Понятие индуктивности – Индуктивность — Википедия

формула. Измерение индуктивности. Индуктивность контура

Кто в школе не изучал физику? Для кого-то она была интересна и понятна, а кто-то корпел над учебниками, пытаясь выучить наизусть сложные понятия. Но каждый из нас запомнил, что мир основан на физических знаниях. Сегодня мы поговорим о таких понятиях, как индуктивность тока, индуктивность контура, и узнаем, какие бывают конденсаторы и что такое соленоид.

Электрическая цепь и индуктивность

Индуктивность служит для характеристики магнитных свойств электрической цепи. Ее определяют как коэффициент пропорциональности между текущим электрическим током и магнитным потоком в замкнутом контуре. Поток создается этим током через поверхность контура. Еще одно определение гласит, что индуктивность является параметром электрической цепи и определяет ЭДС самоиндукции. Термин применяется для указания элемента цепи и приходится характеристикой эффекта самоиндукции, который был открыт Д. Генри и М. Фарадеем независимо друг от друга. Индуктивность связана с формой, размером контура и значением магнитной проницаемости окружающей среды. В единице измерения СИ эта величина измеряется в генри и обозначается как L.

Самоиндукция и измерение индуктивности

Индуктивностью называется величина, которая равна отношению магнитного потока, проходящего по всем виткам контура к силе тока:

Индуктивность контура находится в зависимости от формы, размеров контура и от магнитных свойств среды, в которой он находится. Если в замкнутом контуре протекает электрический ток, то возникает изменяющееся магнитное поле. Это впоследствии приведет к возникновению ЭДС. Рождение индукционного тока в замкнутом контуре носит название "самоиндукция". По правилу Ленца величина не дает изменяться току в контуре. Если обнаруживается самоиндукция, то можно применять электрическую цепь, в которой параллельно включены резистор и катушка с железным сердечником. Последовательно с ними подсоединены и электрические лампы. В этом случае сопротивление резистора равно сопротивлению на постоянном токе катушки. Результатом будет яркое горение ламп. Явление самоиндукции занимает одно из главных мест в радиотехнике и электротехнике.

Как найти индуктивность

Формула, которая является простейшей для нахождения величины, следующая:

где F – магнитный поток, I – ток в контуре.

Через индуктивность можно выразить ЭДС самоиндукции:

Из формулы напрашивается вывод о численном равенстве индукции с ЭДС, которое возникает в контуре при изменении силы тока на один амперметр за одну секунду.

Переменная индуктивность дает возможность найти и энергию магнитного поля:

"Катушка ниток"

Катушка индуктивности представляет собой намотанную изолированную медную проволоку на твердое основание. Что касается изоляции, то выбор материала широк – это и лак, и проводная изоляция, и ткань. Величина магнитного потока зависит от площади цилиндра. Если увеличить ток в катушке, то магнитное поле будет становиться все больше и наоборот.

Если подать электрический ток на катушку, то в ней возникнет напряжение, противоположное напряжению тока, но оно внезапно исчезает. Такого рода напряжение называется электродвижущей силой самоиндукции. В момент включения напряжения на катушку сила тока меняет свое значение от 0 до некоего числа. Напряжение в этот момент тоже меняет значение, согласно закону Ома:

где I характеризует силу тока, U – показывает напряжение, R – сопротивление катушки.

Еще одной особенной чертой катушки является следующий факт: если разомкнуть цепь "катушка – источник тока", то ЭДС добавится к напряжению. Ток тоже вначале вырастет, а потом пойдет на спад. Отсюда вытекает первый закон коммутации, в котором говорится, что сила тока в катушке индуктивности мгновенно не меняется.

Катушку можно разделить на два вида:

  1. С магнитным наконечником. В роли материала сердца выступают ферриты и железо. Сердечники служат для повышения индуктивности.
  2. С немагнитным. Используются в случаях, когда индуктивность не больше пяти миллиГенри.

Устройства различаются и по внешнему виду, и внутреннему строению. В зависимости от таких параметров находится индуктивность катушки. Формула в каждом случае разная. Например, для однослойной катушки индуктивность будет равна:

  • L = 10µ0ΠN2R2 : 9R + 10l.

А вот уже для многослойной другая формула:

  • L= µ0N2R2 :2Π(6R + 9l + 10w).

Основные выводы, связанные с работой катушек:

  1. На цилиндрическом феррите самая большая индуктивность возникает в середине.
  2. Для получения максимальной индуктивности необходимо близко наматывать витки на катушку.
  3. Индуктивность тем меньше, чем меньше количество витков.
  4. В тороидальном сердечнике расстояние между витками не играет роли катушки.
  5. Значение индуктивности зависит от "витков в квадрате".
  6. Если последовательно соединить индуктивности, то их общее значение равно сумме индуктивностей.
  7. При параллельном соединении нужно следить, чтобы индуктивности были разнесены на плате. В противном случае их показания будут неправильными за счет взаимного влияния магнитных полей.

Соленоид

Под этим понятием понимается цилиндрическая обмотка из провода, который может быть намотан в один или несколько слоев. Длина цилиндра значительно больше диаметра. За счет такой особенности при подаче электрического тока в полости соленоида рождается магнитное поле. Скорость изменения магнитного потока пропорциональна изменению тока. Индуктивность соленоида в этом случае рассчитывается следующим образом:

Еще эту разновидность катушек называют электромеханическим исполнительным механизмом с втягиваемым сердечником. В данном случае соленоид снабжается внешним ферромагнитным магнитопроводом – ярмом.

В наше время устройство может соединять в себе гидравлику и электронику. На этой основе созданы четыре модели:
  • Первая способна контролировать линейное давление.
  • Вторая модель отличается от других принудительным управлением блокировки муфты в гидротрансформаторах.
  • Третья модель содержит в своем составе регуляторы давления, отвечающие за работу переключения скоростей.
  • Четвертая управляется гидравлическим способом или клапанами.

Необходимые формулы для расчетов

Чтобы найти индуктивность соленоида, формула применяется следующая:

где µ0 показывает магнитную проницаемость вакуума, n – это число витков, V – объем соленоида.

Также провести расчет индуктивности соленоида можно и с помощью еще одной формулы:

где S – это площадь поперечного сечения, а l – длина соленоида.

Чтобы найти индуктивность соленоида, формула применяется любая, которая подходит по решению к данной задаче.

Работа на постоянном и переменном токе

Магнитное поле, которое создается внутри катушки, направлено вдоль оси, и равно:

где µ0 – это магнитная проницаемость вакуума, n – это число витков, а I – значение тока.

Когда ток движется по соленоиду, то катушка запасает энергию, которая равна работе, необходимая для установления тока. Чтобы вычислить в этом случае индуктивность, формула используется следующая:

где L показывает значение индуктивности, а E – запасающую энергию.

ЭДС самоиндукции возникает при изменении тока в соленоиде.

В случае работы на переменном токе появляется переменное магнитное поле. Направление силы притяжения может изменяться, а может оставаться неизменным. Первый случай возникает при использовании соленоида как электромагнита. А второй, когда якорь сделан из магнитомягкого материала. Соленоид на переменном токе имеет комплексное сопротивление, в которое включаются сопротивление обмотки и ее индуктивность.

Самое распространенное применение соленоидов первого типа (постоянного тока) - это в роли поступательного силового электропривода. Сила зависит от строения сердечника и корпуса. Примерами использования являются работа ножниц при отрезании чеков в кассовых аппаратах, клапаны в двигателях и гидравлических системах, язычки замков. Соленоиды второго типа применяются как индукторы для индукционного нагрева в тигельных печах.

Колебательные контуры

Простейшей резонансной цепью является последовательный колебательный контур, состоящий из включенных катушек индуктивности и конденсатора, через которые протекает переменный ток. Чтобы определить индуктивность катушки, формула используется следующая:

где XL показывает реактивное сопротивление катушки, а W - круговая частота.

Если используется реактивное сопротивление конденсатора, то формула будет выглядеть следующим образом:

Xc = 1 : W х C.

Важными характеристиками колебательного контура являются резонансная частота, волновое сопротивление и добротность контура. Первая характеризует частоту, где сопротивление контура имеет активный характер. Вторая показывает, как проходит реактивное сопротивление на резонансной частоте между такими величинами, как емкость и индуктивность колебательного контура. Третья характеристика определяет амплитуду и ширину амплитудно-частотных характеристик (АЧХ) резонанса и показывает размеры запаса энергии в контуре по сравнению с потерями энергии за один период колебаний. В технике частотные свойства цепей оцениваются при помощи АЧХ. В этом случае цепь рассматривается как четырехполюсник. При изображении графиков используется значение коэффициента передачи цепи по напряжению (К). Эта величина показывает отношение выходного напряжения к входному. Для цепей, которые не содержат источников энергии и различных усилительных элементов, значение коэффициента не больше единицы. Оно стремится к нулю, когда на частотах, отличающихся от резонансной, сопротивление контура имеет высокое значение. Если же величина сопротивления минимальна, то коэффициент близок к единице.

При параллельном колебательном контуре включены два реактивных элемента с разной силой реактивности. Использование такого вида контура подразумевает знание, что при параллельном включении элементов нужно складывать только их проводимости, но не сопротивления. На резонансной частоте суммарная проводимость контура равна нулю, что говорит о бесконечно большом сопротивлении переменному току. Для контура, в котором параллельно включены емкость (C), сопротивление (R) и индуктивность, формула, объединяющая их и добротность (Q), следующая:

При работе параллельного контура за один период колебаний дважды происходит энергетический обмен между конденсатором и катушкой. В этом случае появляется контурный ток, который значительно больше значения тока во внешней цепи.

Работа конденсатора

Устройство представляет собой двухполюсник малой проводимости и с переменным или постоянным значением емкости. Когда конденсатор не заряжен, сопротивление его близко к нулю, в противном случае оно равно бесконечности. Если источник тока отсоединить от данного элемента, то он становится этим источником до своей разрядки. Использование конденсатора в электронике заключается в роли фильтров, которые удаляют помехи. Данное устройство в блоках питания на силовых цепях применяются для подпитки системы при больших нагрузках. Это основано на способности элемента пропускать переменную составляющую, но непостоянный ток. Чем выше частота составляющей, тем меньше у конденсатора сопротивление. В результате через конденсатор глушатся все помехи, которые идут поверх постоянного напряжения.

Сопротивление элемента зависит от емкости. Исходя из этого, правильнее будет ставить конденсаторы с различным объемом, чтобы улавливать разного рода помехи. Благодаря способности устройства пропускать постоянный ток только в период заряда его используют как времязадающий элемент в генераторах или как формирующее звено импульса.

Конденсаторы бывают многих типов. В основном используется классификация по типу диэлектрика, так как этот параметр определяет стабильность емкости, сопротивление изоляции и так далее. Систематизация по данной величине следующая:

  1. Конденсаторы с газообразным диэлектриком.
  2. Вакуумные.
  3. С жидким диэлектриком.
  4. С твердым неорганическим диэлектриком.
  5. С твердым органическим диэлектриком.
  6. Твердотельные.
  7. Электролитические.

Существует классификация конденсаторов по назначению (общий или специальный), по характеру защиты от внешних факторов (защищенные и незащищенные, изолированные и неизолированные, уплотненные и герметизированные), по технике монтажа (для навесного, печатного, поверхностного, с выводами под винт, с защелкивающимися выводами). Также устройства можно различить по способности к изменению емкости:

  1. Постоянные конденсаторы, то есть у которых емкость остается всегда постоянной.
  2. Подстроечные. У них емкость не меняется при работе аппаратуры, но можно ее регулировать разово или периодически.
  3. Переменные. Это конденсаторы, которые допускают в процессе функционирования аппаратуры изменение ее емкости.

Индуктивность и конденсатор

Токоведущие элементы устройства способны создавать его собственную индуктивность. Это такие конструктивные части, как кладки, соединительные шины, токоотводы, выводы и предохранители. Можно создать дополнительную индуктивность конденсатора путем присоединения шин. Режим работы электрической цепи зависит от индуктивности, емкости и активного сопротивления. Формула расчета индуктивности, которая возникает при приближении к резонансной частоте, следующая:

где Ce определяет эффективную емкость конденсатора, C показывает действительную емкость, f – это частота, L – индуктивность.

Значение индуктивности всегда должно учитываться при работе с силовыми конденсаторами. Для импульсных конденсаторов наиболее важна величина собственной индуктивности. Их разряд приходится на индуктивный контур и имеет два вида – апериодический и колебательный.

Индуктивность в конденсаторе находится в зависимости от схемы соединения элементов в нем. Например, при параллельном соединении секций и шин эта величина равна сумме индуктивностей пакета главных шин и выводов. Чтобы найти такого рода индуктивность, формула следующая:

где Lk показывает индуктивность устройства, Lp –пакета, Lm – главных шин, а Lb – индуктивность выводов.

Если при параллельном соединении ток шины меняется по ее длине, то тогда эквивалентная индуктивность определяется так:

  • Lk = Lc : n + µ0 l х d : (3b) + Lb,

где l – длина шин, b – ее ширина, а d – расстояние между шинами.

Чтобы снизить индуктивность устройства, необходимо токоведущие части конденсатора расположить так, чтобы взаимно компенсировались их магнитные поля. Иными словами, токоведущие части с одинаковым движением тока нужно удалять друг от друга как можно дальше, а с противоположным направлением сближать. При совмещении токоотводов с уменьшением толщины диэлектрика можно снизить индуктивность секции. Этого можно достигнуть еще путем деления одной секции с большим объемом на несколько с более мелкой емкостью.

fb.ru

взаимная индуктивность, закон Неймана, собственная индуктивность, катушка индуктивности

В статье мы рассмотрим понятие индуктивности, что такое катушка индуктивности, подробно разберем закон Неймана или по-другому «взаимная индуктивность», покажем все на примере с формулами.

Взаимная индуктивность, формула Неймана

Предположим, что у нас есть две проводящие петли, петля номер один, взаимодействующая с ней, и петля номер два, вызывающая в ней магнитный поток, используя равенство индукции магнитного поля и определение индукции магнитного поля через векторный потенциал магнитного поля и изменив в этом потоке интеграл на поверхности, ограниченный замкнутым контуром, на интеграл по контуру, затем:

(1)

Из магнитостатики векторный магнитный потенциал магнитного поля из первой петли определяется как:

(2)

Если подставить формулу для векторного магнитного потенциала (2) в формулу для магнитного потока, ограниченного каким-либо произвольным контуром (1), то:

(3)

Очевидно, что формула (3) после перестановки круговых интегралов в одно место, эквивалентна:

(4)

Здесь R — расстояние друг от друга: dl(1) от dl(2)

Формула (4) может быть сохранена в виде разделения константы M 12 , тогда:

(5)

где

(6)

Формула для размера взаимной индукции (6) является симметричной из-за регулировки dl(1) от dl(2), то есть взаимная индукция после этого изменения не меняется, она симметрична. Очевидно, что она не зависит от времени. Значение M_12 в формуле (6) это формула Неймана . Если подставить формулу (5) в интегральную формулу Фарадея для первого цикла, аналогично и для второго цикла, то тогда закономерность взаимной индукции второй петли относительно первой петли для электродвижущей силы для двух петель выражаются в формулах:

(7)(8)

Мы видим, что закономерности для электромагнитной силы одинаковы, но они зависят от изменений длительности электрического тока во втором контуре (формула (7) ) или в первом контуре (формула (8)).

Собственная индуктивность

Здесь мы будем иметь дело только с одним контуром, который магнитно взаимодействует с самим собой.

Закон Фарадея и собственная индукция

Мы должны иметь дело с индуктивностью, когда одна и та же цепь взаимодействует с одной и той же цепью магнетизмом, то есть это особый случай взаимной индуктивности. Мы записываем формулу для этой ситуации:

Ф = L*I (9)

Тогда формула для электромагнитной силы возникает после подстановки формулы (9) в закон Фарадея:

(10)

Формула для L такая же, как формула Неймана (6) , используется только двойное интегрирование по одному и тому же периметру, то есть геометрия применяется только к одной цепи.

Собственная энергия магнитной системы

Сила, создаваемая против ЭДС в индуктивности собственной цепи, зависит от электродвижущей силы, вызванной самоиндукцией, если ток течет в ней, и от того, что ее работа выполняется против электромагнитной силы ЭДС в единицу времени, равна:

(11)

Используя определение электродвижущей силы, обусловленной собственной индуктивностью (10), которая вытекает из закона индуктивности Фарадея, мы спрашиваем себя, что работа выполнялась системой, когда ток в системе с индуктивностью L от I равен нулю до некоторой ненулевой величины, поэтому мы приходим к выводу:

(12)

Работа, выполненная против ЭДС в системе индуктивности L, после переписывания окончательного применения (12), выражается:

(13)

Это не зависит от того, как долго протекает ток, а зависит только от геометрии системы и тока, протекающего в нашей цепи, которая взаимодействует сама с собой в результате действия магнитного поля.

Катушка индуктивности (дроссель)

Далее мы поговорим о катушке индуктивности и способе измерения индуктивности.

Определение и теория катушек индуктивности

Катушка индуктивности (дроссель) — катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении, способная накапливать электромагнитную энергию в собственном магнитном поле. Обозначается – L. Внешний вид может быть различным, но если вы её мотаете самостоятельно, то будет выглядеть как-то так:

Величина индуктивности измеряется в Генри [Гн].

1 Генри – очень большая величина, поэтому применяемые в технике катушки индуктивности имеют величины: микрогенри – 10-6 (мкГн) и миллигенри – 10-3 (мГн).

Процессы, происходящие в катушке индуктивности (далее — индуктивности) на временном графике при подключении индуктивности к источнику прямоугольного однополярного сигнала, показаны на рисунке.

Из рисунка сбоку видно, реакция индуктивности на воздействие электрического тока абсолютно противоположно реакции конденсатора (ёмкости). В момент подачи прямоугольного импульса источника тока (красный), ток индуктивности (фиолетовый) сначала равен нулю и с изменением времени увеличивается по экспоненте – индуктивность накапливает энергию, в начальный момент её внутреннее сопротивление максимально. Напряжение на выводах индуктивности (зелёный) наоборот сначала максимально, но потом по мере накопления энергии уменьшается по экспоненте до нуля. При пропадании входного импульса, так как индуктивность — элемент инерционный, напряжение на выводах индуктивности резко изменив полярность сначала максимально, а ток продолжает течь в том же направлении, уменьшаясь при этом по экспоненте – запасённая в индуктивности энергия иссякает. Напряжение из отрицательной области так же по экспоненте стремится к нулю. Скорость изменения напряжения и тока зависит от значения индуктивности. Чем больше индуктивность, тем медленнее они изменяются (экспонента более вытянута по времени). Напряжение и ток на нагрузочном резисторе ведут себя одинаково, и изображены на временном графике оранжевым цветом. Если сравнить с конденсатором — полная противоположность. Взаимосвязь тока и напряжения в индуктивности так же описывается законом Ома, с учётом реактивного сопротивления индуктивности.

Фактически, мы рассмотрели «четырёхполюсник» состоящий из катушки индуктивности и резистора, который называют интегрирующей цепочкой.

Интегрирующая цепочка чаще всего применяется для формирования пилообразных импульсов в любой радио аппаратуре и временной (ударение на «о») задержки прямоугольных импульсов. Чтобы, Вам было понятнее, интегрирующая цепочка и получение пилообразного импульса изображены на следующем рисунке. Для получения последнего, используется наиболее прямолинейный участок интегрированного импульса — его начало, и «обрезается» по времени или по амплитуде (порогу).

Для задержки импульсов используют пороговое устройство. По достижении амплитуды сигнала прошедшего через интегрирующую цепочку определённого значения (порога), пороговое устройство пропускает входной сигнал на выход. После чего, сигнал усиливается усилителем до необходимой величины. В целях уменьшения размеров (исключения громоздкости), схемы формирования пилообразных импульсов, и схемы задержки импульсов эффективнее делать на интегрирующей цепочке состоящей из резистора и конденсатора.

Кроме функции преобразования прямоугольных импульсов, интегрирующая цепочка может применяться в качестве фильтра низких частот (ФНЧ). Индуктивность – инертный элемент. Если к дросселю с большим значением индуктивности приложить переменное напряжение высокой частоты, в силу своей инертности, индуктивность будет не способной пропустить через себя ток, ведь индуктивности сначала надо будет запастись энергией в собственном сердечнике, а потом отдавать эту энергию. Свойство индуктивности сопротивляться переменному электрическому току называют реактивным сопротивлением индуктивности, которое используется при конструировании частотных фильтров и колебательных контуров. Реактивное сопротивление индуктивности обозначается XL или ZL и измеряется в Омах. Реактивное сопротивление индуктивности связано с частотой тока выражением:

Из формулы видно, что реактивное сопротивление индуктивности прямо пропорционально частоте. Другими словами, чем выше частота, тем больше реактивное сопротивление индуктивности.

Теперь представьте, что интегрирующая цепь, это – описанный на сайте делитель напряжения, где вместо первого резистора выступает индуктивность. А мы из формулы теперь знаем, что индуктивность легко пропускает низкие частоты – его сопротивление минимально и плохо пропускает высокие частоты – его сопротивление максимально. Не изменяя текста повторюсь: В радиоэлектронике, когда рассчитывают частотные фильтры, то считают характеристикой фильтра – частоту среза, которая определяется как значение частоты сигнала, на котором амплитуда выходного сигнала уменьшается (затухает) до значения 0,7 от входного сигнала. Чтобы было понятнее, изображу это на рисунке.

То, что изображено, называется амплитудно-частотной характеристикой, или сокращённо — АЧХ. Для фильтра высоких частот соответствует АЧХ фиолетового цвета, и частота среза равная значению f2.

Зная, как рассчитывается делитель напряжения и реактивное сопротивление индуктивности на определённой частоте, Вы элементарно можете рассчитать простейший г-образный фильтр низкой частоты на катушке индуктивности (дросселе) и резисторе.

Если в интегрирующей цепочке поменять местами индуктивность и резистор, то мы получим – дифференцирующую цепочку. Все процессы в дифференцирующей цепочке происходят точно так же, как и в интегрирующей. Временные графики, показанные на первом рисунке абсолютно справедливы для дифференцирующей цепочки. Отличие заключается в том, что выходным элементом является не резистор, а катушка индуктивности.

Как описывалось в статье про конденсатор: если дифференцирующая цепочка – это фильтр высоких частот, то интегрирующая цепочка – это фильтр низких частот (ФНЧ). И рассчитывается он так же, через делитель напряжения. Для фильтра низких частот соответствует АЧХ на рисунке — оранжевого цвета, и частота среза равная значению f1.

Cледует добавить, частотные фильтры, выполненные на катушках индуктивности и резисторах, так же, как и на конденсаторах и резисторах имеют пологую амплитудно-частотную характеристику. Другими словами у таких фильтров слабо выражен частотный срез. Более качественный срез, имеют фильтры состоящие из конденсаторов и катушек индуктивности (дросселей), но об этом в следующей статье.

Способ измерения индуктивности

Наверняка прочитав данную статью, грамотный читатель подумает: «Хм, теория это конечно хорошо, но как измерить руками значение индуктивности на практике?». Однажды этим вопросом задался и я, и собрал простую схему для проверки индуктивностей.

meanders.ru

Катушка индуктивности - это... Что такое Катушка индуктивности?

Обозначение на электрических принципиальных схемах

Катушка индуктивности (жарг. индуктивность) — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — величина её индуктивности, зависящая только от геометрических размеров и материалов и не зависящая от режима работы (тока и напряжения).

Применяются для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных (колебательный контур) и частотноизбирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей, датчиков перемещений и так далее.

Терминология

При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.

В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.

Цилиндрическую катушку индуктивности, длина которой на много превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющую механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

При использовании для накопления энергии называют индукционным накопителем.

Конструкция

Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.

Для увеличения индуктивности часто имеют замкнутый или разомкнутый ферромагнитный сердечник, помехоподавляющие дроссели высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники используют для изменения индуктивности катушек в небольших пределах изменением положения сердечника относительно обмотки, как правило, ферромагнитного сердечника. На СВЧ, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличиваются потери, для этой цели применяются металлические (латунные) сердечники.

На печатных платах электронных устройств применяют плоские «катушки» индуктивности — геометрия печатного проводника выполнена в виде круглой или прямоугольной спирали, волнистой, или в виде меандра, линии. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса[1].

Свойства катушки индуктивности

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своем магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для постоянного тока имеет только собственное омическое сопротивление, но имеет реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением модуль которого: , где  — индуктивность катушки,  — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна:

Катушка индуктивности в переменном напряжении — аналог тела с массой, подверженному механическим колебаниям.

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:

,

где :  — ток в катушке,

 — начальный ток катушки,
 — текущее время,
 — постоянная времени.

Постоянная времени выражается формулой:

,

где :  — сопротивление резистора,

 — омическое сопротивление катушки.

При закорачивании катушки с током процесс характеризуется собственной постоянной времени : катушки:

.

При стремлении к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

↔ , где
↔ ↔  ; ↔  ; ↔

Характеристики катушки индуктивности

Индуктивность

Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к величине протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:

где  — магнитная постоянная
 — относительная магнитная проницаемость материала сердечника (зависит от частоты)
 — площадь сечения сердечника
 — длина средней линии сердечника
 — число витков

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

При параллельном соединении катушек общая индуктивность равна:

Сопротивление потерь

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:

Потери в проводах

Потери в проводах вызваны тремя причинами:

  • Провода обмотки обладают омическим (активным) сопротивлением.
  • Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
  • В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.
Потери в диэлектрике

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

  • Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).
  • Потери обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).

В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

Потери в сердечнике

Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика гистерезис.

Потери на вихревые токи

Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.

Добротность

С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) — сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 — для идеальной катушки.

Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.

Паразитная емкость и собственный резонанс

Межвитковая паразитная емкость проводника в составе катушки индуктивности превращает катушку в сложную распределенную цепь. В первом приближении можно принять, что реальная катушка представляет эквивалентно собой идеальную индуктивность с параллельно присоединенным ей конденсатором паразитной емкости. В результате этого катушка индуктивности представляет собой колебательный контур с характерной частотой резонанса. Эта резонансная частота легко может быть измерена и называется собственной частотой резонанса катушки индуктивности. На частотах много ниже частоты собственного резонанса импеданс катушки индуктивный, при частотах вблизи резонанса в основном активный (на частоте резонанса чисто активный) и большой по модулю, на частотах много выше частоты собственного резонанса — ёмкостной. Обычно собственная частота указывается изготовителем в технических данных промышленных катушек индуктивности, либо в явном виде, либо косвенно — в виде рекомендованной максимальной рабочей частоты.

На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.

Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.

Температурный коэффициент индуктивности (ТКИ)

ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.

Разновидности катушек индуктивности

Контурные катушки индуктивности, используемые в радиотехнике
Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.
Катушки связи, или трансформаторы связи
Взаимодействующие магнитными полями пара и более катушек, обычно включаются параллельно конденсаторам для организации колебательных контуров: Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току, например, цепи базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).
Вариометры
Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.
Дроссели
Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца) нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.
Сдвоенный дроссель
Сдвоенные дроссели
Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.[2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали). Для фильтрации высокочастотных помех — ферритовый сердечник.

Применение катушек индуктивности

Балластный дроссель. Ранее применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности
  • Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
  • Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
  • Две и более индуктивно связанные катушки образуют трансформатор.
  • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
  • Катушки используются также в качестве электромагнитов — исполнительных механизмов.
  • Катушки применяются в качестве источника энергии для нагрева индуктивно-связанной плазмы, а также её диагностики.
  • Для радиосвязи — приёма электромагнитных волн, редко — для излучения:
  • Для разогрева электропроводящих материалов в индукционных печах.
  • Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки.
  • Катушка индуктивности используется в индукционных датчиках магнитного поля в индукционных магнитометрах[4]
  • Для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
  • Для накопления энергии.

См. также

Примечания

Ссылки

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.

dic.academic.ru

Самоиндукция — Википедия

Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1] при изменении протекающего через контур тока.

При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Явление самоиндукции проявляется в замедлении процессов исчезновения и установления тока[4].

При сопоставлении силы электрического тока со скоростью в механике и электрической индуктивности с массой в механике ЭДС самоиндукции сходна с силой инерции.

Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока(переменного) i{\displaystyle i}:

E=−Ldidt{\displaystyle {\mathcal {E}}=-L{\frac {di}{dt}}}.

Коэффициент пропорциональности L{\displaystyle L} называется коэффициентом самоиндукции или индуктивностью контура (катушки).

В случае синусоидальной зависимости тока, текущего через катушку, от времени, ЭДС самоиндукции в катушке отстает от тока по фазе на π/2{\displaystyle \pi /2} (то есть на 90°), а амплитуда этой ЭДС пропорциональна амплитуде тока, частоте и индуктивности (E0=LωI0{\displaystyle {\mathcal {E}}_{0}=L\omega I_{0}}). Ведь скорость изменения функции — это её первая производная, а dsin⁡ωtdt=ωcos⁡ωt=ωsin⁡(ωt+π/2){\displaystyle {\frac {d\sin \omega t}{dt}}=\omega \cos \omega t=\omega \sin(\omega t+\pi /2)}.

Для расчета более или менее сложных схем, содержащих индуктивные элементы, то есть витки, катушки и т.п. устройства, в которых наблюдается самоиндукция, (особенно, полностью линейных, то есть не содержащих нелинейных элементов[5]) в случае синусоидальных токов и напряжений применяют метод комплексных импедансов или, в более простых случаях, менее мощный, но более наглядный его вариант — метод векторных диаграмм.

Заметим, что всё описанное применимо не только непосредственно к синусоидальным токам и напряжениям, но и практически к произвольным, поскольку последние могут быть практически всегда разложены в ряд или интеграл Фурье и таким образом сведены к синусоидальным.

В более или менее непосредственной связи с этим можно упомянуть о применении явления самоиндукции (и, соответственно, катушек индуктивности) в разнообразных колебательных контурах, фильтрах, линиях задержки и других разнообразных схемах электроники и электротехники.

За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом (при резком размыкании) величина ЭДС самоиндукции может в этот момент значительно превышать ЭДС источника.

Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение зажигания при напряжении питающей батареи 12В составляет 7-25 кВ. Впрочем, превышение ЭДС в выходной цепи над ЭДС батареи здесь обусловлено не только резким прерыванием тока, но и коэффициентом трансформации, поскольку чаще всего используется не простая катушка индуктивности, а катушка-трансформатор, вторичная обмотка которой как правило имеет во много раз большее количество витков (то есть, в большинстве случаев схема несколько более сложна, чем та, работа которой полностью объяснялось бы через самоиндукцию; однако физика её работы и в таком варианте отчасти совпадает с физикой работы схемы с простой катушкой).

Это явление применяется и для поджига люминесцентных ламп в стандартной традиционной схеме (здесь речь идет именно о схеме с простой катушкой индуктивности — дросселем).

Кроме того, его надо учитывать всегда при размыкании контактов, если ток течет по нагрузке с заметной индуктивностью: возникающий скачок ЭДС может приводить к пробою межконтактного промежутка и/или другим нежелательным эффектам, для подавления которых в этом случае, как правило, необходимо принимать разнообразные специальные меры.

  1. ↑ Контур может быть и многовитковым - то есть, в частности, катушкой. В этом случае, так же как и в случае одиночного контура, строго говоря, контур должен быть замкнутым (например, через вольтметр, измеряющий ЭДС), но на практике при (очень) большом количестве витков различие ЭДС в полностью замкнутом контуре и в контуре с разрывом (геометрически даже большим по сравнению с размером катушки) может быть пренебрежимым.
  2. ↑ Поскольку магнитный поток через контур пропорционален току в контуре. Для тонкого жесткого контура (для какового случая это утверждение и является точным) точная пропорциональность очевидна исходя из закона Био-Савара, так как исходя из него вектор магнитной индукции просто пропорционален току, а поток этого вектора (что и называется магнитным потоком) через фиксированную (она не меняется при жестком контуре) поверхность тогда тоже пропорционален току. Формально это записывается в виде равенства: магнитный поток = коэффициент самоиндукции• ток в контуре.
  3. ↑ В случае сложной формы контура, например, если контур многовитковый (катушка), поверхность, ограниченная контуром (или, как говорят, «натянутая на контур») оказывается достаточно сложной, что ничуть не меняет сути описываемого явления. Для упрощения понимания случая многовитковых контуров (катушек) можно (приближенно) считать поверхность, натянутую на такой контур, состоящей из множества (стопки) поверхностей, каждая из которых натянута на свой отдельный единичный виток.
  4. ↑ Калашников С. Г., Электричество, М., ГИТТЛ, 1956, гл. IX «Электромагнитная индукция», п. 107 «Исчезновение и установление тока», с. 221 - 224;
  5. ↑ Сами индуктивные элементы являются линейными, то есть подчиняются линейному дифференциальному уравнению, приведенному в статье выше. Впрочем, это уравнение в реальности выполняется лишь приближенно, так что индуктивные элементы являются линейными также лишь приближенно (хотя иногда и с крайне хорошей точностью). Также в реальности встречаются отклонения от идеального уравнения, носящие линейный характер (например, связанные с упругими деформациями катушки в линейном приближении).

ru.wikipedia.org

Индуктивность.

У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.

Как работает трансформатор.

Рассмотрим работу дросселя собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно - нет.

Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки (назовем ее катушка номер 1) электромагнитное поле, направление которого будет также переодически меняться - перемагничивая сердечник. Если на этот же сердечник поместить дополнительную катушку(назовем ее - номер 2), то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э.Д.С.

Если количество витков обеих катушек совпадает, то значение наведенной Э.Д.С. очень близко к значению напряжения источника питания, поданного на катушку номер 1. Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э.Д.С. уменьшится вдвое, если количество витков наоборот, увеличить - наведенная Э.Д.С. также, возрастет. Получается, что на каждый виток, приходится какая-то определенная часть напряжения.

Обмотку катушки на которую подается напряжение питания (номер 1) называют первичной, а обмотка, с которой трансформированое напряжение снимается - вторичной.


Отношение числа витков вторичной(Np) и первичной (Ns) обмоток равно отношению соответствующих им напряжений - Up(напряжение первичной обмотки) и Us(напряжение вторичной обмотки).


Таким образом, устройство состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока можно использовать для изменения питающего напряжения - трансформации. Соответственно, оно так и называется - трансформатор.

Если подключить к вторичной обмотке какую-либо нагрузку, в ней возникнет ток(Is). Это вызовет пропорциональное увеличение тока(Ip) и в первичной обмотке. Будет верным соотношение:


Трансформаторы могут применяться как для преобразовния питающего напряжения, так и для развязки и согласования усилительных каскадов. При работе с трансформаторами необходимо обратить внимание на ряд важных параметров, таких как:
1. Допустимые токи и напряжения для первичной и вторичной обмоток.
2. Максимальную мощность трансформатора - мощность которая может длительное время передаваться через него, не вызывая перегрева обмоток.
3. Диапазон рабочих частот трансформатора.

Параллельный колебательный контур.

Если соединить катушку индуктивности и конденсатор - получится очень интересный элемент радиотехники - колебательный контур. Если зарядить конденсатор или навести в катушке Э.Д.С., используя электромагнитное поле - в контуре начнут происходить следующие процессы: Конденсатор разряжаясь, возбуждает электромагнитное поле в катушке индуктивности. Когда заряд истощается, катушка индуктивности возвращает запасенную энергию обратно в конденсатор, но уже с противоположным знаком, за счет Э.Д.С. самоиндукции. Это будет повторяться снова и снова - в контуре возникнут электромагнитные колебания синусоидальной формы. Частота этих колебаний называется резонансной частотой контура, и зависит от величин емкости конденсатора(С), и индуктивности катушки (L).

Параллельный колебательный контур обладает очень большим сопротивлением на своей резонансной частоте. Это позволяет использовать его для частотной селекции(выделения) в входных цепях радиоаппаратуры и усилителях промежуточной частоты, а так же - в различных схемах задающих генераторов.

Калькулятор расчета индуктивности однослойной катушки.

elektrikaetoprosto.ru

Я никак не могу понять что такое индуктивность. Объясните простыми словами.

Индуктивность - это то же самое, что и конденсатор. Только энергию накапливает не в виде электрического поля (и соответственно не в форме заряда), а в виде магнитного поля (и соответственно в форме потока). Конденсатор хранит электрический заряд, а индуктивность хранит магнитный поток. Если б у неё не было сопротивления - то этот поток она хранила бы вечно, пока в ней ток идёт. Вот сверхпроводящие магниты именно это и делают. Для чего нужна: да для кучи разных вещей. Раз это элемент накопительный, то он обладает инерцией. Как и конденсатор. А значит, может использоваться в фильтрах. Чаще всего это фильтры по питанию (дроссели). За счёт того, что индуктивность может обменитваться энергией с конденсатором, при их соединении возникают электрические колебания - из-за инерционности каждого компонента обмен энергией, даже когда "дойдёт до нуля" (энергия распределится поровну между ними), не заканчивается, а проскакивает эту точку равновесия, так что энергия почти полностью передаётся из одного элемента в другой. Ну а это э состояние неравновесное - поэтому процесс начинает идти в другую сторону... ну и дальше понятно: возникают колебания. Если б не было потерь - резистивных, прежде всего, - то этот процесс шёл бы бесконечно. Так работает колебательный контур.

прикинь пружину или маятник Вот чем сильнее в лоб щелкнет, когда отпустишь - тем сильнее индукция

катушка с проводом индуктивность а по сути любой провод уже индуктивность, т. к вокруг него при прохождении по нему тока, образуется магнитное поле....

индукция это магнит когда ток идет по виткам катушки

Индуктивность - это способность цепей препятствовать изменению тока. Катушки индуктивности нужны в фильтрах, реакторах или контурах

touch.otvet.mail.ru

Индуктивность

Индуктивность - это физическая (электрическая) величина, которая характеризует магнитные свойства электрической цепи. Как известно электрический ток, протекающий через проводящий контур, создает вокруг него магнитное поле. Это происходит потому, что ток изначально несет в себе энергию. Проходя через проводник, он частично отдает ее, и она превращается в энергию магнитного поля. Индуктивность, по сути, является коэффициентом пропорциональности между протекающим током и возникающим при этом магнитным полем.

Чем выше индуктивность проводника, тем больше будет магнитное поле при одном и том же значении электрического тока. Физически индуктивность в электрической цепи – это катушка, состоящая из пассивного (диэлектрик) или активного (ферромагнитный материал, железо) сердечника и намотанного на него электрического провода. Это один из самых обсуждаемых электрических компонентов на форумах любителей электроники.

Если протекающий ток изменяет свою величину во времени, то есть является не постоянным, а переменным, то в индуктивном контуре меняется магнитное поле, вследствие чего возникает ЭДС (электродвижущая сила) самоиндукции. Эта ЭДС также как и электрическое напряжение измеряется в вольтах (В).

Единицей измерения индуктивности является Гн (генри). Она названа в честь Джозефа Генри – американского ученого, открывшего явление самоиндукции. Считается, что контур (катушка индуктивности) имеет величину 1 Гн, если при изменении тока в 1 А (ампер) за одну секунду в нем возникает ЭДС величиною в 1 В (вольт). Обозначается индуктивность буквой L, в честь Эмиля Христиановича Ленца – знаменитого российского физика. Термин «индуктивность» был предложен Оливером Хевисайдом – английским ученым-самоучкой в 1886 году.

< Предыдущая   Следующая >

scsiexplorer.com.ua

Оставить комментарий

avatar
  Подписаться  
Уведомление о