Защита светодиодных ламп от перегорания – : , ,

Блок защиты для светодиодных ламп 220В

Главная и, пожалуй, единственная причина выхода из строя обыкновенных ламп накаливания, галогенных и люминесцентных лампочек – перегорание спирали. С точки зрения физики этот процесс легко объясним. С раскалённой спирали постоянно испаряются атомы вольфрама.

В обыкновенных лампах быстрее, в галогенных – медленнее. После выключения часть испарившихся атомов оседает назад на спираль, часть на колбу. Как следствие неравномерного оседания, со временем образуются истончённые участки. А что приводит в негодность светодиодные лампы?

Почему лампы перегорают?

Все лампы со спиралью накаливания работают по принципу термоэлектронной эмиссии, то есть при прохождении тока спираль раскаляется, излучая свет видимой части спектра. Интенсивность тепловыделения обратно пропорциональна толщине проводника, соответственно истончённые зоны спирали нагреваются значительно сильнее, теряя прочность. На этих участках и происходят разрывы.

В качестве методов борьбы с этой «болезнью» разработано множество схем плавного розжига спирали, что действительно способно значительно увеличить срок её службы. Все эти схемы относятся к устройствам защиты.

Наряду с устройствами защиты ламп со спиралью накаливания появляются устройства защиты светодиодных ламп. Казалось бы, для чего они нужны, если у светодиодов нет спирали…

Действительно, свечение кристалла светодиода происходит благодаря возбуждению электронов в полупроводниковом слое, а не за счёт раскалённой спирали. Но в основе эффекта лежит тот же эффект термоэлектронной эмиссии. С годами очень тонкий полупроводниковый слой прогорает. Если внимательно присмотреться к светодиодной лампочке через несколько лет её работы, можно заметит отдельные потускневшие или нерабочие кристаллы, у которых произошёл пробой слоя полупроводника.

Существует ряд факторов, способных существенно сократить срок жизни таких устройств. К ним относятся:

  • Скачки напряжения;
  • наведённая пульсация;
  • паразитарная пульсация.

Скачки напряжения

Перепады в сети напряжения довольно привычное событие в нашей стране. Как ни странно, но к повышению напряжения выше номинального значения светодиодные лампы относятся достаточно спокойно. Драйверы питания способны легко с ними справиться.

Более опасны для светодиодов падения напряжения, когда за доли секунды ток, проходящий через полупроводниковый слой, падает, а потом возвращается к исходным величинам. Тогда в пространстве p-n перехода может произойти точечный пробой. Драйвер питания способен отсечь избыток тока, но не способен компенсировать его выраженное падение.

Защита светодиодных ламп частично решается установленным перед драйвером высоковольтным конденсатором средней ёмкости, играющим роль сглаживающего фильтра.

Подробнее о расчете конденсатора.

Фатальные скачки напряжения

Ситуация, которой я хочу коснуться скорее исключение из правил, тем не менее, такие случаи происходят с завидной регулярностью. Речь идет об ударах молний. Но не в линию электропередачи – такие ситуации как раз безопасны, поскольку из-за мгновенного расплавления проводов, заряд, скорее всего, не дойдёт до конечного потребителя электроэнергии. Опасны удары молний в непосредственной близости от линии электропередачи.

Напряжение коронного разряда достигает миллионов вольт и вокруг канала молнии образуется мощнейшее электромагнитное поле. Если в зоне его действия окажется линия передач, произойдет мгновенный скачок силы тока и напряжения.

Фронт нарастания амплитуды напряжения настолько быстрый, что защитные каскады электроники не успевают справиться и выгорают целые платы. В светодиодной лампочке будут многочисленные пробои кристаллов. Мы отнесли такие скачки напряжения к фатальным, поскольку адекватной защиты от такого форс-мажора нет.

При штатном режиме эксплуатации возникает такое явление как мерцание ламп в выключенном состоянии.

Подробно о мигании включенных ламп мы уже рассматривали в этой статье.

Наведённая пульсация

Сила тока, требующаяся для работы светодиодов очень мала — микроамперы. Если две линии внутриквартирной проводки находятся в непосредственной близости, а в одной из линий включена мощная нагрузка, электромагнитные волны способны возбуждать ток в проводнике достаточный для свечения светодиода.

Вечные светодиоды такой же миф, как и вечный двигатель. Каждый эпизод включения/выключения на чуть-чуть уменьшает срок его жизни. Никто не измерял такой параметр для светодиодов, но при частоте события пятьдесят раз в секунду (частота пульсации сети 50 Гц) даже очень большие числа — понятие относительное.

Паразитарная пульсация

Паразитарная пульсация светодиодной лампы возникает, когда для её включения используют выключатель с подсветкой. Через светодиод подсветки так же проходит достаточный ток для мигания светодиодов.

Наведённая и паразитарная пульсация – ведущий фактор риска для светодиодного освещения.

Наконец мы подошли к главной теме этого обзора — устройство защиты светодиодных ламп.

Блок защиты светодиодных ламп 220в представляет собой шунт с сопротивлением меньше, чем сопротивление светодиодов в лампочке. При возникновении паразитарных наводок они проходят через шунт, минуя лампу.

Одним из примеров таких устройств является вот такой девайс. Для активации защиты достаточно подключить его к клеммам входного напряжения драйвера питания светодиодной лампы. Применение даже такого элементарного способа защиты во много раз продлит срок жизни светодиодному освещению.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

svetodiodinfo.ru

Защита ламп. Блок защиты, схема от перегорания всех видов ламп

Осветительные лампы имеют небольшую долговечность, что является проблемой в современном мире. Во время включения питания ламп происходит выход их из строя, что является актуальной проблемой.
Нить накаливания в холодном виде образует небольшое сопротивление. Оно слишком уменьшено, чем сопротивление раскаленной нити электротоком. Мы зажигаем свет, то нить лампы в холодном состоянии, и значение тока существенно выше номинала, поэтому она имеет свойство перегорать.

Лампы в светильниках и люстрах перегорают по различным причинам. Если она одна, то это уже лучше. Можно сэкономить на покупке лампочек, если знать основную причину. Кроме экономии у вас не выйдет из строя светильник, или того хуже, не случится пожар в доме.

Существует множество разных вариантов модуля защиты ламп. Некоторые способы защиты ламп разберем на примерах в материалах из жизни.

Полная защита осветительных ламп

Предлагаемый блок защиты ламп служит для продления срока службы ламп накаливания и от преждевременного выхода из строя накаливающей нити при резкой подаче напряжения при эксплуатации ламп. Данный способ особенно подойдет для ламп, расположенных в труднодоступных местах (рекламные щиты, столбы для освещения). Этот прибор хорош и дома, так как в квартире нередко перегорают лампы. Установив это устройство, решается проблема частой замены ламп в связи с выходом их из строя.

Устройство защиты осветительных ламп создает медленный разогрев нити в течение нескольких секунд при включении света. Если напряжение внезапно отключится на короткое время, а затем снова включится, то процесс плавного нагрева нити повторится после вновь поданного напряжения. Происходит стабилизация питания, наибольшее значение его уменьшается до 220 вольт. Блок защиты ламп обладает минимальным временем реагирования на скачки напряжения – несколько миллисекунд. Контроллер управления имеет защиту.

Модуль защиты ламп выдерживает ток импульса 140 ампер, что дает возможность не ставить предохранитель, и быть уверенным в надежности системы и защите ламп.

Схема устройства:

Резистор для подстройки на 300 кОм изображен условно. При применении точных деталей он не нужен. В нашем случае R7 и R8 объединяются в одно сопротивление значением 1,15 мОм. Конкретное значение определяется выходом «Тест». Прибор подключается к сети с точным напряжением 220 вольт переменного тока, и регулировкой резистора ставится логическая единица на выходе «Тест». Для выбора порога стабильного напряжения меньше, чем 220 вольт, эту процедуру проводят при напряжении 215 вольт.

Мощностные характеристики ламп должны иметь границы наибольшим током триака ВТ139-600. Нельзя допустить ток выше 16 ампер. Прибор сочетается с лампами до 3,5 кВт мощности при условии, что триак будет установлен на радиаторе для теплоотвода. Без радиатора можно подсоединять лампы до 300 ватт. Для подключения к прибору ламп нагрузкой более 3500 ватт применяют триак мощнее.

Дроссель для подавления помех в схеме питающей цепи не предусмотрен, так как помехи могут поступать наружу от прибора только тогда, когда разогрев спирали ламп во время пуска за 2,5 секунды превышено напряжение питания сети более 220 вольт. Это незначительно, и триак после разогрева при малом напряжении открывается. Чтобы устройство стоило недорого, это можно не учитывать. Если необходимо полностью сделать защиту от помех радиоволн, то монтируют дроссель большой мощности между нагрузкой и вторым выводом, в этом нет особых проблем.

Контроллер схемы можно заменить другим, подходящим по параметрам. Также поступают и с триаком, подобного типа, подобранным по току нагрузки. Управляющий ток триака не рекомендуется подбирать выше 50 миллиампер. Защита ламп обеспечена.

Блок защиты ламп накаливания и галогенных

Он представляет собой конденсатор мощностью до 200 Вт. Существуют схемы защиты галогенных ламп и с большей мощностью. Он защищает лампы, плавный разогрев нити накаливания, что значительно замедлит процесс износа, увеличит срок службы.

Продемонстрируем его подключение на практике, на лампах накаливания и галогенных лампах. На энергосберегающие лампы он никак не действует.

Для сравнения результатов сначала подключим без блока защиты. Лампа зажигается мгновенно. Теперь подключим блок защиты ламп. Он подключается на фазовый провод. Для определения фазы пользуемся индикаторной отверткой. Подключаем блок с помощью зажимных клемм.

Данный блок предназначен для работы с трансформаторами и с понижающими катушками. Он не рассчитан на работу с люминесцентными лампами, электромоторами и подобными механизмами, приборами подобными ему.
Подключаем сеть, примерно две секунды лампа зажигается, очень плавный пуск. От резкого включения лампа не лопнет, и будет служить дольше.

Для сравнения подключим галогенную лампу. Вставляем лампу в патрон, подключаем к сети. Подключение защиты галогенных ламп получается аналогичным. Такой розжиг можно использовать там, где есть нить накаливания.

Еще можно поставить термистор. Деталь копеечная, но работает надежно, помех не создает. Нужно брать термистор большого размера для более медленного нагрева, с сопротивлением выше 0,5 кОм. Его можно легко встроить внутрь любого корпуса, выключателя. На выводы надевается изоляция, она не плавится, так как температура небольшая.

Обычные лампочки накаливания со спиралью лучше подключать на меньшее напряжение (180-200 В). Если напряжение 240 вольт, то можно две лампы соединить последовательно.

Галогеновые лампы любят постоянное точное напряжение, поэтому их необходимо подключать к стабильному напряжению, и сделать плавный пуск (блок защиты ламп).

Как сберечь лампы от перегорания?

Лампы бывают энергосберегающие, спиральные, диодные. Они часто сгорают, а мы не знаем почему, что происходит. Нужно понять, почему это происходит. Они сгорают из-за того, что существуют старые пылесосы, стиральные машины, моторы во дворе, у соседей есть старая техника. Люди ей пользуются, и при запуске этой техники происходит резкий скачок импульсной силы тока. Мотор взял на себя ток, запустился, затем идет резкий скачок в сеть, возникает большая сила тока.

Во время выплеска большой силы тока происходит сгорание ламп. Чтобы не было этой проблемы, продаются модули защиты ламп — сетевые фильтры. В нем находится варистор. Устройство защиты светодиодных ламп рассчитано на силу тока в 100 ампер. При резком скачке напряжения и силы тока варистор гасит эти скачки. В сетевом фильтре стоит один обыкновенный варистор, который стоит копейки.

Французские фильтры имеют два варистора, и стоят они дорого. За эти деньги можно купить несколько сотен варисторов. Для этого каждый может сделать такой фильтр. Иногда умельцы ставят варисторы прямо в корпус розетки. Если варистор будет стоять в другой комнате, то он не поможет для лампочки на кухне или в коридоре.
Поможет варистор, который находится ближе от этого объекта.

Конструкция патрона – причина перегорания ламп

Одной из причин перегорания ламп является конструкция патрона. На контактах колодки нет пружинящего эффекта.

Средний контакт патрона пружинит, а боковые контакты просто упираются. Нужно немного подогнуть усики, сделать так, чтобы они пружинили. Простые колодки намного надежнее. В них боковые усы пружинят, им ничто не мешает, лампы в них перегорают реже. Боковые ступеньки под контактами можно просто откусить плоскогубцами. Теперь у боковых контактов появился ход и хороший пружинящий эффект. Защита ламп сделана, они перестают перегорать.

Вечная лампа накаливания

Для изготовления понадобится лампа, цоколь от другой лампы накаливания, предварительно снятый и очищенный, два диода Д226, инструменты (кусачки, плоскогубцы), надфиль, паяльные принадлежности. Подключение через диод позволяет повысить срок в разы. Исходя из опыта, можно сказать, что в подвале у меня лампочка такой конструкции работает исправно уже несколько лет.

В качестве диода применяется любой, на напряжение не менее 350 В. Учитываем силу тока, которая должна быть, не менее 0,5 А. Можно использовать диоды Д245, а в нашем случае Д226. Такие диоды использовались в старых советских телевизорах, в любой старой радиотехнике. Их можно купить в магазине радиодеталей, стоят они копейки. Схема подключения лампы через диод простая, но создает хорошую защиту.

Берем диод и откусываем один вывод корпуса под корень. Второй вывод в виде трубочки тоже откусываем.

В трубочку вставляем проволочку и запаиваем. Получается так:

Теперь наш диод без проблем влезет в цоколь. Берем паяльник и припаиваем диод к цоколю лампы:

Теперь берем цоколь и надеваем его, и опаиваем конец провода. Лишнюю часть провода откусываем. Зафиксируем в 3-4 местах два цоколя между собой паяльником.

Вечная лампочка готова. Единственный недостаток этой лампочки – мерцающий свет. Для подъезда или подвала мерцание не играет важной роли.

Принцип диода можно применить, поставив диод не в лампочке, а в выключателе или в светильнике. Этот способ будет полезен тем, кто не особо дружит с электричеством.

Можно использовать такую схему подключения лампы накаливания:

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

Как защитить лампы лед от скачков напряжения в электросети? Защита от скачков напряжения светодиодных ламп

Блок защиты для светодиодных ламп 220В

Главная и, пожалуй, единственная причина выхода из строя обыкновенных ламп накаливания, галогенных и люминесцентных лампочек – перегорание спирали. С точки зрения физики этот процесс легко объясним. С раскалённой спирали постоянно испаряются атомы вольфрама.

В обыкновенных лампах быстрее, в галогенных – медленнее. После выключения часть испарившихся атомов оседает назад на спираль, часть на колбу. Как следствие неравномерного оседания, со временем образуются истончённые участки. А что приводит в негодность светодиодные лампы?

Почему лампы перегорают?

Все лампы со спиралью накаливания работают по принципу термоэлектронной эмиссии, то есть при прохождении тока спираль раскаляется, излучая свет видимой части спектра. Интенсивность тепловыделения обратно пропорциональна толщине проводника, соответственно истончённые зоны спирали нагреваются значительно сильнее, теряя прочность. На этих участках и происходят разрывы.

В качестве методов борьбы с этой «болезнью» разработано множество схем плавного розжига спирали, что действительно способно значительно увеличить срок её службы. Все эти схемы относятся к устройствам защиты.

Наряду с устройствами защиты ламп со спиралью накаливания появляются устройства защиты светодиодных ламп. Казалось бы, для чего они нужны, если у светодиодов нет спирали…

Действительно, свечение кристалла светодиода происходит благодаря возбуждению электронов в полупроводниковом слое, а не за счёт раскалённой спирали. Но в основе эффекта лежит тот же эффект термоэлектронной эмиссии. С годами очень тонкий полупроводниковый слой прогорает. Если внимательно присмотреться к светодиодной лампочке через несколько лет её работы, можно заметит отдельные потускневшие или нерабочие кристаллы, у которых произошёл пробой слоя полупроводника.

Существует ряд факторов, способных существенно сократить срок жизни таких устройств. К ним относятся:

  • Скачки напряжения;
  • наведённая пульсация;
  • паразитарная пульсация.

Скачки напряжения

Перепады в сети напряжения довольно привычное событие в нашей стране. Как ни странно, но к повышению напряжения выше номинального значения светодиодные лампы относятся достаточно спокойно. Драйверы питания способны легко с ними справиться.

Более опасны для светодиодов падения напряжения, когда за доли секунды ток, проходящий через полупроводниковый слой, падает, а потом возвращается к исходным величинам. Тогда в пространстве p-n перехода может произойти точечный пробой. Драйвер питания способен отсечь избыток тока, но не способен компенсировать его выраженное падение.

Защита светодиодных ламп частично решается установленным перед драйвером высоковольтным конденсатором средней ёмкости, играющим роль сглаживающего фильтра.

Подробнее о расчете конденсатора.

Фатальные скачки напряжения

Ситуация, которой я хочу коснуться скорее исключение из правил, тем не менее, такие случаи происходят с завидной регулярностью. Речь идет об ударах молний. Но не в линию электропередачи – такие ситуации как раз безопасны, поскольку из-за мгновенного расплавления проводов, заряд, скорее всего, не дойдёт до конечного потребителя электроэнергии. Опасны удары молний в непосредственной близости от линии электропередачи.

Напряжение коронного разряда достигает миллионов вольт и вокруг канала молнии образуется мощнейшее электромагнитное поле. Если в зоне его действия окажется линия передач, произойдет мгновенный скачок силы тока и напряжения.

Фронт нарастания амплитуды напряжения настолько быстрый, что защитные каскады электроники не успевают справиться и выгорают целые платы. В светодиодной лампочке будут многочисленные пробои кристаллов. Мы отнесли такие скачки напряжения к фатальным, поскольку адекватной защиты от такого форс-мажора нет.

При штатном режиме эксплуатации возникает такое явление как мерцание ламп в выключенном состоянии.

Подробно о мигании включенных ламп мы уже рассматривали в этой статье.

Наведённая пульсация

Сила тока, требующаяся для работы светодиодов очень мала — микроамперы. Если две линии внутриквартирной проводки находятся в непосредственной близости, а в одной из линий включена мощная нагрузка, электромагнитные волны способны возбуждать ток в проводнике достаточный для свечения светодиода.

Вечные светодиоды такой же миф, как и вечный двигатель. Каждый эпизод включения/выключения на чуть-чуть уменьшает срок его жизни. Никто не измерял такой параметр для светодиодов, но при частоте события пятьдесят раз в секунду (частота пульсации сети 50 Гц) даже очень большие числа — понятие относительное.

10i5.ru

Почему светодиодная лампа перегорает раньше указанного срока эксплуатации

Когда человек задается подобным вопросом, то он уже оказался в неблагоприятной ситуации и начинает анализировать причины возникшей поломки, интуитивно ищет выход из создавшегося положения, стремится исключить неоправданные денежные затраты.

С этой целью в статье собраны советы домашнему мастеру по выбору конструкции светодиодной лампы и правилам ее эксплуатации, выполнение которых позволяет полностью осуществить заявленный производителем ресурс работы светодиодов. Они дополняются поясняющими картинками, схемами и видеороликом.

Эти рекомендации собраны в результате многолетнего опыта электрика и экспертной оценки материалов из различных источников.

Содержание статьи

Чтобы понять почему перегорает светодиодная лампа раньше заявленного срока необходимо немного погрузиться в теорию.

Как работает светодиод

Излучение света происходит во время прохождения электрического тока по p-n переходу полупроводника.

Светодиод пропускает ток прямой полярности и блокирует обратный от источника напряжения. Его подбирают опытным путем с учетом величины светового потока и теплотехнических процессов.

Величину приложенного напряжения к электродам (аноду и катоду) ограничивают возможности полупроводника — внутреннее электрическое сопротивление p-n перехода.

Выходные характеристики

Светодиодная лампа состоит из большого количества светодиодов, объединенных в одном корпусе и подключённых к источнику напряжения через встроенный блок питания.

Все вместе они обеспечивают:

  • световую отдачу;
  • цветовую температуру;
  • определенный угол рассеивания светового потока.

Эти характеристики опубликованы отдельной статьей. Их качество зависит от условий эксплуатации и конструкции лампы.

Что ограничивает ресурс работы

Производители заявляют, что светодиодная лампа способна светить 50 тысяч часов.

У обычного потребителя она довольно часто не дорабатывает этот срок и собирается коллекция из большого количества перегоревших источников света с поврежденными светодиодами или драйверами.

Возникают резонные вопросы:

  • почему перегорает светодиодная лампа раньше заявленного срока;
  • что необходимо учитывать при ее покупке и эксплуатации.

Для ответа на них следует понять, что на работу светодиода оказывают влияние:

  • величина протекающего по полупроводниковому переходу электрического тока;
  • теплотехнические процессы, основанные на балансе выделяемого тепла в светодиоде и драйвере с возможностями его удаления с кристалла полупроводника во внешнюю среду.

Как электрический ток влияет на характеристики лампы

Рассмотрим две рабочие зависимости светодиода, связанные:

  1. Со световым потоком;
  2. С нагревом конструкции.
Характеристика светового потока светодиода

Его значение возрастает при увеличении силы тока, протекающего по полупроводниковому переходу, но идеальная линия ограничивается тепловыми потерями.

Нагрев конструкции

Благодаря действию закона Джоуля-Ленца при увеличении тока резко возрастает выделение тепла и происходит нагрев токопроводящих элементов. Это приводит к нагреву полупроводникового слоя светодиода и снижению светового потока.

О сопротивлении полупроводника

При прямом приложении напряжения к светодиоду в нем возникает электрический ток, величина которого описывается нелинейной характеристикой. Он резко возрастает при незначительном повышении разности потенциалов на электродах.

Эта особенность полупроводникового перехода значительно осложняет процесс его эксплуатации и диктует необходимость точной стабилизации тока, а не напряжения специальными электронными модулями — драйверами. Их принцип работы и конструкция значительно влияют на ресурс работы светодиодной лампы.
Приходим к трем выводам:

  1. Возрастание тока через полупроводниковый переход увеличивает не только световой поток, но и тепловые потери;
  2. Нагрев конструкции снижает световой поток;
  3. Для соблюдения ресурса светодиодной лампы необходима качественная стабилизация питающего тока специальными драйверами.

О теплотехнических процессах

Работа светодиода ухудшается по мере его нагрева. Поэтому вся конструкция нуждается в надежном отводе тепла с рассеиванием в окружающую среду.

С этой целью используются различные виды радиаторов. Им необходимо создать оптимальные условия для надежной работы.

Если светодиодная лампа расположена в замкнутом пространстве, в котором заблокирована возможность циркуляции воздуха, то ее радиатор станет постоянно нагреваться, а отдавать поступающее тепло в окружающую среду не сможет. Это приведет к преждевременному перегоранию светодиодов.

Решить такую проблему можно обдувом или естественной вентиляцией.

Выбор конструкции светодиодной лампы

Производство полупроводниковой продукции основано на использовании автоматизированных линий с роботами, выполняющими технологические операции в непрерывном режиме по заданным алгоритмам с высокой степенью точности. Ручного труда там нет. Такие заводы массово сконцентрированы в Китае, хотя имеются и в других странах.

Ведущие мировые производители светодиодных ламп работают по контрактам с китайскими коллегами. Они качественно отбирают электронную продукцию за счет проведения жестких тестов, приобретают только ту, которая проходит испытания. Вопросом ликвидации брака они не занимаются.

Это совсем другая сфера деятельности для предприимчивых бизнесменов, способных извлечь прибыль даже из неликвидной продукции. Одно из простых решений — продать ее по более низкой цене.

При выпуске светильников из неликвидных светодиодов можно не особо заботиться о качестве остальных компонентов конструкции, например:

  • использовать простейший драйвер без качественной стабилизации тока;
  • установить дешевый радиатор с низким теплоотводом или вообще отказаться от него;
  • применить упрощенную технологию «холодной пайки» на контактных площадках.

Изготовленная по упрощенной технологии светодиодная лампа будет работать, но может реагировать даже на коммутации тока от выключателей в квартире. Их блок питания не всегда способен сглаживать подобные пульсации напряжения.

Чтобы не заниматься рекламой определенных брендов светодиодных ламп хочется обратить внимание при их покупке на:

  • предоставление гарантий продавцом и степень доверия к его работе по отзывам покупателей;
  • сроки и условия замены перегоревшей светодиодной лампы у продавца.

Если возникают сомнения по этим вопросам, то покупку лучше совершить в более надежном месте.

Приобретая светодиодные лампы через интернет на китайских сервисах можно получить по почте хорошую продукцию или со скрытым браком. Поэтому такой способ покупки требует определенного опыта, тщательного изучения репутации продавца и его товара.

Соблюдение режимов эксплуатации

Даже качественно сделанная светодиодная лампа перегорает при неблагоприятных условиях. Они создаются:

  • дефектами бытовой проводки;
  • скачками питающего напряжения;
  • нарушениями теплового режима светодиодов.

О качестве бытовой проводки

Особенно актуален этот вопрос в домах старой постройки с двухпроводной системой электроснабжения по схеме TN-C. Алюминиевые жилы в них уже изношены, изоляция состарилась от времени и чрезмерных нагрузок, а контактные винтовые соединения ослабили ужим.

Эти нарушения действуют в комплексе. Места плохих контактов греются, искрят, подгорают. Повышенная температура передается на светодиодную лампу.

Из-за ухудшенных контактных соединений выключателей во время коммутации электрических цепей создаются импульсы токов и напряжения, воздействующие на все оборудование.

Усугубляют ситуацию периодически возникающие в сети перенапряжения, связанные с апериодическими составляющими импульсов от включения в работу мощных реактивных нагрузок (электродвигатели, трансформаторы и подобное оборудование) или проникновение в проводку последствий грозовых разрядов.

Качественно выполненные драйверы способны противостоять большинству появлений подобных неисправностей, но простые и дешевые чаще всего пропустят часть опасных импульсов напряжения на светодиод.

Во всех этих случаях светодиодная лампа станет работать в запредельном режиме, что снизит ее ресурс. Исправить ситуацию необходимо проведением комплексного обслуживания действующей электропроводки или ее полной заменой в комплексе с правильной настройкой автоматических защит.

Роль защитных устройств и автоматики

Ликвидация ненормальных режимов, при которых перегорают светодиодные лампы, возложена на защиты:

О защите варистором

Его применение позволяет сохранить работоспособность практически всех ответственных электронных схем при импульсах перенапряжения. Для цепей питания светодиодной лампы можно подобрать варистор под номинал рабочей сети.

Он обладает нелинейной зависимостью вольтамперной характеристики, которая при превышении допустимого уровня напряжения обеспечивает пробой внутреннего сопротивления и шунтирование высокого входного сигнала на внутреннюю схему. Высоковольтный импульс срезается и не проходит на светодиодную лампу.

5 рекомендаций для самодельщиков

Учитывайте, что деградация светодиодной лампы происходит при недопустимом токе через полупроводниковый переход, чем создаются условия для жестокого температурного режима кристаллов. Необходимо обеспечивать щадящую работу светодиодам при допустимых токовых нагрузках и хорошем отводе тепла. Для этого:

  1. Выбирайте светильники с вентиляционными отверстиями в корпусе колбы из поликарбоната или открытые конструкции типа кукуруза (без внешнего покрытия с алюминиевыми платами, которые служат хорошими радиаторами для отвода тепла).
  2. Светодиоды серий SMD 5730 или 3630 неплохо зарекомендовали себя в конструкции светодиодной лампы.
  3. Замена в драйвере «кукуруза» плёночных конденсаторов с напряжением 400 В 175 нф аналогом на 450 В и 130 нф позволяет снизить ток через полупроводниковый переход и уменьшить его нагрев.
  4. Замена электролита конденсатором большей емкости устраняет пульсации света.
  5. Повысить кпд светодиодной лампы можно удалением из штатной схемы драйвера резисторов, которые снимают напряжение с конденсатора во время выключения.

Проведенные мероприятия приведут к незначительному снижению светового потока, но уменьшат температурный режим примерно до +40О С. Это обеспечит длительную работу светодиодной лампы.

В качестве дополнительного материала рекомендую посмотреть видеоролик владельца Паяльник TV «Ремонт светодиодной лампы». Он предлагает довольно простое, но не полное решение этой проблемы.

Если у вас остались дополнительные вопросы, то задавайте их в комментариях.

Полезные товары

housediz.ru

Почему перегорают светодиодные лампочки — ПРИЧИНЫ И РЕШЕНИЯ | Своими руками

Производители обещают, что светодиодные лампочки будут служить верой и правдой долгие годы. А на деле менять их приходится почти так же часто, как и лампы накаливания. Если вы тоже сталкивались с этой проблемой, наш материал будет вам

Светодиодные лампочки являются сложным техническим устройством, именно поэтому на них дают гарантию. Многие производители заявляют о том, что светодиодные лампочки выгодно отличаются от ламп накаливания, во-первых, десятикратной экономией электроэнергии, а во-вторых, эксплуатационным сроком, который составляет 25 000-30 000 часов (к слову, ресурс обычной лампы — всего 1000 часов). То есть, если лампа работает в среднем 6-7 часов в сутки, её должно хватить на 11-13 лет, но, к сожалению, в реальности всё происходит иначе.

ДЕЛО В ЛАМПОЧКЕ

Основной причиной выхода из строя светодиодных ламп является низкое качество сборки. Оправдано оно лишь необходимостью занижения рыночной стоимости. Как показывает практика, покупатели не готовы платить большие деньги сейчас за обещанную экономию в будущем.

Поэтому некоторые производители заменяют элементы более дешёвыми. Например, для обеспечения нормальной работы светодиодов в период повышения нагрузки на сеть в лампе предусмотрен стабилизатор тока (драйвер). Но дешевле, а значит, и выгоднее установить вместо него блок питания. Он обеспечивает небольшое повышение выходного напряжения относительно номинального , благодаря, чему повышается яркость свечения, но со временем светодиоды перегреваются и перегорают.

Светодиодная лампа может выйти из стоя из-за плохо спаянных контактов. Довольно часто лампа портится из-за перегрева, который может случиться по не скольким причинам. Наиболее частая из них — неравномерное распределение термопасты между радиатором и алюминиевой подложкой.

Так – же перегрев может произойти из-за матового пластикового рассеивателя.

Вместо него лучше приобретать лампу со стеклянной колбой.

Изначально корпус изготавливали из алюминия, который позволял эффективно отводить тепло от светодиодов. Для удешевления продукции его заменили термопластиком.

Внутри разместили тонкий алюминиевый радиатор, который не всегда справляется со своей задачей. Это приводит к перегреву и выходу лампы из строя.

Почему перегорают светодиоды в машине? Доработка лампы P21W. RK50.RU


Watch this video on YouTube


Читайте также: Меняем освещение на светодиодное – плюсы и минусы


ВНЕШНИЕ ПРИЧИНЫМ ПЕРЕГОРАНИЯ СВЕТОДИОДНЫХ ЛАМП

Первая причина и, возможно, основная — нестабильное напряжение в электросети. Это может быть вызвано ненадёжным соединением контактов, окислением в результате совмещения разнородных материалов (меди и алюминия), увеличением нагрузки на сеть в вечернее время, как следствие — падение напряжения. Для устранения проблемы со скачками напряжения можно использовать стабилизатор.

Продолжительность работы лампочек зависит и от состояния электрического прибора, в который они устанавливаются (люстра, светильник, бра). Для устранения проблемы необходимо осмотреть все контакты в патроне, такты в патроне, при необходимости зачистить и подогнуть язычки. Также следует проверить все крепления: из-за слабо затянутого винта может возникнуть искрение и подгорание.


Читайте также: Светильник из перегоревшей светодиодной лампы своими руками


ПОЧЕМУ ПЕРЕГОРАЮТ СВЕТОДИОДНЫЕ ЛАМПОЧКИ? ВИДЕО

© Автор: Дмитрий Нечаев

ИНСТРУМЕНТ ДЛЯ МАСТЕРОВ И МАСТЕРИЦ, И ТОВАРЫ ДЛЯ ДОМА ОЧЕНЬ ДЕШЕВО. БЕСПЛАТНАЯ ДОСТАВКА. РЕКОМЕНДУЕМ — ПРОВЕРЕНО 100% ЕСТЬ ОТЗЫВЫ.

Реклама

Ниже другие записи по теме «Как сделать своими руками — домохозяину!»

  • Люстра-штурвал для сына своими руками: мастер класс и фото Люстра в «морском» стиле своими…
  • Переделка лампы под светодиод своими руками
    Замена лампочек на светодиоды своими…
  • Как отремонтировать энергосберегающую лампочку своими руками (схема) Ремонт энергосберегающей лампы своими руками
    ПОЛЬЗУЮСЬ…
  • Светильник из перегоревшей светодиодной лампы своими руками Экономичный светильник из энергосберегающей лампы…
  • Светильник-аквариум своими руками Аквариум с подсветкой из старой…
  • Люксметр – тестируем лампочки: какие экономнее? Использование люксметра (цифрового измерителя освещенности)…
  • Необычные абажуры своими руками Светильник с заплаткойНашла по дороге…

    Подпишитесь на обновления в наших группах.

    Будем друзьями!


  • kak-svoimi-rukami.com

    Почему перегорают светодиодные лампочки? Проводим эксперимент


    Наиболее характерные неисправности таких светодиодных ламп:

    • Полное перегорание – выход из строя одного диода в цепочке. Если цепочка в лампе одна, то из-за сгорания любого из диодов последовательная цепь разрывается, и лампа гаснет целиком.
    • Частичное перегорание – выход из строя одной из цепочек, если их в лампе несколько. Не вызывает погасание, но яркость падает.
    • Мерцание-«стробоскоп» – своеобразный дефект «умирающего» диода в цепочке, когда от перегрева меняется p-n-структура кристалла – на полупроводнике образуется нестабильная область, то пропускающая ток, то нет…

    Так почему LED-лампочки перегорают? В чем кроется проблема их недолговечности? В том, что производители не используют стабилизаторы тока, а применяют элементарные резисторные ограничители? Отчасти да… но не только!

    Даже простейший резистор неплохо выполняет свою функцию в качестве «бронежилета» для светодиодов, защищая их от избыточного тока и преждевременной гибели. Но только в том случае, если:

    • Номинал этого резистора корректно рассчитан и обеспечивает безопасный ток через диоды;
    • Напряжение питания стабильно.

    А вот ни того, ни другого зачастую нет… Китайские горе-инженеры знают, что автовладельцы, как правило, покупают LED-лампочки по принципу: «А включите мне её, я посмотрю, как светит!». И продавцы готовы идти навстречу покупателям – у них всегда под рукой специальный стенд с разнообразными патронами и аккумулятором, на котором они готовы зажечь любую лампу на пробу. А раз клиент «любит глазами», то производители ламп рассуждают следующим образом – нужно поставить такой токоограничительный резистор, чтобы лампочка загорелась отчаянным светом и выглядела привлекательно даже на 10-11 вольтах питающего стенд старого аккумулятора, который давно не заряжался!

    В итоге диоды лампы даже при 12 вольтах УЖЕ работают с перегрузкой, а после того, как двигатель завели, напряжение в бортсети, питающее диоды, поднимается с 12 до 14,2 вольт – а это, на минуточку, почти 20% разницы! Ток еще вырос – уже до опасных величин. Вырос ток – выросла температура кристаллов диодов, что дало лавинообразно еще больший рост тока – и диоды перешли в режим работы на износ!

    Переходим к практике!

    Чтобы продемонстрировать, как это выглядит, переходим к экспериментам – элементарным, но наглядным! Просто подадим на несколько наобум купленных диодных ламп стандартное для автомобильной бортсети напряжение 14,2 вольта и посмотрим на потребляемый лампой ток, разогрев лампы и дальнейший рост тока.

    Протестируем пару разных моделей ламп типа W5W, лампу C5W, лампу-панель с цоколем C5W, а также влагозащищенные лампы в корпусе с креплением под болт, рассчитанные на монтаж в бампер в качестве ДХЛ:


    www.kolesa.ru

    Почему так часто перегорают лампочки, как с этим бороться

    Причин частому перегоранию лампочек в люстре или светильнике может быть несколько, хорошо, когда она одна. Выявив главную причину, вы не только сэкономите на лампочках, но и спасете светильник от повреждения, возможно, дом от пожара тоже.

     

    Причины перегорания ламп в порядке распространенности

     

    1. Некачественные лампочки. Купили новую, хорошую лампочку, подороже, а она тоже быстро сгорела, тогда ищем проблему дальше.

     

    1. Скачки напряжения в электросети, возникающие, как правило, из-за плохо поджатых контактов в электрощите, повреждения кабеля или отдельного провода, неполадок в работе понижающего трансформатора. Эти поломки должны устраняться квалифицированным электротехническим персоналом, иначе всё может закончиться перенапряжением в сети.

     

    Способ защиты: самостоятельно уберечь галогеновые или лампы накаливания от перегорания можно, подключив их через электронный блок защиты.

    Такие устройства выравнивают небольшие скачки напряжения и обеспечивают плавный пуск. Блоки защиты устанавливаются по одному на каждый выключатель. Они не подходят для работы с люминесцентными, компактными люминесцентными лампами (КЛЛ они же энергосберегающие), светодиодными лампами.

     

    1. Повышенное напряжение. В электросети должно быть 220 вольт, плюс минус 10%. Превышение напряжения всего на 1% от номинального, сокращает срок службы лампы накаливания на 14%.

     

    Несколько способов защиты:

    • Стабилизатор напряжения для квартиры или реле напряжения. Эти приборы стоят денег, их нужно дополнительно устанавливать, поэтому с ними редко кто возится.
    • Выбирать лампы накаливания с повышенным рабочим напряжением в 230–240 В.
    • Заменить лампы накаливания на современные КЛЛ. Повышенное напряжение в сети КЛЛ не страшно, кроме того, с ними можно увеличить освещенность комнаты в несколько раз, при этом не превысив максимальной тепловой нагрузки на патроны люстры.

     

    1. Ослаблен контакт в патроне. На это следует обратить внимание при очередной замене перегоревшей лампочки. Если контакты внутри патрона почернели, значит, проблема здесь.

     

    Порядок устранения. Отключайте электропитание в квартиру, убедитесь в отсутствии напряжения с помощью индикатора, и аккуратно плоской отверткой оттяните центральный лепесток в патроне на себя.

    Скорее всего, отгибать лепесток вам потребуется не один раз, пока не поменяете патрон на более качественный или купите другую люстру.

     

    1. Плохое подсоединение проводов в светильнике, распределительной коробке. Со временем любой металл, особенно алюминий, в местах соединений усаживается, из-за усталости материала. Зажим ослабевает, и провод начинает подгорать. Медные мягкие провода ПВС и подобные, свитые из нескольких волосков, при зажатии в клеммнике расползаются.

     

    Способы устранения:

    • Заменить проводку на медную, жестким цельножильным кабелем марки ВВГ.
    • Пропаять концы витого провода или обжать их наконечниками;
    • Если есть доступ к распределительной коробке, тогда обязательно пропаяйте все скрутки в ней.

     

    1. Неисправен выключатель. Диагностировать плохую работу выключателя можно по тому, что слишком часто перегораю лампочки люстры только в одной группе, управляемой какой-то из клавиш.

     

    Порядок устранения: отключить электропитание, вскрыть выключатель, почистить потемневшие контакты, хорошо подтянуть винты крепления проводов.

    Меняя выключатель на светильнике с одной лампой целесообразно поставить диммер, с помощью которого можно избавиться от проблемы перегорания лампочки в момент её включения.

    volt-index.ru

    Оставить комментарий

    avatar
      Подписаться  
    Уведомление о