Емкость конденсатора в цепи переменного тока – Конденсатор в Цепи Переменного Тока: Емкость, Сопротивление

Конденсатор в цепи переменного тока

Положим
теперь, что участок цепи содержит
конденсатор емкости C,
причем сопротивлением и индуктивностью
участка можно пренебречь, и посмотрим,
по какому закону будет изменяться
напряжение на концах участка в этом
случае. Обозначим напряжение между
точками а
и b
через u
и будем
считать заряд конденсатора q
и силу тока i
положительными, если они соответствуют
рис.4.
Тогда

,

и,
следовательно,

.

Если сила тока в
цепи изменяется по закону

,
(1)

то заряд конденсатора
равен

.

Постоянная
интегрирования q0
здесь обозначает произвольный постоянный
заряд конденсатора, не связанный с
колебаниями тока, и поэтому мы положим
.
Следовательно,

.
(2)

Рис.4. Конденсатор
в цепи переменного тока

Рис.5. Зависимости
тока через конденсатор и напряжения
от времени

Сравнивая
(1) и (2), мы видим, что при синусоидальных
колебаниях тока в цепи напряжение на
конденсаторе изменяется также по закону
косинуса. Однако колебания напряжения
на конденсаторе отстают по фазе от
колебаний тока на /2.
Изменения тока и напряжения во времени
изображены графически на рис.5. Полученный
результат имеет простой физический
смысл. Напряжение на конденсаторе в
какой-либо момент времени определяется
существующим зарядом конденсатора. Но
этот заряд был образован током, протекавшим
предварительно в более ранней стадии
колебаний. Поэтому и колебания напряжения
запаздывают относительно колебаний
тока.

Формула
(2) показывает, что амплитуда напряжения
на конденсаторе равна

.

Сравнивая
это выражение с законом Ома для участка
цепи с постоянным током (),
мы видим, что величина

играет
роль сопротивления участка цепи, она
получила название емкостного сопротивления.
Емкостное сопротивление зависит от
частоты и
при высоких частотах даже малые емкости
могут представлять совсем небольшое
сопротивление для переменного тока.
Важно отметить,
что емкостное сопротивление определяет
связь между амплитудными, а не мгновенными
значениями тока и напряжения.

Мгновенная
мощность переменного тока

меняется
со временем по синусоидальному закону
с удвоенной частотой. В течение времени
от 0 до T/4
мощность
положительна, а в следующую четверть
периода ток и напряжение имеют
противоположные знаки и мощность
становится отрицательной.
Поскольку
среднее значение за период колебаний
величины
равно нулю, то средняя мощность переменного
тока на конденсаторе.

Катушка индуктивности в цепи переменного тока

Рассмотрим,
наконец, третий частный случай, когда
участок цепи содержит только индуктивность.
Обозначим по-прежнему через U
напряжение между точками а
и б
и будем считать ток I
положительным, если он направлен от а
к б
(рис.6). При наличии переменного тока в
катушке индуктивности возникнет ЭДС
самоиндукции, и поэтому мы должны
применить закон Ома для участка цепи,
содержащего эту ЭДС:

.

В
нашем случае R
= 0, а ЭДС самоиндукции

.

Поэтому

.
(3)

Если сила тока в
цепи изменяется по закону

,

то

.
(4)

Рис.6. Катушка
индуктивности в цепи

переменного
тока

Рис.7.
Зависимости тока через катушку

индуктивности
и напряжения от времени

Видно,
что колебания напряжения на индуктивности
опережают по фазе колебания тока на
/2.
Когда сила тока, возрастая, проходит
через нуль, напряжение уже достигает
максимума, после чего начинает уменьшаться;
когда сила тока становится максимальной,
напряжение проходит через нуль, и т.д.
(рис.7).

Из
(4) следует, что амплитуда напряжения
равна

,

и , следовательно,
величина

играет
ту же роль, что сопротивление участка
цепи. Поэтому
называют индуктивным сопротивлением.
Индуктивное сопротивление пропорционально
частоте переменного тока, и поэтому при
очень больших частотах даже малые
индуктивности могут представлять
значительное сопротивление для переменных
токов.

Мгновенная
мощность переменного тока

также,
как и в случае идеальной емкости, меняется
со временем по синусоидальному закону
с удвоенной частотой. Очевидно, что
средняя за период мощность равна нулю.

Таким
образом, при протекании переменного
тока через идеальные емкость и
индуктивность обнаруживается ряд общих
закономерностей:

  1. Колебания
    тока и напряжения происходят в различных
    фазах — сдвиг по фазе между этими
    колебаниями равен /2.

  2. Амплитуда
    переменного напряжения на емкости
    (индуктивности) пропорциональна
    амплитуде протекающего через этот
    элемент переменного тока

где
X
— реактивное (емкостное или индуктивное
сопротивление). Важно иметь в виду, что
это сопротивление связывает между собой
не мгновенные значения тока и напряжения,
а только их максимальные значения.
Реактивное сопротивление отличается
от омического (резистивного) сопротивления
еще и тем, что оно зависит от частоты
переменного тока.

  1. На
    реактивном сопротивлении не рассеивается
    мощность (в среднем за период колебаний),
    это означает, что, например, через
    конденсатор может протекать переменный
    ток очень большой амплитуды, но
    тепловыделение на конденсаторе будет
    отсутствовать. Это является следствием
    фазового сдвига между колебаниями тока
    и напряжения на реактивных элементах
    цепи (индуктивности и емкости).

Резистивный
элемент, который описывается в
рассматриваемом частотном диапазоне
законом Ома для мгновенных
токов и напряжений

,

называют омическим
или активным сопротивлением. На активных
сопротивлениях происходит выделение
мощности.

studfiles.net

Конденсатор в цепи переменного тока

Физика > Конденсаторы в цепях переменного тока: емкостное сопротивление и фазовые диаграммы

 

Изучите колебание, емкость, сопротивление и напряжение конденсатора в цепи переменного тока: использование фазового вектора, диаграмма, закон Ома, уравнения.

Напряжение на конденсаторе отстает от тока. Из-за разности фаз лучше всего ввести фазоры, чтобы охарактеризовать схемы.

Задача обучения

  • Разобраться в преимуществе применения фазора.

Основные пункты

  • Если конденсатор присоединен к переменному напряжению, то максимальное выступает пропорциональным максимальному току. Но они не возникают одновременно.
  • Если питание переменного тока присоединено к резистору, то ток и напряжение выступают пропорциональными по отношению друг к другу. То есть, они достигнут пика в одно время.
  • Среднеквадратичный ток в цепи с конденсатором определяется версией закона Ома: Irms = Vrms/XC, где XС – емкостное сопротивление.

Термины

  • RMS – среднеквадратичное число; статическая мера величины.

Фазор

Благодаря фазовым векторам сложный и меняющийся во времени сигнал можно представить в виде комплексного числа (не зависит от времени) и сложного сигнала (зависит от времени). Фазоры делятся на основе А (амплитуды), v (частоты) и θ (фазы). Это приносит большую пользу, ведь частотный коэффициент часто выступает общим для всех компонентов линейной комбинации синусоид. В подобных ситуациях факторы исключают факультативную характеристику и основываются лишь на A и θ.

К примеру, можно представить A⋅cos (2πνt + θ) просто как комплексную постоянную Aeiθ. Из-за того, что фазовые векторы передаются величиной и углом, наглядно изображаются вектором в плоскости x-y.

Фазор можно рассматривать с позиции вектора, вращающегося вокруг начала координат. Косинусная функция – проекция вектора на ось. Амплитуда выступает модулем вектора. Постоянная фазы – угол, сформированный вектором и осью при t = 0

Конденсаторы в цепях переменного тока

Если питание переменного тока присоединено к резистору, то ток и напряжение выступают пропорциональными. То есть, достигают пика в одно время. Если к переменному напряжению подключен конденсатор, то максимальные ток и напряжение пропорциональны. Ток достигает максимума в точке ¼ цикла пикового напряжения (приводит к 90°).

Максимумы тока на ¼ цикла напряжения, в случаях, когда к переменному напряжению присоединен конденсатор

Для схемы с конденсатором значение V/I не выступает постоянным. Но Vmax/Imax полезное и именуется емкостью сопротивления. Это все еще напряжение, деленное на ток, а единица – Ом. Значение XC основывается на емкости и частоте: 

Конденсатор влияет на ток и при полном заряде способен полностью его остановить. Напряжение переменного тока поступает постоянно, поэтому есть среднеквадратичный ток, ограниченный конденсатором. Это эффективное сопротивление конденсатора к переменному току, поэтому среднеквадратичное (Irms) определяется версией закона Ома:

(Vrms – среднеквадратичное напряжение).

Фазовое представление

Напряжение на конденсаторе в цепи переменного тока не поспевает за током, поэтому фазовый вектор повторяет его движение. На диаграмме стрелки совершают обороты против часовой стрелки в частоте v.

Схема фазора для цепи переменного тока с конденсатором


v-kosmose.com

Цепь переменного тока с ёмкостью

Поскольку после того, как конденсатор зарядился полностью, он не пропускает через себя электрический ток, и поэтому идеальный конденсатор (ёмкость), установленный в цепи постоянного тока, обладает бесконечно большим сопротивлением.

Цепь переменного тока с ёмкостью

 

 

Если же произвести подключение конденсатора к источнику переменного тока, то процесс его заряда и разряда будет осуществляться непрерывно. Это означает, что через ёмкость будет проходить переменный электрический ток.

Ток i при условии включения в цепь переменного тока некоторой ёмкости будет определяется количеством электричества q, протекающего по этой цепи в единицу времени. Из этого следует, что:

где Δq – это изменение заряда q (то есть количества электричества) в течение времени Δt.

Что касается заряда q, который накоплен при изменениях напряжения u в конденсаторе, то он также подвержен непрерывному изменению, которое выражается формулой:

где Δu – это изменение напряжения u в течение промежутка времени Δt.

Та скорость, с которой изменяется напряжение (она выражается отношением Δu/Δt) будет иметь свои наибольшие значения тогда, когда угол ωt равняется 360°, 180° и . Из этого следует, что значение тока i принимает свои наибольшие величины именно в эти моменты времени. Если же угол ωt равняется 270° и 90°, то i = 0, поскольку скорость изменения напряжения Δu/Δt = 0.

Ток и напряжение в цепи переменного тока с ёмкостью

Ток заряда, который принято считать положительным, в цепи течет тогда, когда происходит заряд конденсатора, то есть на протяжение первой четверти периода. По мере того, как разница потенциалов на электродах ёмкости растет вследствие накопления ею электрического заряда, значение тока i падает. Когда ωt = 90°, наступает полный заряд емкости, значение i = 0, а разность потенциалов между электродами конденсатора обретает то же самое значение, что и напряжение источника тока.

Значение тока i становится отрицательным тогда, когда он меняет свое направление. Это происходит тогда, когда ёмкость начинает разряжаться, то есть во второй четверти периода. Тогда, когда u = 0 а ωt = 180°, значение тока i становится максимальным. В этот же самый момент ток i начинает течь в обратном направлении (его принято считать отрицательным), начинается процесс перезарядки емкости, а полярность напряжения u источника также меняется на противоположную. Когда ωt = 270° значение тока i становится равным нулю, и поэтому процесс заряда прекращается. После чего начинается разряд при первоначальном (то есть положительном) направлении тока.

Получается, что ёмкость и заряжается, и разряжается два раза на протяжении одного периода изменения напряжения. Из этого следует, что переменный ток i протекает в цепи непрерывно. Когда ёмкость включается в цепь переменного тока, то ток i опережает напряжение u по фазе на угол, равный 90°. Можно также сказать, что напряжение u отстает по фазе от тока i на угол, равный 90°.

Емкостное сопротивление

Сопротивление, которое проявляет ёмкость к переменному току, носит название емкостного.
Единицей измерения этой величины является Ом, а обозначается оно Хс. Физическая природа емкостного сопротивления заключается в том, что оно обусловлено возникающей в конденсаторе ЭДС ес. Направление этой электродвижущей силы противоположно приложенному напряжению u, поскольку заряженная ёмкость рассматривается в качестве источника, у которого между пластинами действует некоторая ЭДС ес. Именно она препятствует тому, чтобы под действием напряжения u происходило изменение тока, то есть оказывает определенное сопротивление его прохождению.

selectelement.ru

влияние на переменный и постоянный ток, формулы для расчета

Конденсатор используется в схемах для разделения переменной и постоянной составляющей напряжения, при этом он хорошо проводит высокочастотный сигнал, и плохо — низкочастотный. Находясь в цепи постоянного тока, его импеданс принимается бесконечно большим. Для переменного тока ёмкостное сопротивление конденсатора не имеет постоянной величиной. Поэтому расчёт этого значения крайне важен при проектировании различных радиоэлектронных приборов.

Общее описание

Физически электронное устройство — конденсатор — представляет собой две обкладки, выполненные из проводящего материала, между которыми находится диэлектрический слой. С поверхности пластин выводятся два электрода, предназначенные для подключения в электрическую цепь. Конструктивно прибор может быть различного размера и формы, но его структура остаётся неизменной, то есть всегда происходит чередование проводящего и диэлектрического слоев.

Слово «конденсатор» произошло от латинского «condensatio» — «накопление». Научное определение гласит, что накопительный электрический прибор — это двухполюсник, характеризующийся постоянным и переменным значениями ёмкости и большим сопротивлением. Предназначен он для накопления энергии и заряда. За единицу измерения ёмкости принят фарад (F).

На схемах конденсатор изображается в виде двух прямых, соответствующих проводящим пластинам прибора, и перпендикулярно к их серединам нарисованными отрезками — выводами устройства.

Принцип действия конденсатора заключается в следующем: при включении прибора в электрическую цепь напряжение в ней будет иметь нулевую величину. В этот момент устройство начинает получать и накапливать заряд. Электрический ток, подающийся в схему, будет максимально возможным. Через некоторое время на одном из электродов прибора начнут накапливаться заряды положительного знака, а на другом — отрицательного.

Длительность этого процесса зависит от ёмкости прибора и активного сопротивления. Расположенный между выводами диэлектрик мешает перемещению частиц между обкладками. Но это будет происходить лишь до того момента, пока разность потенциалов источника питания и напряжение на выводах конденсатора не сравняются. В этот момент ёмкость станет максимально возможной, а электроток — минимальным.

Если на элемент перестают подавать напряжение, то при подключении нагрузки конденсатор начинает отдавать свой накопленный заряд ей. Его ёмкость уменьшается, а в цепи снижаются уровни напряжения и тока. Иными словами, накопительный прибор сам превращается в источник питания. Поэтому если конденсатор подключить к переменному току, то он начнёт периодически перезаряжаться, то есть создавать определённое сопротивление в цепи.

Характеристики прибора

Важнейшей характеристикой накопительного прибора является ёмкость. От неё зависит время заряда при подключении устройства к источнику тока. Время разряда напрямую связано со значением сопротивления нагрузки: чем оно выше, тем быстрее происходит процесс отдачи накопленной энергии. Определяется эта ёмкость следующим выражением:

C = E*Eo*S / d, где E — относительная диэлектрическая проницаемость среды (справочная величина), S — площадь пластин, d — расстояние между ними.

Кроме ёмкости конденсатор характеризуется рядом параметров, такими как:

  • удельная ёмкость — определяет отношение величины ёмкости к массе диэлектрика;
  • рабочее напряжение — номинальное значение, которое может выдержать устройство при подаче его на обкладки элемента;
  • температурная стабильность — интервал, в котором ёмкость конденсатора практически не изменяется;
  • сопротивление изоляции — характеризуется саморазрядом устройства и определяется током утечки;
  • эквивалентное сопротивление — состоит из потерь, образуемых на выводах прибора и слое диэлектрика;
  • абсорбция — процесс возникновения разности потенциалов на обкладках после разряда устройства до нуля;
  • ёмкостное сопротивление — уменьшение проводимости при подаче переменного тока;
  • полярность — из-за физических свойств материала, используемого при изготовлении, конденсатор сможет правильно работать, только если к обкладкам приложен потенциал с определённым знаком;
  • эквивалентная индуктивность — паразитный параметр, появляющийся на контактах устройства и превращающий конденсатор в колебательный контур.

Импеданс элемента

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе. Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние.

Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X < 0, в элементе проявляется ёмкостное сопротивление.

Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное — с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.

Ёмкостное сопротивление

Для понимания процесса следует представить конденсатор в электрической цепи, по которой течёт переменный ток. Причём в этой цепи нет других элементов. Значение тока, проходящего через конденсатор, и напряжения, приложенного к его обкладкам, изменяется по времени. Зная любое из этих значений, можно найти другое.

Пускай ток изменяется по синусоидальной зависимости I (t) = Im * sin (w*t+ f 0). Тогда напряжение можно описать как U (t) = (Im/C*w) *sin (w*t+ f 0 -p/2). При учёте в формуле сдвига фаз на 90 градусов, возникающего между сигналами, вводится комплексная величина j, называемая мнимой единицей. Поэтому формула для нахождения тока будет выглядеть как I = U /(1/j*w*C). Но учитывая, что комплексное число только обозначает смещение напряжения относительно тока, а на их амплитудные значения не влияет, его можно убрать из формулы, тем самым значительно её упростив.

Так как по закону Ома сопротивление прямо пропорционально напряжению на участке цепи и обратно пропорционально току, то преобразуя формулы, можно будет получить следующее выражение:

  • Xc = 1/w*C = ½*p*f*C. Единица измерения — ом.

Становится понятно, что ёмкостное сопротивление зависит не только от ёмкости, но и от частоты. При этом чем больше эта частота, тем меньшее сопротивление конденсатор будет оказывать проходимому через него току. По отношению к ёмкости это утверждение будет обратным. Вот поэтому для постоянного тока, частота которого равна нулю, сопротивление накопителя будет бесконечно большим.

На практике всё немного по-другому. Чем ближе частота сигнала приближается к нулевому значению, тем больше становится сопротивление конденсатора, но при этом разрыв цепи наступить всё равно не может. Связанно это с током утечки. В случае когда частота стремится к бесконечности, сопротивление конденсатора должно становиться нулевым, но этого тоже не происходит — из-за присутствия паразитной индуктивности и всё того же тока утечки.

Индуктивная составляющая

При прохождении переменного сигнала через накопитель, его можно представить в виде последовательно включённой с источником питания катушки индуктивности. Эта катушка характеризуется большим сопротивлением в цепи переменного сигнала, чем постоянного. Значение силы тока в определённой точке времени находится как I = I 0 * sinw .

Приняв во внимание, что мгновенная величина напряжения U 0 обратна по знаку мгновенному значению ЭДС самоиндукции E 0, а также используя правило Ленца, можно получить выражение E = L * I, где L — индуктивность.

Следовательно: U = L*w * I 0 *cosw*t = U 0 *sin (wt + p /2) , причём ток отстаёт от напряжения на p /2. Используя закон Ома и приняв, что сопротивление катушки равно w * L, получится формула для участка электрической цепи, имеющая только индуктивную составляющую: U 0 = I 0 / w * L.

Таким образом, индуктивное сопротивление будет равно Xl = w * L, измеряется оно также в омах. Из полученного выражения видно, что чем больше частота сигнала, тем сильнее будет сопротивление прохождению тока.

Пример расчёта

Ёмкостное и индуктивное сопротивления относятся к реактивным, то есть таким, которые не потребляют мощности. Поэтому закон Ома для участка схемы с ёмкостью имеет вид I = U/Xc, где ток и напряжение обозначают действующие значения. Именно из-за этого конденсаторы используются в цепях для разделения не только постоянных и переменных токов, но и низкой и высокой частот. При этом чем ёмкость будет ниже, тем более высокой частоты сможет пройти ток. Если же последовательно с конденсатором включено активное сопротивление, то общий импеданс цепи находится как Z = (R 2 +Xc 2 ) ½.

Практическое применение формул можно рассмотреть при решении задачи. Пусть имеется RC цепочка, состоящая из ёмкости C = 1 мкФ и сопротивления R = 5 кОм. Необходимо найти импеданс этого участка и ток цепи, если частота сигнала равна f = 50 Гц, а амплитуда U = 50 В.

В первую очередь понадобится определить сопротивление конденсатора в цепи переменного тока для заданной частоты. Подставив данные в формулу, получим, что для частоты 50 Гц сопротивление будет

Xc = 1/ (2*p*F*C) = 1/ (2*3,14*50*1* 10 −6 ) = 3,2 кОм.

По закону Ома можно найти ток: I = U /Xc = 50 /3200 = 15,7 мА.

Напряжение берётся изменяемым по закону синуса, поэтому: U (t) = U * sin (2*p*f*t) = 50*sin (314*t). Соответственно, ток будет I (t) = 15,7* 10 −3 + sin (314*t+p/2). Используя полученные результаты, можно построить график тока и напряжения при этой частоте. Общее сопротивление участка цепи находим как Z = (50002+32002)½ = 5 936 Ом =5,9 кОм.

Таким образом, подсчитать полное сопротивление на любом участке цепи несложно. При этом можно воспользоваться и так называемыми онлайн-калькуляторами, куда вводят начальные данные, такие как частота и ёмкость, а все расчёты выполняются автоматически. Это удобно, так как нет необходимости запоминать формулы и вероятность ошибки при этом стремится к нулю.


220v.guru

Емкость в цепи переменного тока

Рассмотрим классическую схему, в которой последовательно подключены: источник переменной ЭДС, активное сопротивление и конденсатор.

Если бы в этой схеме был постоянный источник, конденсатор выполнил бы роль изолятора в силу своих конструктивных особенностей. В этом случае он бы просто зарядился за определенное время, и его потенциал на обкладках совпал бы с источником ЭДС. После этого ток в цепи стал бы равен нулю.

Если же применить аналогичную схему с переменным источником, то ток продолжает «циркулировать» по проводникам – конденсатор подвергается периодической перезарядке. При этом возникающие на его обкладках электрические заряды постоянно меняют как абсолютную величину, так и знаки.

Следует четко понимать, что никакие заряды через диэлектрик, расположенный между обкладками конденсатора, протекать не может. В то же время весьма распространен подход при расчете электрических схем, когда (условно) подразумевается, что через конденсатор протекает ток, соответствующий данному участку цепи.

В переменных замкнутых цепях (для мгновенных значений) по прежнему действует классический закон Ома: ЭДС источника соответствует сумме падений напряжения на каждом участке цепи.

Так как источник имеет переменную ЭДС с определенным периодом и частотой, сила тока в цепи, а также напряжение на конденсаторе изменяются в соответствие с гармоническими законами: конденсатор в первой и третьей четверти периода разряжается, и, соответственно, заряжается в течение других фаз.

В то же время конденсатор оказывает определенное «сопротивление» прохождению по цепи переменного тока. Причем, чем больше его емкость, тем быстрее он перезаряжается, и соответственно, сила тока в цепи будет увеличиваться.

При этом энергетические потери на самом конденсаторе, в отличие от активного сопротивления, практически равны нулю.

На силу тока, «условно проходящего» через конденсатор, влияет и частота переменного источника ЭДС: понятно, что чем быстрее перезаряжается конденсатор, тем меньшее сопротивление он создает за единицу времени.

Такое емкостное сопротивление определяется следующей формулой:

Хс = 1/ωС,

где С – емкость цепи, в Фарадах;

— ω – частота сети,

Способность конденсаторов создавать селективное реактивное сопротивление , в зависимости от частоты, широко используется в различных фильтрах.

Например, чтобы преградить доступ низкочастотного сигнала в высокочастотную часть схемы, применяется последовательное подключение конденсаторов небольшой емкости.

А для защиты блоков питания используются мощные электролилитеские конденсаторы, подключаемые по параллельной схеме.

pue8.ru

Сопротивление конденсатора

Господа, сегодняшнюю статью можно считать в некотором роде продолжением предыдущей. Сначала я даже хотел поместить весь этот материал в одну статью. Но его получилось довольно много, на горизонте были новые проекты, и я в итоге разделил его на две. Итак, сегодня мы поговорим про сопротивление конденсатора переменному току. Мы получим выражение, по которому можно будет рассчитать, чему равно сопротивление любого конденсатора, включенного в цепь с переменным током, а в конце статьи рассмотрим несколько примеров такого расчета.


Сразу оговорюсь про одну важную вещь. Вообще говоря, реальный конденсатор обладает помимо емкостного сопротивления еще резистивным и индуктивным. На практике все это надо обязательно учитывать, потому что возможны ситуации (обычно связанные с ростом частоты сигнала), когда конденсатор перестает быть конденсатором и превращается… в некое подобие катушки индуктивности . При проектировании схем этот момент обязательно надо иметь в виду. Согласитесь, господа, крайне неприятно поставить в схему конденсатор и потом столкнуться с тем, что из-за высокой частоты он ведет себя и не как конденсатор вовсе, а как самый настоящий дроссель. Это, безусловно, очень важная тема, но сегодня речь пойдет не о ней. В сегодняшней статье мы будем говорить непосредственно про емкостное сопротивление конденсатора. То есть мы будем считать его идеальным, без каких бы то ни было паразитных параметров вроде индуктивности или активного сопротивления.

Давайте представим, что у нас есть конденсатор, который включен в цепь с переменным током. В цепи больше нет никаких компонентов, только один конденсатор и все (рисунок 1).

Рисунок 1 – Конденсатор в цепи переменного тока

К его обкладкам приложено некоторое переменное напряжение U(t), и через него течет некоторый ток I(t). Зная одно, можно без проблем найти другое. Для этого надо всего лишь вспомнить прошлую статью про конденсатор в цепи переменного тока, там мы про все это довольно подробно говорили. Будем полагать, что ток через конденсатор изменяется по синусоидальному закону вот так

В прошлой статье мы пришли к выводу, что если ток изменятся вот по такому закону, то напряжение на конденсаторе должно меняться следующим образом

Пока что ничего нового мы не записали, это все дословное повторение выкладок из предыдущей статьи. А сейчас самое время их немного преобразовать, придать им чуть другой облик. Если говорить конкретно, то нужно перейти к комплексному представлению сигналов! Помните, на эту тему была отдельная статья? В ней я говорил, что она нужна для понимания некоторых моментов в дальнейших статьях. Вот как раз и наступил тот момент, когда пора вспомнить все эти хитрые мнимые единицы. Если говорить конкретно, то сейчас нам потребуется показательная запись комплексного числа. Как мы помним из статьи про комплексные числа в электротехнике, если у нас есть синусоидальный сигнал вида

то его можно представить в показательной форме вот так

Почему это так, откуда взялось, что здесь какая буковка значит – обо всем уже подробно говорили. Для повторения можно перейти по ссылке и еще раз со всем ознакомиться.

Давайте-ка теперь применим это комплексное представление для нашей формулы напряжения на конденсаторе. Получим что-то типа такого

Теперь, господа, я хотел бы вам рассказать еще про один интересный момент, который, наверное, следовало бы описать в статье про комплексные числа в электротехнике. Однако тогда я про него как-то позабыл, поэтому давайте рассмотрим его сейчас. Давайте представим, что t=0. Это приведет к исключению из расчетов времени и и частоты, и мы переходим к так называемым комплексным амплитудам сигнала. Безусловно, это не значит, что сигнал из переменного становится постоянным. Нет, он все так же продолжает изменяться по синусу с той же самой частотой. Но бывают моменты, когда частота нам не очень важна, и тогда лучше от нее избавиться и работать только с амплитудой сигнала. Сейчас как раз такой момент. Поэтому полагаем t=0 и получаем комплексную амплитуду напряжения

Давайте раскроем скобки в экспоненте и воспользуемся правилами работы с показательными функциями.

Итак, у нас имеется три множителя. Будем разбираться со всеми по порядку. Объединим первые два и запишем выражение следующего вида

Что мы вообще такое записали? Правильно, комплексную амплитуду тока через конденсатор. Теперь выражение для комплексной амплитуды напряжения принимает вид

Результат, к которому мы стремимся, уже близок, но остается еще один не очень приятный множитель с экспонентой. Как с ним быть? А, оказывается, очень просто. И снова нам на помощь придет статья по комплексным числам в электротехнике, не зря ж я ее писал . Давайте преобразуем этот множитель, воспользовавшись формулой Эйлера:

Да, вся эта хитрая экспонента с комплексными числами в показателе превращается всего лишь в мнимую единичку, перед которой стоит знак минус. Согласен, возможно, осознать это не так просто, но тем не менее математика говорит, что это так. Поэтому результирующая формула у нас принимает вид

Давайте выразим из этой формулы ток и приведем выражение к виду, соответствующему закону Ома. Получим

Как мы помним из статьи про закон Ома, у нас ток равнялся напряжению, деленному на сопротивление. Так вот, здесь практически то же самое! Ну, за исключением того, что у нас ток и напряжение – переменные и представлены через комплексные амплитуды. Кроме того, не забываем, что ток течет у нас через конденсатор. Поэтому, выражение, которое стоит в знаменателе, можно рассматривать как емкостное сопротивление конденсатора переменному току:

Да, выражение для сопротивления конденсатора имеет вот такой вот вид. Оно, как вы можете заметить, комплексное. Об этом свидетельствует буковка j в знаменателе дроби. А что значит эта комплексность? На что она влияет и что показывает? А показывает она, господа, исключительно сдвиг фаз в 90 градусов между током и напряжением на конденсаторе. А именно, ток на 90 градусов опережает напряжение. Этот вывод не является для нас новостью, про все это было подробно рассказано в прошлой статье. Чтобы это лучше осознать, надо теперь мысленно пройтись от полученной формулы вверх к тому моменту, где у нас это j возникло. В процессе подъема вы увидите, что мнимая единица j возникло из формулы Эйлера из-за того, что там был компонент . Формула Эйлера у нас возникла из комплексного представления синусоиды. А в исходной синусоиде как раз был заложен сдвиг фазы в 90 градусов тока относительно напряжения. Как-то так. Вроде все логично и ничего лишнего не возникло.

Теперь может возникнуть два совершенно логичных вопроса: как работать с таким представлением и в чем его выгода? Да и вообще, пока лишь какие-то дико абстрактные буковки и нифига не ясно, как взять и оценить сопротивление какого-нибудь конкретно конденсатора, который мы купили в магазине и воткнули в схему. Давайте разбираться постепенно.

Как мы уже говорили, буковка j в знаменателе говорит нам лишь о сдвиге фаз тока и напряжения. Но она не влияет на амплитуды тока и напряжения. Соответственно, если сдвиг фаз нас не интересует, то можно исключить эту буковку из рассмотрения и получить более простое выражение абсолютно без всяких комплексностей:

Согласитесь, жить стало чуточку легче. Это выражение позволяет рассчитать сопротивление конденсатора для конкретной емкость и частоты сигнала. Заметьте, господа, интересный факт. Сопротивление конденсатора, оказывается, зависит не только от самого конденсатора (а именно его емкости), но и от частоты протекающего тока. Если вспомнить обычные резисторы, то в них у нас сопротивление зависело только от самого резистора, материала, формы и всего такого прочего, но не зависело от частоты (разумеется, мы говорим сейчас про идеальные резисторы, без всяких паразитных параметров). Здесь все по-другому. Один и тот же конденсатор на разной частоте будет иметь разное сопротивление и через него будет течь ток разной амплитуды при одной и той же амплитуде напряжения.

Что еще мы можем сказать, глядя на эту формулу? Например, то, что чем больше частота сигнала, тем меньше для него сопротивление конденсатора. И чем больше емкость конденсатора, тем меньше его сопротивление переменному току.

По аналогии с резисторами, сопротивление конденсаторов измеряется все так же в Омах. Однако всегда следует помнить, что это немного другое сопротивление, его называют реактивным. И другое оно в первую очередь из-за того самого пресловутого j в знаменателе, то есть из-за сдвига фазы. У «обычных» (которые называют активными) Омов такого сдвига нет, там напряжение четко совпадает по фазе с током. Давайте построим график зависимости сопротивления конденсатора от частоты. Для определенности емкость конденсатора возьмем фиксированной, скажем, 1 мкФ. График представлен на рисунке 2.

Рисунок 2 (кликабельно) – Зависимость сопротивления конденсатора от частоты

На рисунке 2 мы видим, что сопротивление конденсатора переменному току убывает по закону гиперболы.

При стремлении частоты к нулю (то есть фактически при стремлении переменного току к постоянному) сопротивление конденсатора стремится к бесконечности. Это и логично: мы все помним, что для постоянного тока конденсатор фактически представляет собой разрыв цепи. На практике оно, конечно, не бесконечно, а ограничено сопротивлением утечки конденсатора. Тем не менее, оно все равно очень велико и часто его и считают бесконечно большим.

При стремлении частоты к бесконечности, сопротивление конденсатора стремится к нулю. Это все в теории, конечно. На практике реальный конденсатор обладает рядом паразитных параметров (в частности, паразитная индуктивности и сопротивление утечки), из-за чего сопротивление уменьшается только лишь до некоторой определенной частоты, а потом начинает наоборот расти. Но об этом более подробно в другой раз.

Есть еще один вопрос, который хотелось бы обговорить, прежде чем начинать рассмотрение примеров. Зачем вообще писать букву j в знаменателе сопротивления? Не достаточно ли просто всегда помнить про сдвиг фаз, а в записи использовать числа без этой мнимой единицы? Оказывается, нет. Представим себе цепь, где одновременно присутствуют резистор и конденсатор. Скажем, они соединены последовательно. И вот тут-то как раз мнимая единичка рядом с емкостью не позволит просто так взять и сложить активное и реактивное сопротивление в одно действительное число. Общее сопротивление такой цепочки будет комплексным, причем состоящим как из действительной части, так и из мнимой. Действительная часть будет обусловлена резистором (активными сопротивлением), а мнимая – емкостью (реактивным сопротивлением). Впрочем, это все тема для другой статьи, сейчас не будем в это углубляться. Давайте лучше перейдем к примерам.

Пусть у нас есть конденсатор емкостью, скажем C=1 мкФ. Требуется определить его сопротивление на частоте f1=50 Гц и на частоте f2=1 кГц. Кроме того, следует определить амплитуду тока с учетом того, что амплитуда приложенного к конденсатору напряжения равна Um=50 В. Ну и построить графики напряжения и тока.

Собственно, задачка эта элементарная. Подставляем циферки в формулу для сопротивления и получаем для частоты f1=50 Гц сопротивление, равное

А для частоты f2=1 кГц сопротивление будет

По закону Ома находим величину амплитуды тока для частоты f1=50 Гц

Аналогично для второй частоты f2=1 кГц

Теперь мы легко можем записать законы изменения тока и напряжения, а также построить графики для этих двух случаев. Полагаем, что напряжение у нас изменяется по закону синуса для первой частоты f1=50 Гц следующим образом

А для второй частоты f2=1 кГц вот так

Дальше мы помним, что ток в конденсаторе опережает напряжение на . Поэтому с учетом этого можем записать закон изменения тока через конденсаторы для первой частоты f1=50 Гц

и для частоты f2=1 кГц

Графики тока и напряжения для частоты f1=50 Гц представлены на рисунке 3

Рисунок 3 (кликабельно) – Напряжение на конденсаторе и ток через конденсаторе, f1=50 Гц

Графики тока и напряжения для частоты f2=1 кГц представлены на рисунке 4

Рисунок 4 (кликабельно) – Напряжение на конденсаторе и ток через конденсаторе, f2=1 кГц

Итак, господа, мы сегодня познакомились с таким понятием, как сопротивление конденсатора переменному току, научились его считать и закрепили полученные знания парочкой примеров. На сегодня все. Спасибо что прочитали, всем огромной удачи и пока!

 

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.



myelectronix.ru

2. Конденсатор в цепи переменного тока | 4. Реактивное сопротивление и импеданс — Емкость | Часть2

2. Конденсатор в цепи переменного тока

Конденсатор в цепи переменного тока

Конденсатор в цепи переменного тока ведет себя не так, как резистор. Если резисторы просто противостоят потоку электронов (напряжение на них прямопропорционально току), то конденсаторы противостоят изменению напряжения («тормозя» или добавляя ток во время зарядки или разрядки до нового уровня напряжения). Проходящий через конденсатор ток прямопропорционален скорости изменения напряжения. Это противостояние изменению напряжения является еще одной формой реактивного сопротивления, которое по своему действию противоположно реактивному сопротивлению катушки индуктивности.

Математическая взаимосвязь между проходящим через конденсатор током и скоростью изменения напряжения на нем выглядит следующим образом:

 

 

Отношение du/dt представляет собой скорость изменения мгновенного напряжения (u) с течением времени, и измеряется в вольтах в секунду. Емкость (С) измеряется в Фарадах, а мгновенный ток (i) — в амперах. Чтобы показать, что происходит с переменным током, давайте проанализируем простую емкостную схему:

 

 

Простая емкостная цепь: напряжение конденсатора отстает от тока на 90o.

Если мы построим график тока и напряжения для этой простой цепи, то он будет выглядеть примерно так:

 

 

Как вы помните, проходящий через конденсатор ток является реакцией на изменение напряжения на этом конденсаторе. Отсюда можно сделать вывод, что мгновенный ток равен нулю всякий раз, когда мгновенное значение напряжения находится в пике (нулевое изменение, или нулевой наклон синусоидальной волны напряжения), и мгновенный ток равен своему пиковому значению всякий раз, когда мгновенное напряжение находится в точках максимального изменения (точки самого крутого наклона волны напряжения, в которых она пересекает нулевую линию). Все это приводит к тому, что волна напряжения на -90o не совпадает по фазе с волной тока. На графике видно, как волна тока дает «фору» волне напряжения: ток «ведет» напряжение, а напряжение «запаздывает» за током.

 

 

Как вы уже догадались, такая же необычная волна мощности, которую мы видели в простой индуктивной цепи, присутствует и в простой емкостной цепи:

 

 

Как и в случае с простой индуктивной цепью, фазовый сдвиг 90 градусов между напряжением и током приводит к равномерному чередованию волны мощности между положительными и отрицательными значениями. Это означает, что конденсатор не рассеивает мощность (когда реагирует на изменения напряжения), а просто поглощает и высвобождает ее (поочередно).

Сопротивление конденсатора, изменяющее напряжение, интерпретируется как сопротивление переменному напряжению в целом, у которого по определению постоянно меняется мгновенная величина и направление. Для любой заданной величины переменного напряжения на заданной частоте, конденсатор заданного размера будет «проводить» определенную величину переменного тока. Так же, как ток через резистор является функцией напряжения на этом резисторе и его сопротивления, переменный ток через конденсатор является функцией переменного напряжения на этом конденсаторе и его реактивного сопротивления. Как и в случае с катушками индуктивности, реактивное сопротивление конденсатора измеряется в Омах, и обозначается буквой Х (или ХС, если быть более точным).

Поскольку проходящий через конденсатор ток пропорционален скорости изменения напряжения, он будет больше для быстро меняющихся напряжений, и меньше — для напряжений с более медленным изменением. Это означает, что реактивное сопротивление любого конденсатора (в Омах) обратно пропорционально частоте переменного тока. Точная формула расчета реактивного сопротивления конденсатора выглядит следующим образом:

 

 

Если на конденсатор емкостью 100 мкФ воздействовать частотами 60, 120 и 2500 Гц, то его реактивное сопротивление примет следующие значения:

 




Частота (Гц) Реактивное сопротивление (Ом)
60 26.5258
120 13.2629
2500 0.6366

 

Обратите внимание на то, что отношение емкостного реактивного сопротивления к частотам точно противоположно отношению индуктивного реактивного сопротивления к тем же частотам. Емкостное реактивное сопротивление уменьшается с увеличением частоты переменного тока, а индуктивное реактивное сопротивление наоборот, увеличивается с ростом частоты переменного тока. Если катушки индуктивности выступают против быстрого изменения тока, производя большее напряжение, то конденсаторы выступают против быстрого изменения напряжения, производя больший ток.

По аналогии с катушками индуктивности, выражение 2πf в уравнении реактивного сопротивления конденсатора может быть заменено на строчную греческую букву ω (Омега), которую иначе называют угловой (циклической) частотой переменного тока. Таким образом, уравнение XC = 1/(2πfC) может быть записано как XC = 1/(ωC), где ω выражается в радианах в секунду.

Переменный ток в простой емкостной цепи равен напряжению (в Вольтах) поделенному на реактивное сопротивление конденсатора (в Омах). Это аналогично тому что переменный или постоянный ток в простой резистивной цепи равен напряжению (в Вольтах) поделенному на сопротивление (в Омах). В качестве примера давайте рассмотрим следующую схему:

 

 

 

Однако, мы должны иметь в виду, что напряжение и ток имеют разные фазы. Как было сказано ранее, ток имеет фазовый сдвиг +90o по отношению к напряжению. Если представить фазовые углы напряжения и тока математически (в виде комплексных чисел), то мы увидим, что реактивное сопротивление конденсатора переменному току обладает следующим фазовым углом:

 

 

 

Математически можно сказать, что фазовый угол сопротивления конденсатора переменному току составляет -90o. Фазовый угол реактивного сопротивления току очень важен при анализе цепей. Особенно эта важность проявляется при анализе сложных цепей переменного тока, где реактивные и простые сопротивления взаимодействуют друг с другом. Он также окажется полезным для представления сопротивления любого компонента электрическому току с точки зрения комплексных чисел (а не скалярных величин сопротивления и реактивного сопротивления).

www.radiomexanik.spb.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о