейчас редко кто внедряет в самодельную конструкцию усилителя сетевой трансформатор, и правильно — импульсный бп более дешевый, легкий и компактный, а хорошо собранный почти не отдает помех в нагрузку (либо помехи сведены к минимуму).


Разумеется, не спорю, сетевой трансформатор гораздо, гораздо надежней, хотя и современные импульсники, напичканные всевозможными защитами тоже неплохо справляются со своей задачей. 


IR2153 — я бы сказал уже легендарная микросхема, которая применяется радиолюбителями очень часто, и внедряется именно в сетевые импульсные источники питания. Микросхема из себя представляет простой полумостовой драйвер и в схемах иип работает в качестве генератора импульсов. 


На основе данной микросхемы строятся блоки питания от нескольких десятков до нескольких сотен ватт и даже до 1500 ватт, разумеется с ростом мощности будет усложняться схема.


Тем не менее не вижу смысла делать иип высокой мощности с применением именно этой микросхемы, причина — невозможно организовать выходную стабилизацию или контроль, и не только Микросхема не является ШИМ контроллером, следовательно ни о каком ШИМ управлении не может идти и речи, а это очень плохо. Хорошие иип как право делают  на двухтактных микросхемах ШИМ, к примеру ТЛ494 или ее сородичи и т.п, а блок на IR2153 в большей степени блок начинающего уровня. 


Перейдем к самой конструкции импульсного источника питания. Все собрано по даташиту — типичный полумост, две емкости полумоста, которые постоянно находятся в цикле заряд/разряд.  От емкости этих конденсаторов будет зависеть мощность схемы в целом (ну разумеется не только от них). Расчетная мощность именно этого варианта составляет 300 ватт, мне больше и не нужно, сам блок для запитки двух каналов унч. Емкость каждого из конденсаторов 330мкФ, напряжение 200 Вольт, в любом компьютерном блоке питания как раз стоят такие конденсаторы, по идее схематика комповых бп и нашего блока в чем то схоже, в обеих случаях топология — полумост. 


На входе блока питания тоже все как положено — варистор для защиты от перенапряжений, предохранитель, сетевой фильтр ну и разумеется выпрямитель. Полноценный диодный мост, который можно и взять готовый, главное, чтобы мост или диоды имели обратное напряжение не менее 400 Вольт, в идеале 1000, и с током не менее 3Ампер.  Разделительный конденсатор — пленка , 250 В а лучше 400, емкость 1мкФ, к  стати — тоже можно найти в компьютерном блоке питания. 


Трансформатор  Рассчитан по программе, сердечник от компового бп, габаритные размеры увы указать не могу. В моем случае первичная обмотка 37 Витков проводом 0,8мм, вторичная 2 по 11 витков шиной из 4-х проводов 0.8мм. С таким раскладом выходное напряжение в районе 30-35 Вольт, разумеется, намоточные данные будут у всех разные, в зависимости от типа и габаритных размеров сердечника. 


Все резисторы 0,25 ватт, кроме двух резисторов 51 Ом в снабберной цепи (они на 2 ватт) и резистора по питанию микры (тоже на 2, если есть, то ставьте на 5 ватт). Во время работы источника питания нагрев на указанных резисторах нормальное явление. 

Шаблон печатной платы можно скачать ниже, размеры уже установлены, зеркалить платку тоже нет необходимости.


Скачать архив

  • < Назад
  • Вперёд >

vip-cxema.org

Простой импульсный БП для УМЗЧ

Приветик всем!!!
Представляю вашему вниманию испытанную мной схему достаточно простого импульсного сетевого блока питания УМЗЧ. Мощность блока составляет около 180 Вт.

Содержание / Contents

Входное напряжение — 220В;
Выходное напряжение — ±25В;
Частота преобразования — 27кГц;
Максимальный ток нагрузки — 3,5А.Схема достаточно проста:

Она представляет из себя полумостовой инвертор с переключающим насыщаюшимся трансформатором. Конденсаторы С1 и С2 образуют делитель напряжения для одной половины полумоста, а так же сглаживают пульсации сетевого напряжения. Второй половиной полумоста являются транзисторы VT1 и VT2, управляемые переключающим трансформатором Т2. В диагональ моста включена первичная обмотка силового трансформатора Т1, который рассчитан так что он не насыщается во время работы.

Для надёжного запуска преобразователя, применён релаксационный генератор на транзисторе VT3, работающем в лавинном режиме.
Кратко принцип его работы. Конденсатор С7 заряжается через резистор R3, при этом напряжение на коллекторе транзистора VT3 пилообразно растёт. При достижении этого напряжения примерно 50 – 70В, транзистор лавинообразно открывается, и конденсатор разряжается через транзистор VT3 на базу транзистора VT2 и обмотку III трансформатора Т2, тем самым запуская преобразователь.

Блок питания собран на печатной плате из одностороннего стеклотекстолита.
Чертёж платы не привожу, так как у каждого в заначке свои детали. Ограничусь лишь фото своей платы:

По моему, утюжить такую плату не имеет смысла, она слишком простая.

В качестве транзисторов VT1 и VT2 можно применить отечественные КТ812, КТ704, КТ838, КТ839, КТ840, то есть с граничным напряжением коллектор-эмиттер не менее 300В, из импортных знаю только J13007 и J13009, они применяются в компьютерных БП. Диоды можно заменить любыми другими мощными импульсными или с барьером шоттки, я, например, использовал импортные FR302.

Трансформатор Т1 намотан на двух сложенных кольцах К32×19Х7 из феррита марки М2000НМ, первичная обмотка намотана равномерно по всему кольцу и составляет 82 витка провода ПЭВ-1 0,56. Перед намоткой необходимо скруглить острые кромки колец алмазным надфилем или мелкой наждачной бумагой и обмотать слоем фторопластовой ленты, толщиной 0,2 мм, так же нужно обмотать и первичную обмотку. Обмотка III намотана сложенным вдвое проводом ПЭВ-1 0,56 и составляет 16+16 витков с отводом от середины. Обмотка II намотана двумя витками провода МГТФ 0,05, и расположена на свободном от обмотки III месте.

Трансформатор Т2 намотан на кольце К10×6Х5 из феррита той же марки. Все обмотки намотаны проводом МГТФ 0,05. Обмотка I состоит из десяти витков, а обмотки II и III намотаны одновременно в два провода и составляют шесть витков.

Простой импульсный БП для УМЗЧ
ВНИМАНИЕ!!! ПЕРВИЧНЫЕ ЦЕПИ БП НАХОДЯТСЯ ПОД СЕТЕВЫМ НАПРЯЖЕНИЕМ, ПОЭТОМУ НУЖНО СОБЛЮДАТЬ МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ НАЛАДКЕ И ЭКСПЛУАТАЦИИ.

Первый запуск блока желательно производить подключив его через токоограничивающий резистор, представляющий из себя лампу накаливания мощностью 200 Вт и напряжением 220 В. Как правило, правильно собранный БП в наладке не нуждается, исключение составляет лишь транзистор VT3. Проверить релаксатор можно подключив эмиттер транзистора к минусовому полюсу. После включения блока, на коллекторе транзистора должны наблюдаться пилообразные импульсы частотой около 5 Гц.

Тема по этой статье на датагорском форуме. 1. Журнал «Радио», 1981, №10, с.56, «Экономичный блок питания», В. Цибульский, г. Тернополь
2. Журнал «Радио», 1985, №6, с.51, «Усовершенствованный экономичный блок питания», Д. Барабошкин, г. Свердловск
3. «Источники вторичного электропитания радиоэлектронной аппаратуры», М: Радио и связь, 1981
4. Журнал «Радио», 1981, №12, с.54, «Блок питания цифрового частотомера», С. Бирюков

Спасибо Федору ([email protected]) за предоставленные ссылки на связанные материалы!

Александр (alx32)

Ульяновск

Я простой электрик

 

datagor.ru

Ибп для усилителя — полная и подробная информация

Большинство аудиолюбителей достаточно категорично и не готово к компромиссам при выборе аппаратуры, справедливо полагая, что воспринимаемый звук обязан быть чистым, сильным и впечатляющим. Как этого добиться?

Поиск данных по Вашему запросу:

Ибп для усилителя

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Пожалуй, основную роль в решении этого вопроса сыграет выбор усилителя.
Функция
Усилитель отвечает за качество и мощь воспроизведения звука. При этом при покупке стоит обратить внимание на следующие обозначения, знаменующие внедрение высоких технологий в производство аудио — аппаратуры:

     

  • Hi-fi. Обеспечивает максимальную чистоту и точность звука, освобождая его от посторонних шумов и искажений.
  • Hi-end. Выбор перфекциониста, готового немало заплатить за удовольствие различать мельчайшие нюансы любимых музыкальных композиций. Нередко к этой категории относят аппаратуру ручной сборки.

 

Технические характеристики, на которые следует обратить внимание:

  • Входная и выходная мощность. Решающее значение имеет номинальный показатель выходной мощности, т.к. краевые значения часто недостоверны.
  • Частотный диапазон. Варьируется от 20 до 20000 Гц.
  • Коэффициент нелинейных искажений. Здесь все просто — чем меньше, тем лучше. Идеальное значение, согласно мнению экспертов — 0,1%.
  • Соотношение сигнала и шума. Современная техника предполагает значение этого показателя свыше 100 дБ, что сводит к минимуму посторонние шумы при прослушивании.
  • Демпинг-фактор. Отражает выходное сопротивление усилителя в его соотношении с номинальным сопротивлением нагрузки. Иными словами, достаточный показатель демпинг-фактора (более 100) уменьшает возникновение ненужных вибраций аппаратуры и т.п.

Следует помнить: изготовление качественных усилителей — трудоемкий и высокотехнологичный процесс, соответственно, слишком низкая цена при достойных характеристиках должна Вас насторожить.

 
Классификация

Чтобы разобраться во всем многообразии предложений рынка, необходимо различать продукт по различным критериям. Усилители можно классифицировать:

  • По мощности. Предварительный — своеобразное промежуточное звено между источником звука и конечным усилителем мощности. Усилитель мощности, в свою очередь, отвечает за силу и громкость сигнала на выходе. Вместе они образуют полный усилитель.

Важно: первичное преобразование и обработка сигнала происходит именно в предварительных усилителях.

  • По элементной базе различают ламповые, транзисторные и интегральные УМ. Последние возникли с целью объединить достоинства и минимизировать недостатки первых двух, например, качество звука ламповых усилителей и компактность транзисторных.
  • По режиму работы усилители подразделяются на классы. Основные классы — А, В, АВ. Если усилители класса А используют много энергии, но выдают высококачественный звук, класса B с точностью до наоборот, класс AB представляется оптимальным выбором, представляя собой компромиссное соотношение качества сигнала и достаточно высокого КПД. Также различают классы C, D, H и G, возникшие с применением цифровых технологий. Также различают однотактные и двухтактные режимы работы выходного каскада.
  • По количеству каналов усилители могут быть одно-, двух- и многоканальными. Последние активно применяются в домашних кинотеатрах для формирования объемности и реалистичности звука. Чаще всего встречаются двухканальные соответственно для правой и левой аудиосистем.

Внимание: изучение технических составляющих покупки, конечно, необходимо, но зачастую решающим фактором является элементарное прослушивание аппаратуры по принципу звучит-не звучит.

 
Применение

Выбор усилителя в большей степени обоснован целями, для которых он приобретается. Перечислим основные сферы использования усилителей звуковой частоты:

  1. В составе домашнего аудиокомплекса. Очевидно, что лучшим выбором является ламповый двухканальный однотакт в классе А, также оптимальный выбор может составить трехканальный класса АВ, где один канал определен для сабвуфера, с функцией Hi — fi.
  2. Для акустической системы в автомобиле. Наиболее популярны четырехканальные усилители АВ или D класса, в соответствии с финансовыми возможностями покупателя. В автомобилях также востребована функция кроссовер для плавной регулировки частот, позволяющей по мере необходимости срезать частоты в высоком или низком диапазоне.
  3. В концертной аппаратуре. К качеству и возможностям профессиональной аппаратуры обоснованно предъявляются более высокие требования в силу большого пространства распространения звуковых сигналов, а также высокой потребности в интенсивности и длительности использования. Таким образом, рекомендуется приобретение усилителя классом не ниже D, способного работать почти на пределе своей мощности (70-80% от заявленной), желательно в корпусе из высокотехнологичных материалов, защищающем от негативных погодных условий и механических воздействий.
  4. В студийной аппаратуре. Все вышеизложенное справедливо и для студийной аппаратуры. Можно добавить о наибольшем диапазоне воспроизведения частот — от 10 Гц до 100 кГц в сравнении с таковым от 20 Гц до 20 кГц в бытовом усилителе. Примечательна также возможность раздельной регулировки громкости на различных каналах.

Таким образом, чтобы долгое время наслаждаться чистым и качественным звуком, целесообразно заранее изучить все многообразие предложений и подобрать вариант аудио аппаратуры, максимально отвечающий Вашим запросам.

 

all-audio.pro

Оставить комментарий

avatar
  Подписаться  
Уведомление о