Алплаз 04 – Плазматрон АЛПЛАЗ — стоит ли покупать? — Плазменная и газовая резка.

ИЗУЧЕНИЕ ФИЗИЧЕСКИХ ОСНОВ РАБОТЫ ПЛАЗМОТРОНА С ПРОДОЛЬНОЙ ПРОКАЧКОЙ (АЛПЛАЗ-04)

ПЛАЗМОТРОНЫ ПОСТОЯННОГО ТОКА

Одним из широко распространенных технических устройств применяемых для получения потоков плазмы являются электродуговые плазмотроны (ЭДП) постоянного тока. В них, через область электрической дуги прогоняют рабочий газ, который в результате, разогревается до плазменного состояния. Различают разряды свободные и пространственно стабилизированные. Стабилизируют разряды потоком плазмообразующего газа, охлаждаемыми стенками разрядной камеры, дополнительным магнитным полем соленоида. Особенно большое применение получили разряды, стабилизированные в канале с потоком газа. Таким генератором плазмы является портативный аппарат АЛПЛАЗ–04.

Назначение и области применения.

Портативный плазмотрон предназначен для резки любых материалов толщиной до 5 мм (в том числе и тугоплавких), для сварки или пайки черных и цветных металлов толщиной до 5 мм. Портативный плазмотрон незаменим в домашних условиях, и условиях небольших мастерских или лабораторий.

В условиях непрерывного производственного цикла, например – при конвейерной сборке, данная модификация портативного плазмотрона неприменима из-за ограничений по времени, связанных с дозаправкой плазменной горелки рабочей жидкостью.

Технология проведения сварочных работ с использованием плазмотрона сходна с технологией использования обычных сварочных аппаратов. Отличие состоит в том, что для получения высокотемпературного факела необходимы электричество и вода, а не газовые баллоны. При плазменной сварке или пайке, применяются те же присадки, флюсы и припои, что и при обычной газовой сварке.

Рис.1.

К – катод, А – анод, ВК – вихревая камера с тангенциальной подачей рабочего газа, G – расход газа, РК – разрядная камера, СП — струя плазмы, Н2О – охлаждающая элементы плазмотрона вода, ИП – источник питания плазмотрона, А – амперметр и V1 и V2 — вольтметры.

Закон Она для электрической цепи питания плазмотрона записывается в виде

, (1)

где и r — электродвижущая сила и внутреннее сопротивление источника; RБ и RД – сопротивление балластного реостата и электрической дуги.

Уравнение (1) может быть представлено в более удобном для анализа виде:

. (2)

Здесь — напряжение источника тока UИП; JRБ = UБ — падение напряжения на балластном сопротивлении RБ; JRД = UД — напряжение горения электрической дуги.

Типичные зависимости UИП, UБ, UД от силы тока J приведены на рисунке 2.

Приведенные зависимости представляют собой законы Ома для отдельных участков электрической цепи, показанной на рисунке 1. Участок 1-2 составляет источник тока, где сосредоточена э.д.с. цепи. Сила тока на этом участке согласно закону Ома определяется уравнением


(3)

Рис. 2.

Из уравнения (3) следует

. (4)

Э.д.с. источника тока не зависит от силы тока, следовательно, зависимость UИП = f(J) является линейной. Однако в нашем случае, когда в качестве источника используется выпрямитель трехфазного переменного тока, зависимость UИП = f(J) является более сложной. В первом приближении можно принять в виде

. (5)

Таким образом, ВАХ источника тока (рис.2а) имеет нелинейный падающий характер.

На участке 2-3 электрической цепи установлен балластный реостат, который служит для регулирования тока в цепи.

По конструкции балластный реостат представляет собой сосуд, наполненный слабым водным раствором солей (например, NaCl). К сосуду на шарнире с рукояткой прикреплен стальной лист. При вращении рукоятки изменяется глубина погружения листа и это влечет за собой соответствующее изменение сопротивления. Так как RБ является чисто активным сопротивлением, то зависимость UБ = f(J) имеет линейный характер (рис.2б).

На участке 4 — 5 (рис.1) расположен плазмотрон.

Физика формирования падающей вольтамперной характеристики дуги UД = f(J) (рис.2в) может быть представлена следующим образом. Электрическая дуга — это самоподдерживающийся разряд, способный обеспечивать протекание неограниченно больших токов за счет своих внутренних процессов. С физической точки зрения можно выделить внутренние процессы, происходящие на катоде, аноде и в пространстве между ними. Соответственно различают три характерные области падения потенциала по длине дугового разряда.

Непосредственно к катоду прилегает область катодного падения потенциала UK, которая характеризуется напряженностью электрического поля 106 — 107В/м. Вследствие малой протяженности lK (порядка средней длины свободного пробега электронов) падение потенциала в ней равно потенциалу ионизации молекул рабочего газа.


К положительному электроду примыкает область анодного падания потенциала UА. Протяженность области lА порядка нескольких длин свободного пробега электронов. Значение UА составляет несколько вольт.

Приэлектродные области разряда соединяются однородным по структуре проводящим каналом, который называется положительным столбом электрической дуги. Для всех видов электрических разрядов положительный столб характеризуется относительно низкой и приблизительно постоянной напряженностью электрического поля по длине канала. Поэтому напряжение горения дуги в первом приближении может быть определено уравнением

UД = UK + UА + E lПС, (6)

где Е и lПС — напряженность электрического поля и длина положительного столба дуги.

Уравнение (6) c учетом закона Ома принимает вид

, (7)

где и S — электропроводность и площадь поперечного сечения положительного столба разрядной камеры (РК).

Для дуги, стабилизированной потоком газа, сумма (UK + UА) и lПС слабо зависят от тока, поэтому вид вольтамперной характеристики в основном определяется зависимостью и S от J.

При увеличении силы тока диаметр столба и температура газа возрастают. Газ становится электропроводным при температуре около 5000К. В дальнейшем его электропроводность резко возрастает. Начиная с температуры 10 000К, электропроводность газа растет при увеличении температуры в меньшей степени. Из приведенных формул и графиков следует, что с ростом силы тока напряжение горения дуги уменьшается, т.е. формируется падающая ВАХ. При дальнейшем увеличении J рост диаметра положительного столба ограничивается стенками канала плазмотрона и потоком газа. Поэтому ври высоких значениях плотности тока создаются условия для формирования восходящей вольтамперной характеристики плазмотрона.

Рис.3.

UИП = UД + UБ. (8)

На рисунке 3 построены графики зависимости UБ =(J), UД = f(J), U = f(J), UИП = f(J). Как видно из рисунка, условию (8) удовлетворяют точки А и В, соответствующие JA и JB.

Рассмотрим состояние, соответствующее точке А. В процессе горения дуги возможны значительные флуктуации тока, обусловленные эмиссией заряженных частиц на катоде. Так, при уменьшении силы тока менее JA напряжение источника тока UИП становится меньше напряжения, необходимого для устойчивого горения дуги. Это приводит к дальнейшему снижению тока вплоть до полного прекращения дуги. И, наоборот, при случайном увеличении силы тока более JА, требуемое для горения напряжение убывает, поэтому в цепи дуги создается избыток напряжения. За счет этого избыточного напряжения сила тока продолжает расти до значения JB, соответствующего точке В. При дальнейшем увеличении тока напряжение UИП для поддержания этого роста станет недостаточным и ток уменьшится до значения JB. В случае уменьшения тока возникает избыток напряжения и ток восстанавливается до значения JB. Таким образом, непрерывное горение дуги реализуется при значении силы тока JB, а состояние, соответствующее точке А, является неустойчивым.

Недостатком рассмотренной системы питания плазмотронов является то, что на балластном сопротивлении теряется значительная (от 23 до 42%) часть мощности источника тока, следовательно, снижается к.п.д. плазменной установки, что не всегда приемлемо по экономическим показателям. Поэтому для питания плазмотронов конкретного технологического назначения (плазменная резка, сварка) преимущественное применение получили источники постоянного тока с круто падающими вольтамперными характеристиками. Они представляют собой выпрямители, собранные на тиристорах, с регулируемым углом открывания тиристоров относительно начала синусоиды напряжения. Тиристоры одновременно выполняют функции выпрямления и регулирования силы тока, а при введении обратных связей формируют необходимые вольтамперные характеристики источника питания. Условия непрерывности горения дуги в плазмотроне реализуется при UИСТ = UД и не отличаются от вышеописанного случая.

 

 

Плазма и ее получение

1. Плазмой называют частично или полностью ионизованный газ, содержащий равное количество свободных отрицательных и положительных зарядов. Каждая заряженная частица плазмы испытывает действие кулоновских сил притяжения или отталкивания со стороны окружающих ее зарядов. Эти силы убывают срасстоянием гораздо медленнее, чем силы взаимодействия нейтральных молекул газа. Поэтому в плазме определяющую роль играют коллективные взаимодействия большого числа частиц.

Такое состояние вещества, характеризуется высокой ионизацией его частиц, доходящей до полной ионизации. В зависимости от степени ионизации c, т.е. отношения концентрации заряженных частиц к полной концентрации частиц, различают плазму: слабо ионизованную (c — доли %), умеренно ионизованную (c — несколько %), полностью ионизованную (c — близко к 100%).

Плазма в основном состоит из частиц трех видов: нейтральных атомов и молекул, положительно заряженных ионов и свободных электронов. При столкновениях обмен энергией между частицами с близкой массой происходит быстрее, чем между частицами с существенно разными массами. Поэтому внутри каждой подсистемы одинаковых частиц может устанавливаться свое равновесное распределение по энергиям. В этих условиях различают электронную температуру Те, температуру ионов Тiи температуру нейтральных частиц Та.

Электроны и положительные ноны быстро рекомбинируют, образуя нейтральные атомы. Для поддержания постоянной ионизации газа необходимо внешнее воздействие, непрерывно вновь расщепляющее нейтральные атомы и молекулы на электроны и ионы. От интенсивности этого воздействия зависит установившаяся концентрация свободных зарядов в плазме.

В природных условиях слабоионизованная плазма наблюдается в ионосфере. Солнце, горячие звезды, а также некоторые межзвездные облака являются примерами полностью ионизованной плазмы, образующейся при очень высоких температурах (высокотемпературная плазма – свыше 106 К). Искусственно плазма создается в газовых разрядах, газоразрядных лампах, плазмотронах и т.д. Управление движением плазмы лежит в основе ее использования как рабочего тела в различных двигателях, для прямого превращения внутренней энергии в электрическую (магнитогидродинамические генераторы, плазменные источники электрической энергии), световую (лазерах), для обработки материалов потоком плазмы и т.д.

Большая электропроводность плазмы приближает ее свойства к свойствам проводников. Случайно возникающие в плазме, не подверженной внешним воздействиям, разности концентраций заряженных частиц и разности потенциалов сглаживаются, как в проводниках, на которые не действуют внешние э.д.с.

В лабораторной работе исследуются общие свойства тлеющего электрического разряда, переводящего газ, заполняющий разрядную трубку, в состояние плазмы. Экспериментально исследуются структура и вольтамперная характеристика самостоятельного газового разряда. Исследуется зависимость этих величин от электрической энергии, вводимой в тлеющий разряд.

Электропроводность газов

Газы состоят из электрически нейтральных атомов и молекул и в нормальных условиях являются изоляторами. Электропроводность газов возникает при их ионизации — отщеплении от атомов и молекул газов электронов. Атомы (молекулы) превращаются при этом в положительные ионы. Отрицательные ионы возникают в газах при соединении нейтральных атомов (молекул) со свободными электронами.

При ионизации атома (молекулы) совершается работа ионизации Aiпротив сил взаимодействия между вырываемым электроном и другими частицами атома (молекулы). Аiзависит от химической природы газа и энергетического состояния электрона в атоме (молекуле). Aiвозрастает с увеличением кратности ионизации, т.е. числа электронов, вырванных из атома.

Потенциалом ионизации φiназывается разность потенциалов, которую должен пройти электрон в ускоряющем электрическом поле для того, чтобы увеличение его кинетической энергии равнялось работе ионизации: φi = Ai/e, где е = 1,6 10-19 Кл —абсолютная величина заряда электрона.

Ионизация газа происходит в результате внешних воздействий: сильного нагревания, воздействия рентгеновских лучей, радиоактивных излучений, при бомбардировке молекул (атомов) газа быстро движущимися электронами или ионами. Интенсивность ионизации измеряется числом пар противоположных по знаку заряженных частиц, возникающих в единице объема газа за единицу времени.

Ударная ионизация одноатомного газа электронами или ионами происходит при кинетической энергии ионизирующей частицы (массой m и скоростью n) равной

(1)

где Аi— работа ионизации, М — масса атома молекулы газа.

Для осуществления ударной ионизации одновалентные ионы должны пройти в ускоряющем поле большую разность потенциалов, чем электроны. Это справедливо для ионизации молекул, состоящих из любого числа атомов.

1.3. Несамостоятельный газовый разряд

Если электропроводность газа вызывается внешними ионизаторами, то процесс прохождения электрического тока через газ называется несамостоятельным газовым разрядом. Кривая зависимости силы тока при несамостоятельном газовом разряде от напряжения V между электродами изображена на рисунке 1. При небольших напряжениях плотность тока j в разряде пропорциональна напряженности поля Е:

j = еn0(u+ + u)Е, (2)

где u+ и u_ — подвижности положительных и отрицательных ионов, n0 — число пар электронов и одновалентных положительных ионов в единице объема. В интервале давлений р от 10-4 до 102атм u+ и и_ обратно пропорциональны давлению газа. При дальнейшем увеличении напряженности поля Е концентрация ионов в разряде убывает и линейная зависимость силы тока от напряжения нарушается.

Рис.1.

Максимальная сила тока I, возможная при данной интенсивности ионизации, называется током насыщения. При этом все ионы, возникающие в газе, достигают электродов: Iн = eN0, где N0— максимальное число парэлектронов и одновалентных ионов, образующихся в 1 сек в газе под действием ионизатора.

Самостоятельный газовый разряд

Электрический разряд в газе, продолжающийся после прекращения действия внешнего ионизатора, называется самостоятельным газовым разрядом. Свободные электрические заряды, необходимые для поддержания такого разряда, возникают, главным образом, в результате ударной ионизации молекул газа под действием электронов (объемная ионизация) и выбивания электронов из катода при бомбардировке его положительными ионами (поверхностная ионизация). Ударную ионизацию молекул газа положительными ионами нужно учитывать только в случае достаточно сильных полей. Вырывание электронов из катода может также происходить вследствие его нагрева (термоэлектронная эмиссия) и внешнего фотоэффекта, связанного со свечением разряда (фотоэлектронная эмиссия).

Переход несамостоятельного газового разряда в самостоятельный называется электрическим пробоем газа и происходит при напряжении зажигания UЗ (напряжение пробоя). Согласно приближенной теории Таунсенда условие зажигания самостоятельного разряда в газе между плоскими электродами имеет вид

γ(еαd — 1) = 1, (3)

где d- расстояние между электродами, α- коэффициент объемной ионизации газа электронами, равный среднему значению количества актов ионизации, производимых одним электроном на пути единичной длины, γ— коэффициент поверхностной ионизации, равный среднему числу электронов, выбиваемых из катода одним положительным ионом. Для данного газа и материала катода

и , (4)

Рис.2. Рис.3.

где р — давление газа, U — напряжение между электродами. Таким образом, напряжение зажигания UЗзависит от произведения pd (закон Пашена). Характер этой зависимости показан на рисунке 2. С уменьшением потенциала ионизации и работы выхода электронов из катода, при прочих равных условиях, UЗуменьшается.

Рис.4.

Вольтамперная характеристика различных видов разряда в неоне с медными электродами (р=1 мм рт.ст., длина разрядной трубки l=50 см) 1 — темный, или таунсендовский самостоятельный разряд, 2 – переход к тлеющему разряду, 3– нормальный тлеющий разряд, 4-аномальный тлеющий разряд, 5 — переход к дуге, 6 — дуга. (Зависимость разрядного тока от напряжения, приложенного к электродам в разряде, называют вольтамперной характеристикой разряда).

Особенности тлеющего разряда в газе иллюстрирует рисунок 4, где представлена вольтамперная характеристика разряда в неоне с холодными электродами из меди при давлении газа р =1 мм рт. ст. в осях lg(i=I)– U как принято в физике электрических разрядов.

При малых разрядных токах (I < 10-5 А) наблюдают так называемый таунсендовский разряд, характерными чертами которого являются малая плотность тока, практически линейное изменение потенциала вдоль трубки и отсутствие заметного свечения. Механизм поддержания разряда заключается в том, чтобы при своем движении от катода к аноду каждый вышедший из катода электрон произвел столько актов ионизации и актов возбуждения атомов, что под действием образованных им ионов и фотонов из катода вновь был выбит один электрон. Математически это условие записывается в виде известного соотношения (3), в котором левая часть описывает рождение «вторичного» электрона при бомбардировке катода ионами и фотонами, образованными каждым вышедшим из катода «первичным» электроном. Здесь γ — коэффициент, равный отношению числа таких «вторичных» электронов к числу приходящих на катод ионов, α — первый коэффициент Таунсенда, характеризующий число ионов, образованных электроном при прохождении единицы пути от анода к катоду (в направлении действия поля). Коэффициенты α и γ зависят от рода газа, его давления и напряженности поля, а коэффициент γ— еще и от материала катода.

Рис.5.

Структура тлеющего разряда и распределения интенсивности свечения J, напряженности поля Е, потенциала φ, плотностей зарядов и токов положительных ионов и электронов ρр, ρе,jp, je.

При токах 10-4 ¸ 10-5 А существует переходная форма от темного таунсендовского разряда к тлеющему, характеризующаяся падающей вольтамперной характеристикой. При 10-4 ¸ 10-1 в трубке горит нормальный тлеющий разряд, вольтамперная характеристика которого в логарифмической оси тока почти прямолинейна и параллельна оси абсцисс (слегка падающая). Тлеющему разряду присущи новые отличительные особенности: интенсивное свечение и характерное распределение потенциала вдоль трубки, схематически представленное на рисунках 3,5. Видно, что практически все падение потенциала сосредоточено вблизи катода, при этом величина UKназывается катодным падением потенциала.

Подобная картина распределения потенциала в тлеющем разряде объясняется тем, что существенную роль начинает играть объемный заряд, образующийся в газе в процессе формирования разряда. При этом основные процессы, обеспечивающие существование тлеющего разряда, происходят в катодных его частях и аналогичны лавинным процессам в таунсендовском разряде. Поэтому условие стационарности тлеющего разряда также можно описать соотношением (3), где под d следует понимать длину катодной области. Катодные области переходят в так называемый положительный столб (ПС), представляющий собой плазму с высокой проводимостью. По физике процессов эти области существенно различаются, и их роль в поддержании разряда различна.

Положительный столб играет просто роль проводника, как бы приближающего анод к той области разрядного промежутка, в которой заканчивается формирование электронной лавины. Поэтому при изменении длины разрядного промежутка происходит прежде всего простое сокращение либо увеличение длины положительного столба, в то время как катодные части не изменяют своей структуры.

Постоянство UKобъясняется тем, что в нормальном тлеющем разряде ток течет только через ограниченную часть поверхности катода, величина которой S определяется так называемой нормальной плотностью тока jнорм, которая является также характеристикой разряда, зависящей только от рода газа, его давления и от материала и от состояния катода. При увеличении силы тока Iпроисходит рост площади катодного пятна S согласно равенству

I = jнорм S (4)

при jнорм ≈ соnst. После того как в процессе увеличения силы разрядного тока величина I/jнорм станет равной площади катода, наступает переход к аномальному тлеющему разряду с характерной для него возрастающей вольтамперной характеристикой. В аномальном тлеющем разряде величина UKуже не постоянна, а растет с увеличением силы разрядного тока.

Величина нормального катодного падения потенциала определяется экспериментально методом так называемого затрудненного разряда. Суть этого метода заключается в следующем. Поддерживая постоянной силу разрядного тока (это достигается изменением сопротивления во внешней цепи разряда), приближают постепенно анод к катоду и снимают зависимость напряжения горения разряда U от расстояния между анодом и катодом l. При этом величина U сначала постепенно уменьшается за счет уменьшения длины положительного столба. Начиная с некоторого расстояния, при котором положительного столба больше нет, уменьшение напряжения сначала идет быстрее, а затем в некотором узком интервале изменения l оно практически не изменяется. При дальнейшем уменьшении расстояния между анодом и катодом мы вступаем в область катодного падения, и для поддержания разряда при заданной силе тока требуется быстрый рост напряжения. Причину такого роста легко понять из соотношения (3), из которого следует, что уменьшение d может компенсироваться только ростом напряжения, а это возможно только за счет увеличения напряженности электрического поля в катодной области, т.е. за счет роста UК, Значение l, при котором происходит резкое возрастание напряжения на разрядной трубке, определяет длину катодного падения потенциала d, a U(d) = UK.

Тлеющее свечение в основном вызывается обратным воссоединением (рекомбинацией) электронов и ионов в нейтральные атомы или молекулы. Тлеющее свечение имеет сплошной спектр. В положительном столбе наблюдается постоянная и большая концентрация электронов и положительных ионов (газоразрядная плазма), обусловленная ударной ионизацией молекул газа электронами. Падение потенциала в пределах положительного столба сравнительно невелико и при прочих равных условиях возрастает с уменьшением диаметра газоразрядной трубки. Свечение положительного столба, определяющее оптические свойства тлеющего разряда (ТР), связано с излучением возбужденных атомов (молекул) газа. Рекомбинация электронов и положительных ионов в основном происходит на стенках газоразрядной трубки и вызывает нагрев стенок. Положительный столб часто бывает слоистым, т.е. состоит из чередующихся светлых слоев (страт) и темных промежутков. Положительный столб по своей форме следует форме газоразрядной трубки независимо от формы и расположения катода и анода. Это связано с наличием поперечного (радиального) электрического поля, возникающего благодаря осаждению электронов на стенках трубки. При тлеющем разряде в достаточно коротких трубках или в широких сосудах светящийся положительный столб не наблюдается.

Основной областью тлеющего разряда, в которой происходят процессы объемной ионизации газа, необходимые для поддержания разряда, является область катодного темного пространства. Длиной lК катодного темного пространства (рис.6) называют расстояние от катода до той точки разряда, в которой кривая φ = φ(l) (рис. 3.) имеет максимум, или точку перегиба. Тлеющий разряд может существовать лишь при условии, что расстояние между электродами d ³ lК.

 

 

Рис.6.

Различают два режима ТР: нормальный, при котором плотность разрядного тока j не зависит от тока I, изменяемой с помощью внешнего нагрузочного сопротивления RБ, и аномальный, при котором плотность тока j возрастает вместе с током I. В первом случае катод не полностью покрыт отрицательным свечением, во втором — полностью. В случае нормального тлеющего разряда lКобратно пропорционально давлению газа, а DUкзависит от рода газа, материала и состояния поверхности катода, возрастая с увеличением работы выхода электронов из катода Aвых. С увеличением тока падение потенциала в положительном столбе уменьшается. Поэтому вольтамперная характеристика нормального тлеющего разряда cлегка падающая, т.е. с увеличением тока напряжение на электродах уменьшается. При аномальном ТР с увеличением разрядного тока lК уменьшается, a UφК возрастает. Вольтамперная характеристика аномального тлеющего разряда возрастающая (рис.4).

Если давление в трубке с нормальным тлеющим разрядом достаточно мало, то катодное темное пространство почти полностью заполняет всю трубку. При этом пучок электронов движется от катода до стенок трубки практически свободно, т.е. не испытывая столкновений с молекулами газа. Такие пучки электронов навивают катодными лучами.

Каналовыми лучами называют пучки свободно движущихся положительных ионов. Они также могут быть получены с помощью ТР: если в катоде разрядной трубки сделать небольшое отверстие (канал), то положительные ионы, попадающие в этот канал, будут проходить через него в эвакуированное закатодное пространство в виде пучка каналовых лучей.

Тлеющий разряд можно возбудить в разреженном газе, заполняющем стеклянную трубку, пропустив сквозь него электрический ток. Для него характерно неравномерное распределение электрического потенциала вдоль длины трубки. Вблизи катода (электрода, несущего отрицательный потенциал) наблюдается быстрое нарастание потенциала. Действующее в этой области сильное электрическое поле ускоряет электроны, вылетевшие из катода, до энергии, достаточной для ионизации молекул газа. Если приложенное к трубке напряжение достаточно велико, то вторичные электроны вновь ускоряются электрическим полем и ионизуют другие молекулы. Положительно заряженныеионы, двигаясь к катоду, ускоряются электрическим полем и выбивают из катода новые электроны. Так поддерживается непрерывный самостоятельныйтлеющий разряд.

Рис.8.

Uип = UР + UБ. (12)

На рисунке 8 построены графики зависимости UБ = f1 (I), UР = f2 (I), UИП = f3 (I), U = f (I). Как видно из рисунка, условию (8) удовлетворяют точки А и В, соответствующие IA и IB.

Рассмотрим состояние, соответствующее точке А. В процессе горения разряда возможны значительные флуктуации тока, обусловленные эмиссией заряженных частиц на катоде. Так, при уменьшении силы тока менее IA напряжение источника тока UИП становится меньше напряжения U, необходимого для устойчивого горения ТР. Это приводит к дальнейшему снижению тока вплоть до полного прекращения горения. И наоборот, при случайном увеличении силы тока более IА, требуемое для горения ТР напряжение убывает, поэтому в электрической цепи создается избыток напряжения. За счет этого избыточного напряжения сила тока продолжает расти до значения IB, соответствующего точке В. При дальнейшем увеличении тока напряжение Uип для поддержания этого роста станет недостаточным и ток уменьшится до значения IB. В случае уменьшения тока возникает избыток напряжения и ток восстанавливается до значения IB. Таким образом, непрерывное горение ТР реализуется при значении силы тока IB, а состояние, соответствующее точке А, является неустойчивым.

Недостатком рассмотренной системы питания плазмотронов ТР является то, что на балластном сопротивлении теряется значительная (от 23% до 42%) часть мощности источника тока, следовательно, снижается к.п.д. установки, что не всегда приемлемо по экономическим показателям. Поэтому для питания плазмотронов ТР конкретного технологического назначения (лазеры) преимущественное применение получили источники постоянного тока с круто падающими вольтамперными характеристиками. Они представляют собой выпрямители, собранные на тиристорах, с регулируемым углом открывания тиристоров относительно начала синусоиды напряжения. Тиристоры одновременно выполняют функции выпрямления и регулирования силы тока, а при введении обратных связей формируют необходимые вольтамперные характеристики источника питания. Условия непрерывности горения ТР в плазмотроне реализуется при UИП = UР и не отличаются от вышеописанного случая.

 

Классификация плазмотронов.

Различные варианты схем плазмотронов удобнее всего представить в виде классификации (Рис. 2).

Рис. 2. Классификация плазмотронов.

В первую очередь все плазмотроны разделяются на две группы по виду дуги: прямого действия и косвенного действия.

По системе охлаждения электрода и плазмообразующего сопла плазмотроны делятся на два основных типа: с воздушным и с водяным охлаждением. Могут быть плазмотроны со смешанной системой охлаждения теплонагруженных узлов. Теплоемкость воды намного выше теплоемкости воздуха и других газов, поэтому, наиболее эффективной и распространенной является водяная система охлаждения плазмотронов, которая обеспечивает высокую мощность и высокую степень сжатия дуги.

Плазмотроны можно классифицировать по способу стабилизации сжатой дуги. Система стабилизации сжатой дуги обеспечивает сжатие столба дуги и строгую фиксацию его по оси сопла плазмотрона и является одним из важнейших элементов плазмотрона. Существует три вида стабилизации сжатой дуги: газовая водяная и магнитная. Наиболее простой и распространенной является газовая стабилизация, при которой наружный, холодный слой рабочего (плазмообразующего) газа омывая столб дуги, охлаждают и сжимают его. При этом, в зависимости от способа подачи газа, газовая стабилизация может быть аксиальной или вихревой. Наибольшее обжатие дуги достигается при вихревой стабилизации, используется для резки и напыления. При аксиальной стабилизации обеспечивается ламинарный характер истечения струи из плазмообразующего сопла. При водяной стабилизации можно достигнуть наиболее высокой степени сжатия и температуры столба дуги (50 – 70 тыс. К). Однако присутствие паров воды приводит к интенсивному сгоранию электродов из любых материалов, поэтому используются расходуемые (чаще графитовые) электроды, автоматически перемещающиеся по мере сгорания. Магнитная стабилизация, при которой создаваемое продольное магнитное поле сжимает столб дуги, менее эффективна чем водяная и газовая. Кроме того наличие соленоида усложняет конструкцию плазмотрона и увеличивает его габариты. Преимущество магнитной стабилизации состоит в возможности регулирования степени сжатия дуги не зависимо от расхода рабочего газа. На практике наложение продольного магнитного поля применяется для вращения анодного пятна по внутренним стенкам сопла , при работе в режиме косвенной дуги, с целью повышения стойкости последнего.

По виду электрода катода плазмотроны постоянного тока можно разделить на две группы: со стержневым и с распределенным катодом. В плазмотронах со стержневым катодом, катодное пятно фиксируется на торце электрода, а в плазмотронах с распределенным катодом – интенсивно перемещается с помощью газовихревого или магнитного вращения. Стержневые катоды могут быть трех видов: расходуемый, газозащитный и пленкозащитный. Расходуемый, чаще всего графитовый, электрод несмотря на высокую температуру плавления имеет повышенный расход из-за возгонки вблизи температуры плавления. Газозащитный вольфрамовый электрод – самый распространенный из всех видов электродов. Вольфрам имеет высокую прочность и достаточно высокие электро- и теплопроводность.

При работе в инертной среде (аргон гелий) при нагрузке j = 15 – 20 А/мм2 вольфрам практически не расходуется. Пленкозащитные катоды обладают высокой стойкостью в активных средах (воздух, углекислый газ, технический азот). Они представляют собой стержень из циркония или гафния запрессованный в медной обойме. Высокая термостойкость таких катодов обусловлена образованием стойкой тугоплавкой пленки из оксидов и нитридов, защищающей чистый металл от испарения. Активная вставка расходуется в основном при включении дуги, вследствие разрушения пленки от термоудара. При использовании циркониевого электрода допускается большая чем для вольфрама плотность тока, достигающая 80 – 100 А/мм2. При работе плазмотрона с окислительной плазмообразующей средой на больших токах (1000 А и более) используются разнообразные виды распределенных катодов, наиболее распространенными из которых являются полый, дисковый и кольцевой. Недостатками распределенных катодов являются сложность их конструкции, трудность равномерного перемещения катодного пятна по всей поверхности электрода, низкая стабильность горения дуги, возрастание напряжения прикатодной области дуги и связанное с этим увеличение потерь мощности в электроде.

Классификация плазмотронов по плазмообразующей среде. Состав

cyberpedia.su

торг — «Алплаз 04» t = 8000 С.

ЛОТ КАК НА ФОТО / SSS-101 /

МОЖЕТЕ КУПИТЬ НА АУКЦИОНЕ МЕШОК на ТОРГАХ от РУБЛЯ !!!

АЛПЛАЗ 04 — ПЛАЗМОТРОН — МУЛЬТИПЛАЗ — УНИВЕРСАЛЬНЫЙ АППАРАТ ПЛАЗМЕННОЙ РЕЗКИ и СВАРКИ ЛЮБЫХ МЕТАЛЛОВ КАМНЕЙ КЕРАМИКИ БЕТОНА… и не только… ТЕМПЕРАТУРА ФАКЕЛА 8000 С

Аппарат почти в идеале, НОВЫЙ 98%. Комплект запасного имущества ЗИП не испльзовался.
Аппарат покупал для одного объекта, теперь стоит без дела. Вот и решил продать.
ОЧЕНЬ ПРОСТ В РАБОТЕ — ЧЕРЕЗ ЧАС ПОЛНОСТЬЮ ОВЛАДЕЕТ и ШКОЛЬНИК.

АЛПЛАЗ http://www.multiplaz.ru ОАО «Мультиплаз» – единственная компания в мире, владеющая исключительной лицензией (лицензионный контракт № 250402АТМ)
на создание а также реализацию плазмотронов. http://xn--80aajzhcnfck0a.xn--p1ai/PublicDocuments/0302705.pdf

Беспримерная экологическая чистота плазмотрона дозволяет создавать работы в закрытых помещениях в отсутствии вентиляции,
При металлообработке не используются вредные газы (пропан, ацетилен, азот а также т.д.), отсутствует процесс горения,
а следовательно, а также его продукты.

Этот многофункциональный плазменный аппарат награжден Гран-При всемирного салона изобретений в Женеве
И вот почему: Это единственный инструмент в мире, который имеет такой широкий диапазон применения. Мультиплаз 04 осуществляет сварку,
пайкосварку, пайку, закалку, очистку разных металлов: стали, алюминия, меди, чугуна, бронзы и других сплавов. Режет все металлы,
в том числе нержавейку, которую нельзя разрезать кислородной резкой. Резка керамической плитки, кварцевого стекла, кирпича, бетона и
прочих негорючих материалов – еще одна уникальная особенность этого аппарата. Заменяет множество других самых разнообразных инструментов: сварочный аппарат, газовую горелку, плазменный резак, листовые и вырубные
ножницы, термофен, электролобзик, паяльную лампу, плиткорез и многие другие.

ЭТО компактный комплекс, который помещается в небольшую сумку. С таким инструментом удобно перемещаться на личном автомобиле или в
общественном транспорте. Благодаря уникальным свойствам факела Мультиплаз 3500 может очищать металл от коррозии или нагревать только
ту деталь, которую необходимо, например, гайку на болте. Это инструмент, который без пыли вырезает в керамической плитке отверстия любой формы.

По причине узенькой зоны прогрева не происходят температурные деформации свариваемого сплава,
обеспечивается его малая усадка. Образующийся шов не подвержен коррозии благодаря образованию в области сварки
нержавеющей оксидной пленки.

Напряжение питающей сети 220 В+10% 50/60 Гц / потребляемая мощность 0,2-1,8 кВт / Температура факела до 8000 °C / Скорость резки листовой стали толщиной 2 мм до 4,0 мм/сек
Ширина реза листовой стали не более 1,0 мм / Расход рабочей жидкости, max л/час (вода или смесь «вода- спирт» или смесь «вода-ацетон» ? 0,2
/ Время непрерывной работы с одной заправкой 20-35 мин. / резка любых материалов толщиной до 5 мм / ОБЩИЙ ВЕС КОМПЛЕКТА = 5.750 кг.

krsk.au.ru

Портативный плазменный аппарат Алплаз-04. Руководство по эксплуатации. |

On July 20, we had the largest server crash in the last 2 years. Mostly the data of the books and covers were damaged so many books are not available for download now. Also, some services may be unstable (for example, Online reader, File Conversion). Full recovery of all data can take up to 2 weeks! So we came to the decision at this time to double the download limits for all users until the problem is completely resolved. Thanks for your understanding!

Главная
Портативный плазменный аппарат Алплаз-04. Руководство по..

Руководство включает в себя технические характеристики, описание, схемы, сведения по эксплуатации, техническому обслуживанию и ремонту плазменных аппаратов Алплаз-04 data-stock.com

Год:
1997

Язык:
russian

Страниц:
12

File:
DJVU, 806 KB

The file will be sent to selected email address. It may takes up to 1-5 minutes before you received it.

The file will be sent to your Kindle account. It may takes up to 1-5 minutes before you received it.

Please note you’ve to add our email [email protected] to approved e-mail addresses.
Read more.

ru.b-ok.org

Технология плазменной резки, сварки и пайки

Резка материалов

Резка металлов
осуществляется горелкой, в которой
рабочей жидкостью является вода (лучше
дистиллированная).

Для
резки металлов рекомендуется применять
сопло — анод с небольшим диаметром
отверстия (не более 1,2 мм).

Рабочий
ток блоком питания увеличивается с
толщиной (теплоёмкостью) разрезаемого
металла (для черного металла толщиной
более 4 мм переключатель «РЕЖИМ»
устанавливается в положение «6»).

При
использовании горелки в качестве резака
допускается касание сопла — анода с
разрезаемым металлом, при этом горелку
желательно держать под небольшим
наклоном к поверхности. Для обеспечения
высокого качества и скорости резки
необходимо использовать различного
рода приспособления (линейки, лекала,
циркули), обеспечивающие фиксацию
положения факела горелки и равномерное
её движение по поверхности металла.
Образовавшийся облой с обратной стороны
легко удаляется плоскогубцами или
напильником.

Сварка
малоуглеродистых сталей

Для сварки
малоуглеродистых сталей применяется
горелка, заполненная рабочей жидкостью,
состоящей из смеси воды с ацетоном или
спиртом (60% воды и 40% ацетона или спирта).

При сварке может
быть использована присадочная проволока
СВ-08ГС, СВ-08Г2С, СВ-10ГС, СВ-10ГСМ, СВ-12ГС.

Сварку рекомендуется
производить горелкой с диаметром
отверстия сопла- анода 1,6…1,8 мм.

При
производстве сварочных работ
переключателем «РЕЖИМ» предварительно
выбирается такой режим работы аппарата,
при котором обеспечивается образование
сварочной ванны без прожигания металла.

Для
предотвращения выдувания жидкого
металла из сварочной ванны горелку
целесообразно держать под наклоном к
свариваемой поверхности.

Перемещение
горелки в процессе сварки желательно
производить в сторону направления
факела. Рекомендуется делать небольшие
круговые движения факела по свариваемой
поверхности с одновременным разогревом
присадочного материала.

В
остальном техника проведения сварочных
работ аналогична
технике традиционной газовой
сварки.

Пайка стали и
цветных металлов твёрдыми припоями

Для
пайки стали и цветных металлов
используется горелка, заполненная
рабочей жидкостью, состоящей из смеси
воды и спирта (60% воды и 40% спирта), или
аналогичной смеси воды с ацетоном.

В
качестве флюса применяется бура, борная
кислота или водный раствор хлористого
цинка (травится цинк в 10-% соляной
кислоте).

Пайка
производится латунным или серебряным
припоем горелкой с диаметром отверстия
сопла- анода 1,6…1,9 мм.

Рекомендуется
установить переключатель «РЕЖИМ» при
пайке металлов в положение «6».

Техника проведения
пайки аналогична традиционным приёмам.

8.3. Аппарат микроплазменной и точечной сварки атс-902

Аппарат
АТС-902 предназначен для микроплазменной
сварки листовых и проволочных конструкций
из меди, стали, никеля, титана, нихрома,
хромеля, константана и других материалов
сечением от 0,002 до 3,14 мм2.
Возможна сварка материалов «встык» от
0,3 до 2,0 мм, а «внахлест» толщина верхнего
листа может составлять от 0,1 до 1 мм.

В
случае комплектования аппарата сварочным
пистолетом становится возможным
выполнение с помощью его точечной
сварки.

Технические
характеристики аппарата АТС-902:

-напряжение
питающей сети
-220 В;

-напряжение
холостого хода
-75 В;

-максимальная
потребляемая мощность
-1 кВт;

-пределы регулирования
сварочного тока:

-свободно горящей
дуги -10…80 А;

-сжатой дуги
-1…50
А.

Аппарат
состоит из источника питания и
микроплазменной горелки. Сварочная
горелка с вольфрамовым электродом
предназначена для сварки изделий в
среде защитного газа. На передней панели
аппарата установлены ротаметр для
регулирования расхода газа и включатели
режимов работы (МП — микроплазменная
сварка, АД — аргонно-дуговой режим), газа
плазмы, регуляторы силы тока и времени
сварки, времени удержания электрода и
гашения дуги. На задней панели размещаются
вводы электросети и защитного газа,
подсоединение сварочного пистолета и
сварочной горелки типа «Карандаш» для
аргонно-дуговой сварки и педали
включения сварочного тока.

Работа аппарата
в микроплазменном режиме:

  1. Переключить
    клеммы на задней панели в микроплазменный
    режим.

  2. Подключить
    к аппарату микроплазменную горелку и
    педаль запуска.

  3. Тумблер «РЕЖИМ»
    переключить в положение МП.

  4. Тумблер
    «ГАЗ ПЛАЗМЫ» переключить в верхнее
    положение, ротаметром установить такой
    расход плазмообразующего газа, чтобы
    длина факела, исходящего из
    плазмообразующего сопла составляла
    от 1 до 3 мм.

  5. Органами управления
    на панели аппарата задать режим сварки.

  6. Возбудить
    дежурную дугу методом замыкания
    электрода на сопло.

  7. Поднести
    плазменную горелку к изделию и нажать
    педаль запуска. Возбудится дуга, которая
    будет гореть в течение времени, заданного
    переключателем «ВРЕМЯ СВАРКИ».

Корректировку
сварочных режимов проводить в зависимости
от характера выявленных дефектов:

-при непроваре
увеличить силу сварочного тока или
продолжительности времени сварки;

-при пережоге
уменьшить время сварки или ток;

-при перегреве
детали уменьшить время сварки;

-при наплывах
уменьшить время сварки или сварочный
ток;

-при
разбрызгивании свариваемого материала
уменьшить расход плазмообразующего
газа или силу тока сварки.

studfiles.net

Плазмотрон «АЛПЛАЗ-04», Инструмент, Тольятти

Все города РоссииАбаканАнгарскАпатитыАрмавирАрхангельскАстраханьБалашихаБалашовБарнаулБезенчукБелгородБеловоБерезовский БлаговещенскБорскоеБрянскБугурусланВеликий НовгородВладивостокВолгодонскВолодарскВоронежВоскресенскВятские ПоляныГубкинДзержинскЕкатеринбургЕлабугаЕлецЕссентукиЗвенигородЗеяИвановоИжевскИркутскКазаньКалининградКалининецКалугаКаменск-Уральский КедровкаКемеровоКинель-ЧеркассыКировКисловодскКлимовскКоломнаКрасноармейскКраснодарКрасноярскКукморКурганКуровскоеКурскКызылЛенинск-КузнецкийЛенскЛесосибирскЛипецкЛискиЛуховицыМалоярославецМедногорскМеждуреченскМинеральные ВодыМоскваНабережные ЧелныНижнекамскНижний НовгородНижний ТагилНовоивановскоеНовокузнецкНовороссийскНовосибирскНовочебоксарскНогинскНорильскНоябрьскНурлатОбнинскОдинцовоОктябрьскОмскОренбургОрскОтрадныйПензаПервоуральск ПермьПодольскПолевскойПолысаевоПохвистневоПрокопьевскПятигорскРадужныйРешетихаРостов-на-ДонуРязаньСамараСанкт-ПетербургСаранскСаратовСевастопольСергиев ПосадСеров СибайСимферопольСлавянск-На-КубаниСлободскойСосновкаСочиСтавропольСтарый ОсколСтупиноСургутСызраньТайгаТбилисскаяТобольскТольяттиТомскТопкиТуимТулаТулунТуранТюменьУлан-УдэХабаровскХанты-МансийскЧапаевск ЧебоксарыЧелябинскЧереповецЧитаЧунскийШираЩербинкаЭнгельсЮжно-СахалинскЯкутскЯлтаЯрославльЯсный

Все ломбардыФилиал Магнолия +АЛЕСЯ 01 — АлесяАЛЕСЯ 02 — КосмосАЛЕСЯ 03 — ЧайкинойАЛЕСЯ 04 — ТолстогоАЛЕСЯ 05 — ЖигулевскаяАЛЕСЯ 06 — ШлюзоваяАЛЕСЯ 07 — Поле ЧудесАЛЕСЯ 08 — ЛенинаАЛЕСЯ 09 — ВеснаАЛЕСЯ 10 — КуйбышеваАЛЕСЯ 11 — ГалВосходАЛЕСЯ 12 — ПриморскийАЛЕСЯ 13 — НовинкаАЛЕСЯ 14 — СоррентоАЛЕСЯ 15 — ЖелезнодорожнаяАЛЕСЯ 16 — СветланаАЛЕСЯ 17 — ПобедаАЛЕСЯ 18 — Парк»Ломбард Добрый — Автозавод»»Ломбард Добрый — Кунеевка»»Ломбард Добрый»»Добрый Л.» — на паях12342134214КМ «Сундук»Комиссионный магазин «ФАРАОН»ЛомбардЛомбард «Злой»РубльФараонФараонФараон Новопромышленная

Все категорииЮвелирные изделияСерьгиПодвески, кресты и кулоныКольцаБраслетыЦепиЧасыОжерелья и КольеМобильные телефоныАвтотранспортАудиотехникаМузыкальные центры и магнитолыУсилители, ресиверы и приемникиАкустика, колонки, сабвуферыMP-3 плеерыНаушникиРадиоприемникиДля автомобиляВидеорегистраторыКомплектующие и аксессуарыШины, диски и колесаАвтомагнитолыАвтомобильная акустикаРадар-детекторыАвтомобильные усилителиНавигаторыКомпьютеры и ноутбукиНоутбуки и нетбукиТовары для компьютераПланшеты и электронные книгиПланшетыЭлектронные книгиТВ и видеотехникаСпутниковое ТВВидеоплееры и AV-ресиверыВидеокамерыТелевизоры и проекторыИгровые приставки, игрыИгровые приставкиИгры для приставокФототехникаКомпактные фотоаппаратыЗеркальные фотоаппаратыОборудование и аксессуарыТехника для домаУтюгиМедтехника и красотаОбогревателиПрочая техника для домаШвейные машины и оверлокиПылесосыСтиральные машиныТехника для кухниПрочая кухонная техникаМультиварки и пароваркиЭлектрочайникиХолодильники и морозильные камерыИнструментГенераторы и компрессорыСварочное оборудованиеЛобзики, пилы и плиткорезыПерфораторы и отбойникиДрели и шуруповертыБолгарки и шлифмашинкиПневмоинструментМелкий ручной инструментЛазерные уровни, дальномерыАнтиквариат и коллекционированиеПрочий антиквариатИконыКартиныБанкнотыСпорт, туризм и отдыхСпортивный инвентарьДля охоты, рыбалки и туризмаВелосипеды и самокатыОружиеЧасыИзделия из кожи и мехаЖенская одеждаМужская одеждаАксессуарыМузыкальные инструментыНарды, шахматы, настольные игрыПрочееDVDПланшетыНоутбуки и нетбукиДругие маркиToshibaAcerHPSamsungAppleASUSСумка для ноутбукаLenovoКомпьютерыДля детейПрочееКоляскиИгрушки

polombardam.ru

Портативный плазменный аппарат Алплаз-04. Руководство по эксплуатации. |

On July 20, we had the largest server crash in the last 2 years. Mostly the data of the books and covers were damaged so many books are not available for download now. Also, some services may be unstable (for example, Online reader, File Conversion). Full recovery of all data can take up to 2 weeks! So we came to the decision at this time to double the download limits for all users until the problem is completely resolved. Thanks for your understanding!

Main
Портативный плазменный аппарат Алплаз-04. Руководство по..

Руководство включает в себя технические характеристики, описание, схемы, сведения по эксплуатации, техническому обслуживанию и ремонту плазменных аппаратов Алплаз-04 data-stock.com

Year:
1997

Language:
russian

Pages:
12

File:
DJVU, 806 KB

The file will be sent to selected email address. It may takes up to 1-5 minutes before you received it.

The file will be sent to your Kindle account. It may takes up to 1-5 minutes before you received it.

Please note you’ve to add our email [email protected] to approved e-mail addresses.
Read more.

b-ok.org

БНТИ, 2000, №2 | Наука и жизнь

ЭЛАСТИК В МАГНИТНОМ ПОЛЕ

Любопытный опыт проводят на кафедре магнетизма физического факультета МГУ имени М. В. Ломоносова с одним из недавно созданных материалов.

Выполненная из него пробка, оказавшись в магнитном поле, существенно уменьшается в диаметре и легко входит в горлышко бутылки, а при устранении этого поля снова расширяется и крепко ее закупоривает. Извлечь такую пробку из горлышка можно лишь при повторном использовании магнита.

Материал, из которого она изготовлена, — магнитоэластик — получен в результате совместных работ сотрудников кафедры и инженеров-химиков ГНИИХТЭОС — Государственного НИИ химии и технологии элементоорганических соединений (Москва).

Деформация нового материала в магнитном поле в несколько раз больше, чем у любых других пьезо-, электро- и прочих магнитных материалов, и объясняется это его строением. Ведь он представляет собой нечто среднее между так называемыми «твердыми» (то есть не меняющими форму в магнитном поле) полимерными магнитными структурами и так называемыми магнитными жидкостями (см. «Наука и жизнь» № 1, 1991 г.). Если в «твердых» структурах мельчайшие магнитные частицы жестко закреплены, а значит, неподвижны, то в магнитных жидкостях они, напротив, обладают всеми возможными степенями свободы. В магнитоэластике же эти частицы связаны меж собой упругими полимерными «пружинками» и под действием магнитного поля могут перемещаться, деформируя материал, а после устранения поля вынуждены возвращаться в исходное положение.

Изготовляют магнитоэластик из жидкого коллоидного раствора, в котором помимо мельчайших магнитных частиц присутствуют фрагменты будущих длинных полимерных молекул. При полимеризации раствор постепенно застывает, и в результате получается некий «студень» с хаотически расположенными в нем магнитными частицами, удерживаемыми на местах при помощи полимерных «пружинок». Подбирая полимерный материал, формы образца и конфигурации поля, разработчики могут получать заранее заданную деформацию, растягивать магнитоэластик в два, в три и даже в четыре раза. Уже сегодня существуют материалы с различными вязкоупругими свойствами, ориентированными на разные области применения.

А использовать магнитоэластики можно очень широко — и не только в технике, но и в медицине. Предполагается, например, осуществлять с их помощью блокировку мельчайших кровеносных сосудов, подводящих кровь к какой-либо опухоли, и прекращать тем самым ее дальнейшее развитие.

ПЛАЗМЕННЫЙ ГИПЕРБОЛОИД

Возможность реализации фантастического гиперболоида инженера Гарина связывают обычно с лазерной техникой. И в самом деле, уже давно существуют лазеры, при помощи которых можно резать самые прочные материалы, но эта аппаратура громоздка и энергоемка. Неожиданную конкуренцию ей составила плазменная горелка, прототипом которой может в какой-то мере служить газосварочный аппарат. Впрочем, способ создания плазменной струи в горелке иной, да и эффективность несоизмеримо выше.

На зеленоградском (Москва) заводе «Элакс» создан аппарат «Алплаз-04М», состоящий из плазменной горелки и электронного блока. Весит она около 700 г, а внешне напоминает небольшую электродрель. Вот только рабочим органом у нее служит не сверло, а вырывающаяся из сопла почти со скоростью звука тонкая (1-2 мм) плазменная струя. Благодаря своей температуре, достигающей при необходимости 30 тысяч градусов, эта струя способна прорезать самые тугоплавкие металлы. А в 6-миллиметровой толщины стальном листе может проделать миллиметровой ширины прорезь сложной конфигурации. Ни один другой известный инструмент сделать этого не в состоянии.

Что же касается зарубежных плазменных инструментов, то от них «Алплаз» выгодно отличается не только вдвое меньшей ценой, но и целым рядом технических параметров. Возможностью, например, регулировать температуру плазмы (от 2 до 30 тысяч градусов), а также ее давление, что позволяет осуществлять не только резку, но и сварку, и пайку самых разных металлов. Электронный блок прибора, не превышающий по своим размерам и массе зарядное устройство к автомобильному аккумулятору, питается от обычной электросети и потребляет всего 1,8 кВт. Но главное достоинство зеленоградского прибора в том, что плазма в нем образуется не из воздуха, а из водяного пара, и потому нуждается он не в компрессоре, а всего лишь в небольшом количестве водопроводной воды с некоторой добавкой спирта. Немаловажно и то, что работает прибор исключительно чисто, почти не образуя пыли и грязи, и что использовать его можно не только в мастерской, но и на обычном столе.

По мнению разработчиков плазмоинструмента «Алплаз-04М», сфера его применения может быть весьма широка: от космической техники до художественных промыслов. А пока на его счету уже две золотые медали на международной выставке «Эврика-97»: за разработку и за технологию.

РЕМОНТ БЕЗ ВЫСЕЛЕНИЯ

Выпуск первой отечественной техники для осмотра и текущего ремонта мостов освоен санкт-петербургским АООТ «Автогидроподъемник». Подъемник АГПМ 18/9-7,5 с малогабаритной платформой установлен на базе грузового автомобиля КамАЗ и внешне напоминает те автомобили, которыми пользуются пожарные и спасатели МЧС. Их машины, однако, способны лишь поднимать свою люльку вверх, тогда как новая может не только поднять люльку на высоту до 18 метров, но и опустить ее на глубину до 9 метров и даже завести на расстояние 7,5 метра под мост, на котором сама и стоит.

Нужда в такого рода машинах в нашей стране острейшая. Ведь до недавних пор на все автомобильные мосты России их приходилось всего четыре — разумеется, импортных. Да и практика эксплуатации мостов у нас сложилась очень своеобразная: их строят, а затем пользуются ими до тех пор, пока они не начинают опасно прогибаться. В этом случае мост приходится закрывать или в лучшем случае сильно ограничивать проезд по нему.

Совсем иначе эксплуатируют мосты на Западе, где их постоянно осматривают и по необходимости производят мелкий ремонт и подкрашивают. Тринадцатикилометровый мост в Сан-Франциско красят, например, ежедневно, поскольку на его покраску требуется два года. И когда очередная покраска заканчивается, то технику возвращают на другой берег, и все начинают сначала.

Теперь, похоже, и у нас появится возможность перенять такую систему: ведь отечественная машина для осмотра и ремонта мостов в несколько раз дешевле зарубежных.

ОБОГРЕВ С ЭКОНОМИЕЙ

Выпуск первых отечественных инфракрасных газовых отопителей ИГБ-240 налажен московской фирмой ЗАО «ВЭСТ Т». Предназначены эти отопители для обогрева производственных помещений, а принцип их действия кардинально отличается от традиционного. Привычный способ отопления основан на нагреве горячей водой, паром или электричеством радиатора, который передает тепло окружающему воздуху, а тот, перемешиваясь в помещении благодаря естественной конвекции, передает полученное тепло всем предметам и поверхностям помещения. Подобные системы, однако, отапливают помещение неравномерно и требуют значительных капитальных затрат — либо на производство пара, либо на его доставку с ТЭЦ, либо на электроэнергию. Да и прогреть равномерно таким способом удается только небольшое помещение.

Поэтому во многих странах используют для отопления крупных производственных помещений так называемые радиационные обогреватели — на природном газе. Их тепловое излучение почти не нагревает воздух, зато хорошо поглощается стенами, полом и находящимися в помещении предметами. Располагают такие обогреватели не у пола, а под потолком — на высоте не менее 4 м, обеспечивая равномерный прогрев всего, что стоит на полу, и избавляя людей от необходимости носить специальные головные уборы для защиты от теплового удара.

В трубе закрытого (наиболее безопасного) газового отопителя сжигают газ, нагревая тем самым до 300-350 градусов ее поверхность, излучающую мощный поток энергии в диапазоне длинных инфракрасных волн. Продукты сгорания газа, не вступая в контакт с воздухом помещения, выбрасываются в атмосферу. Но несмотря на то, что их температура может достигать 100 градусов, кпд такого обогревателя достаточно велик — 95-96%.

Созданный в России с учетом наших климатических условий инфракрасный газовый отопитель имеет и собственную систему автоматики, программирующую пуск, управление работой и выключение. Он позволяет создать по всей площади помещения комфортную для людей температуру. Прибор прошел все необходимые испытания и допущен к распространению Центром государственного санэпиднадзора Минздрава РФ и Госгортехнадзора России.

ЭЛАСТИК В МАГНИТНОМ ПОЛЕ

РЕМОНТ БЕЗ ВЫСЕЛЕНИЯ

ОБОГРЕВ С ЭКОНОМИЕЙ

www.nkj.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о