Переход от десятичного логарифма к натуральному – 10. . . —

Десятичный логарифм — Википедия

График десятичного логарифма

Десятичный логарифм — логарифм по основанию 10. Другими словами, десятичный логарифм числа b{\displaystyle b} есть решение уравнения 10x=b.{\displaystyle 10^{x}=b.}

Вещественный десятичный логарифм числа b{\displaystyle b} существует, если b>0{\displaystyle b>0} (комплексный десятичный логарифм существует для всех b≠0{\displaystyle b\neq 0}). Принято (спецификация ISO 31-11) обозначать его lgb{\displaystyle \lg \,b}. Примеры:

lg1=0;lg10=1;lg100=2{\displaystyle \lg \,1=0;\,\lg \,10=1;\,\lg \,100=2}
lg1000000=6;lg0,1=−1;lg0,001=−3{\displaystyle \lg \,1000000=6;\,\lg \,0{,}1=-1;\,\lg \,0{,}001=-3}

В зарубежной литературе, а также на клавиатуре калькуляторов встречаются и другие обозначения десятичного логарифма: log,Log,Log10{\displaystyle \operatorname {log} ,\operatorname {Log} ,\operatorname {Log10} }, причём следует иметь в виду, что первые 2 варианта могут относиться и к натуральному логарифму.

Алгебраические свойства

В нижеследующей таблице предполагается, что все значения положительны[1]:

Существует очевидное обобщение приведённых формул на случай, когда допускаются отрицательные переменные, например:

lg⁡|xy|=lg⁡(|x|)+lg⁡(|y|),{\displaystyle \lg |xy|=\lg(|x|)+\lg(|y|),}
lg|xy|=lg⁡(|x|)−lg⁡(|y|),{\displaystyle \lg \!\left|{\frac {x}{y}}\right|=\lg(|x|)-\lg(|y|),}

Формула для логарифма произведения без труда обобщается на произвольное количество сомножителей:

lg⁡(x1x2…xn)=lg⁡(x1)+lg⁡(x2)+⋯+lg⁡(xn){\displaystyle \lg(x_{1}x_{2}\dots x_{n})=\lg(x_{1})+\lg(x_{2})+\dots +\lg(x_{n})}

Вышеописанные свойства объясняют, почему применение логарифмов (до изобретения калькуляторов) существенно облегчало вычисления. Например, умножение многозначных чисел x,y{\displaystyle x,y} с помощью логарифмических таблиц[⇨] производилось по следующему алгоритму:

  1. Найти в таблицах логарифмы чисел x,y{\displaystyle x,y}.
  2. Сложить эти логарифмы, получая (согласно первому свойству) логарифм произведения x⋅y{\displaystyle x\cdot y}.
  3. По логарифму произведения найти в таблицах само произведение.

Деление, которое без помощи логарифмов намного более трудоёмко, чем умножение, выполнялось по тому же алгоритму, лишь с заменой сложения логарифмов на вычитание. Аналогично производились возведение в степень и извлечение корня.

Связь десятичного и натурального логарифмов[2]:

ln⁡x≈2,30259 lg⁡x;lg⁡x≈0,43429 ln⁡x{\displaystyle \ln x\approx 2{,}30259\ \lg x;\quad \lg x\approx 0{,}43429\ \ln x}

Знак логарифма зависит от логарифмируемого числа: если оно больше 1, логарифм положителен, если оно между 0 и 1, то отрицателен. Пример:

lg0,012=lg(10−2×1,2)=−2+lg1,2≈−2+0,079181=−1,920819{\displaystyle \lg \,0{,}012=\lg \,(10^{-2}\times 1{,}2)=-2+\lg \,1{,}2\approx -2+0{,}079181=-1{,}920819}

Чтобы унифицировать действия с положительными и отрицательными логарифмами, у последних целая часть (характеристика) надчёркивалась сверху:

lg0,012≈−2+0,079181=2¯,079181{\displaystyle \lg \,0{,}012\approx -2+0{,}079181={\bar {2}}{,}079181}

Мантисса логарифма, выбираемая из таблиц, при таком подходе всегда положительна.

Видео по теме

Функция десятичного логарифма

Если рассматривать логарифмируемое число как переменную, мы получим функцию десятичного логарифма: y=lgx.{\displaystyle y=\lg \,x.} Она определена при всех x>0.{\displaystyle x>0.} Область значений: E(y)=(−∞;+∞){\displaystyle E(y)=(-\infty ;+\infty )}. График этой кривой часто называется логарифмикой[3].

Функция монотонно возрастает, непрерывна и дифференцируема всюду, где она определена. Производная для неё даётся формулой:

ddxlgx=lgex{\displaystyle {\frac {d}{dx}}\lg \,x={\frac {\lg \,e}{x}}}

Ось ординат (x=0){\displaystyle (x=0)} является вертикальной асимптотой, поскольку:

limx→0+0lgx=−∞{\displaystyle \lim _{x\to 0+0}\lg \,x=-\infty }

Применение

Логарифмы по основанию 10 до изобретения в 1970-е годы компактных электронных калькуляторов широко применялись для вычислений. Как и любые другие логарифмы, они позволяли многократно упростить и облегчить трудоёмкие расчёты, заменяя умножение на сложение, а деление на вычитание; аналогично упрощались возведение в степень и извлечение корня. Но десятичные логарифмы обладали преимуществом перед логарифмами с иным основанием: целую часть логарифма числа x{\displaystyle x} (характеристику логарифма) [lg⁡x]{\displaystyle [\lg x]} легко определить.

  • Если x⩾1{\displaystyle x\geqslant 1}, то [lg⁡x]{\displaystyle [\lg x]} на 1 меньше числа цифр в целой части числа x{\displaystyle x}. Например, сразу очевидно, что lg⁡345{\displaystyle \lg 345} находится в промежутке (2,3){\displaystyle (2,3)}.
  • Если 0<x<1{\displaystyle 0<x<1}, то ближайшее к lg⁡x{\displaystyle \lg x} целое в меньшую сторону равно общему числу нулей в x{\displaystyle x} перед первой ненулевой цифрой (включая ноль перед запятой), взятому со знаком минус. Например, lg⁡0,0014{\displaystyle \lg 0{,}0014} находится в интервале (−3,−2){\displaystyle (-3,-2)}.

Кроме того, при переносе десятичной запятой в числе на n{\displaystyle n} разрядов значение десятичного логарифма этого числа изменяется на n.{\displaystyle n.} Например:

lg⁡8314,63=lg⁡8,31463+3{\displaystyle \lg 8314{,}63=\lg 8{,}31463+3}

Отсюда следует, что для вычисления десятичных логарифмов достаточно составить таблицу логарифмов для чисел в диапазоне от 1{\displaystyle 1} до 10{\displaystyle 10}[4]. Такие таблицы, начиная с XVII века, выпускались большим тиражом и служили незаменимым расчётным инструментом учёных и инженеров.

Поскольку применение логарифмов для расчётов с появлением вычислительной техники почти прекратилось, в наши дни десятичный логарифм в значительной степени вытеснен натуральным[5]. Он сохраняется в основном в тех математических моделях, где исторически укоренился — например, при построении логарифмических шкал.

Десятичные логарифмы для чисел вида 5 × 10n
Число логарифм характеристика мантисса запись
n lg(n) C = floor(lg(n) ) M = (lg(n) − характеристика)
5 000 000 6.698 970... 6 0.698 970... 6.698 970...
50 1.698 970... 1 0.698 970... 1.698 970...
5 0.698 970... 0 0.698 970... 0.698 970...
0.5 −0.301 029... −1 0.698 970... 1.698 970...
0.000 005 −5.301 029... −6 0.698 970... 6.698 970...

Обратите внимание, что у всех приведенных в таблице чисел одна и та же мантисса.[прояснить]

История

Первые таблицы десятичных логарифмов опубликовал в 1617 году оксфордский профессор математики Генри Бригс для чисел от 1 до 1000, с восемью (позже — с четырнадцатью) знаками. Поэтому за рубежом десятичные логарифмы часто называют бригсовыми. Но в этих и в последующих изданиях таблиц обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги (1783) появилось только в 1857 году в Берлине (таблицы Бремикера,

Carl Bremiker)[6].

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого[7]. В СССР выпускались несколько сборников таблиц логарифмов[8]:

  1. Брадис В. М. Четырехзначные математические таблицы. М.: Дрофа, 2010, ISBN 978-5-358-07433-0. Таблицы Брадиса, издаваемые с 1921 года, использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.
  2. Вега Г. Таблицы семизначных логарифмов, 4-е издание, М.: Недра, 1971. Профессиональный сборник для точных вычислений.

Литература

Теория логарифмов
История логарифмов
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.
    : Наука, 1976. — 591 с.
  • Клейн Ф. Элементарная математика с точки зрения высшей. — М.: Наука, 1987. — Т. I. Арифметика. Алгебра. Анализ. — 432 с.
  • Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
  • Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
  • Успенский Я. В. Очерк истории логарифмов. — Петроград: Научное книгоиздательство, 1923. — 78 с.

Ссылки

Примечания

  1. ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 187..
  2. ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 189..
  3. ↑ Логарифмическая функция. // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3.
  4. ↑ Элементарная математика, 1976, с. 94—100.
  5. ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 406..
  6. ↑ История математики, том II, 1970, с. 62..
  7. Гнеденко Б. В.
    Очерки по истории математики в России, издание 2-е.. — М.: КомКнига, 2005. — С. 66.. — 296 с. — ISBN 5-484-00123-4.
  8. ↑ Логарифмические таблицы //Большая советская энциклопедия.

wiki2.red

Десятичный логарифм — Википедия

График десятичного логарифма

Десятичный логарифм — логарифм по основанию 10. Другими словами, десятичный логарифм числа b{\displaystyle b} есть решение уравнения 10x=b.{\displaystyle 10^{x}=b.}

Вещественный десятичный логарифм числа b{\displaystyle b} существует, если b>0{\displaystyle b>0} (комплексный десятичный логарифм существует для всех b≠0{\displaystyle b\neq 0}). Принято (спецификация ISO 31-11) обозначать его lgb{\displaystyle \lg \,b}. Примеры:

lg1=0;lg10=1;lg100=2{\displaystyle \lg \,1=0;\,\lg \,10=1;\,\lg \,100=2}
lg1000000=6;lg0,1=−1;lg0,001=−3{\displaystyle \lg \,1000000=6;\,\lg \,0{,}1=-1;\,\lg \,0{,}001=-3}

В зарубежной литературе, а также на клавиатуре калькуляторов встречаются и другие обозначения десятичного логарифма: log,Log,Log10{\displaystyle \operatorname {log} ,\operatorname {Log} ,\operatorname {Log10} }, причём следует иметь в виду, что первые 2 варианта могут относиться и к натуральному логарифму.

Алгебраические свойства

В нижеследующей таблице предполагается, что все значения положительны[1]:

Существует очевидное обобщение приведённых формул на случай, когда допускаются отрицательные переменные, например:

lg⁡|xy|=lg⁡(|x|)+lg⁡(|y|),{\displaystyle \lg |xy|=\lg(|x|)+\lg(|y|),}
lg|xy|=lg⁡(|x|)−lg⁡(|y|),{\displaystyle \lg \!\left|{\frac {x}{y}}\right|=\lg(|x|)-\lg(|y|),}

Формула для логарифма произведения без труда обобщается на произвольное количество сомножителей:

lg⁡(x1x2…xn)=lg⁡(x1)+lg⁡(x2)+⋯+lg⁡(xn){\displaystyle \lg(x_{1}x_{2}\dots x_{n})=\lg(x_{1})+\lg(x_{2})+\dots +\lg(x_{n})}

Вышеописанные свойства объясняют, почему применение логарифмов (до изобретения калькуляторов) существенно облегчало вычисления. Например, умножение многозначных чисел x,y{\displaystyle x,y} с помощью логарифмических таблиц[⇨] производилось по следующему алгоритму:

  1. Найти в таблицах логарифмы чисел x,y{\displaystyle x,y}.
  2. Сложить эти логарифмы, получая (согласно первому свойству) логарифм произведения x⋅y{\displaystyle x\cdot y}.
  3. По логарифму произведения найти в таблицах само произведение.

Деление, которое без помощи логарифмов намного более трудоёмко, чем умножение, выполнялось по тому же алгоритму, лишь с заменой сложения логарифмов на вычитание. Аналогично производились возведение в степень и извлечение корня.

Связь десятичного и натурального логарифмов[2]:

ln⁡x≈2,30259 lg⁡x;lg⁡x≈0,43429 ln⁡x{\displaystyle \ln x\approx 2{,}30259\ \lg x;\quad \lg x\approx 0{,}43429\ \ln x}

Знак логарифма зависит от логарифмируемого числа: если оно больше 1, логарифм положителен, если оно между 0 и 1, то отрицателен. Пример:

lg0,012=lg(10−2×1,2)=−2+lg1,2≈−2+0,079181=−1,920819{\displaystyle \lg \,0{,}012=\lg \,(10^{-2}\times 1{,}2)=-2+\lg \,1{,}2\approx -2+0{,}079181=-1{,}920819}

Чтобы унифицировать действия с положительными и отрицательными логарифмами, у последних целая часть (характеристика) надчёркивалась сверху:

lg0,012≈−2+0,079181=2¯,079181{\displaystyle \lg \,0{,}012\approx -2+0{,}079181={\bar {2}}{,}079181}

Мантисса логарифма, выбираемая из таблиц, при таком подходе всегда положительна.

Функция десятичного логарифма

Если рассматривать логарифмируемое число как переменную, мы получим функцию десятичного логарифма: y=lgx.{\displaystyle y=\lg \,x.} Она определена при всех x>0.{\displaystyle x>0.} Область значений: E(y)=(−∞;+∞){\displaystyle E(y)=(-\infty ;+\infty )}. График этой кривой часто называется логарифмикой[3].

Функция монотонно возрастает, непрерывна и дифференцируема всюду, где она определена. Производная для неё даётся формулой:

ddxlgx=lgex{\displaystyle {\frac {d}{dx}}\lg \,x={\frac {\lg \,e}{x}}}

Ось ординат (x=0){\displaystyle (x=0)} является вертикальной асимптотой, поскольку:

limx→0+0lgx=−∞{\displaystyle \lim _{x\to 0+0}\lg \,x=-\infty }

Применение

Логарифмы по основанию 10 до изобретения в 1970-е годы компактных электронных калькуляторов широко применялись для вычислений. Как и любые другие логарифмы, они позволяли многократно упростить и облегчить трудоёмкие расчёты, заменяя умножение на сложение, а деление на вычитание; аналогично упрощались возведение в степень и извлечение корня. Но десятичные логарифмы обладали преимуществом перед логарифмами с иным основанием: целую часть логарифма числа x{\displaystyle x} (характеристику логарифма) [lg⁡x]{\displaystyle [\lg x]} легко определить.

  • Если x⩾1{\displaystyle x\geqslant 1}, то [lg⁡x]{\displaystyle [\lg x]} на 1 меньше числа цифр в целой части числа x{\displaystyle x}. Например, сразу очевидно, что lg⁡345{\displaystyle \lg 345} находится в промежутке (2,3){\displaystyle (2,3)}.
  • Если 0<x<1{\displaystyle 0<x<1}, то ближайшее к lg⁡x{\displaystyle \lg x} целое в меньшую сторону равно общему числу нулей в x{\displaystyle x} перед первой ненулевой цифрой (включая ноль перед запятой), взятому со знаком минус. Например, lg⁡0,0014{\displaystyle \lg 0{,}0014} находится в интервале (−3,−2){\displaystyle (-3,-2)}.

Кроме того, при переносе десятичной запятой в числе на n{\displaystyle n} разрядов значение десятичного логарифма этого числа изменяется на n.{\displaystyle n.} Например:

lg⁡8314,63=lg⁡8,31463+3{\displaystyle \lg 8314{,}63=\lg 8{,}31463+3}

Отсюда следует, что для вычисления десятичных логарифмов достаточно составить таблицу логарифмов для чисел в диапазоне от 1{\displaystyle 1} до 10{\displaystyle 10}[4]. Такие таблицы, начиная с XVII века, выпускались большим тиражом и служили незаменимым расчётным инструментом учёных и инженеров.

Поскольку применение логарифмов для расчётов с появлением вычислительной техники почти прекратилось, в наши дни десятичный логарифм в значительной степени вытеснен натуральным[5]. Он сохраняется в основном в тех математических моделях, где исторически укоренился — например, при построении логарифмических шкал.

Десятичные логарифмы для чисел вида 5 × 10n
Число логарифм характеристика мантисса запись
n lg(n) C = floor(lg(n) ) M = (lg(n) − характеристика)
5 000 000 6.698 970... 6 0.698 970... 6.698 970...
50 1.698 970... 1 0.698 970... 1.698 970...
5 0.698 970... 0 0.698 970... 0.698 970...
0.5 −0.301 029... −1 0.698 970... 1.698 970...
0.000 005 −5.301 029... −6 0.698 970... 6.698 970...

Обратите внимание, что у всех приведенных в таблице чисел одна и та же мантисса.[прояснить]

История

Первые таблицы десятичных логарифмов опубликовал в 1617 году оксфордский профессор математики Генри Бригс для чисел от 1 до 1000, с восемью (позже — с четырнадцатью) знаками. Поэтому за рубежом десятичные логарифмы часто называют бригсовыми. Но в этих и в последующих изданиях таблиц обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги (1783) появилось только в 1857 году в Берлине (таблицы Бремикера, Carl Bremiker)[6].

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого[7]. В СССР выпускались несколько сборников таблиц логарифмов[8]:

  1. Брадис В. М. Четырехзначные математические таблицы. М.: Дрофа, 2010, ISBN 978-5-358-07433-0. Таблицы Брадиса, издаваемые с 1921 года, использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.
  2. Вега Г. Таблицы семизначных логарифмов, 4-е издание, М.: Недра, 1971. Профессиональный сборник для точных вычислений.

Литература

Теория логарифмов
История логарифмов
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
  • Клейн Ф. Элементарная математика с точки зрения высшей. — М.: Наука, 1987. — Т. I. Арифметика. Алгебра. Анализ. — 432 с.
  • Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
  • Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
  • Успенский Я. В. Очерк истории логарифмов. — Петроград: Научное книгоиздательство, 1923. — 78 с.

Ссылки

Примечания

  1. ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 187..
  2. ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 189..
  3. ↑ Логарифмическая функция. // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3.
  4. ↑ Элементарная математика, 1976, с. 94—100.
  5. ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 406..
  6. ↑ История математики, том II, 1970, с. 62..
  7. Гнеденко Б. В. Очерки по истории математики в России, издание 2-е.. — М.: КомКнига, 2005. — С. 66.. — 296 с. — ISBN 5-484-00123-4.
  8. ↑ Логарифмические таблицы //Большая советская энциклопедия.

wikipedia.green

Логарифмы. Свойства логарифмов. Формулы с логарифмами. Десятичные, натуральные логарифмы, основное логарифмическое тождество


Определение логарифма

Логарифмом положительного числа b по основанию a (a>0, a не равно 1) называют такое число с, что ac = b: logab=c⇔ac=b(a>0,a≠1,b>0)&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp

Обратите внимание: логарифм от неположительного числа не определен. Кроме того, в основании логарифма должно быть положительное число, не равное 1. Например, если мы возведем -2 в квадрат, получим число 4, но это не означает, что логарифм по основанию -2 от 4 равен 2.


Основное логарифмическое тождество

alogab=b(a>0,a≠1) (2)

Важно, что области определения правой и левой частей этой формулы отличаются. Левая часть определена только при b>0, a>0 и a ≠ 1. Правая часть определена при любом b, а от a вообще не зависит. Таким образом, применение основного логарифмического "тождества" при решении уравнений и неравенств может привести к изменению ОДЗ.


Два очевидных следствия определения логарифма

logaa=1(a>0,a≠1) (3)
loga1=0(a>0,a≠1) (4)

Действительно, при возведении числа a в первую степень мы получим то же самое число, а при возведении в нулевую степень - единицу.


Логарифм произведения и логарифм частного

loga(bc)=logab+logac(a>0,a≠1,b>0,c>0) (5)

logabc=logab−logac(a>0,a≠1,b>0,c>0) (6)

Хотелось бы предостеречь школьников от бездумного применения данных формул при решении логарифмических уравнений и неравенств. При их использовании "слева направо" происходит сужение ОДЗ, а при переходе от суммы или разности логарифмов к логарифму произведения или частного - расширение ОДЗ.

Действительно, выражение loga(f(x)g(x)) определено в двух случаях: когда обе функции строго положительны либо когда f(x) и g(x) обе меньше нуля.

Преобразуя данное выражение в сумму logaf(x)+logag(x), мы вынуждены ограничиваться только случаем, когда f(x)>0 и g(x)>0. Налицо сужение области допустимых значений, а это категорически недопустимо, т. к. может привести к потере решений. Аналогичная проблема существует и для формулы (6).


Степень можно выносить за знак логарифма

logabp=plogab(a>0,a≠1,b>0) (7)

И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:

loga(f(x)2=2logaf(x)

Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть - только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.


Формула перехода к новому основанию

logab=logcblogca(a>0,a≠1,b>0,c>0,c≠1) (8)

Тот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной.

Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8):

logab=1logba(a>0,a≠1,b>0,b≠1) (9)

Десятичные и натуральные логарифмы

Десятичным логарифмом числа x называется логарифм по основанию 10. Десятичные логарифмы используются довольно часто, поэтому для них введено специальное обозначение: log10x = lg x. Все перечисленные выше формулы сохраняют актуальность для десятичных логарифмов. Например, lg(xy)=lgx+lgy(x>0,y>0).

Натуральным логарифмом числа x (обозначение lnx) называется логарифм х по основанию e. Число e - иррациональное, приближенно равно 2,71. Например, ln e = 1. Пользуясь формулой (8), можно любой логарифм свести к десятичным или натуральным логарифмам: logab=lgblga=lnblna(a>0,a≠1,b>0)

Несколько простых примеров с логарифмами

Пример 1. Вычислите: lg2 + lg50.
Решение. lg2 + lg50 = lg100 = 2. Мы воспользовались формулой суммы логарифмов (5) и определением десятичного логарифма.

Пример 2. Вычислите: lg125/lg5.
Решение. lg125/lg5 = log5125 = 3. Мы использовали формулу перехода к новому основанию (8).

Таблица формул, связанных с логарифмами


alogab=b(a>0,a≠1)
logaa=1(a>0,a≠1)
loga1=0(a>0,a≠1)
loga(bc)=logab+logac(a>0,a≠1,b>0,c>0)
logabc=logab−logac(a>0,a≠1,b>0,c>0)
logabp=plogab(a>0,a≠1,b>0)
logab=logcblogca(a>0,a≠1,b>0,c>0,c≠1)
logab=1logba(a>0,a≠1,b>0,b≠1)

Возможно, вас заинтересуют также:

www.repetitor2000.ru

Логарифм. Свойства логарифмов

Логарифм. Свойства логарифмов

Рассмотрим равенство . Пусть нам известны значения  и и мы хотим найти значение .

То есть мы ищем показатель степени, в которую нужно взвести чтобы получить .

Пусть переменная  может принимать любое действительное значение, тогда на переменные  и накладываются такие ограничения: ,  ,  

Если нам известны значения  и , и перед нами стоит задача найти неизвестное , то для этой цели вводится математическое  действие, которое называется

логарифмирование.

Чтобы найти значение , мы берем логарифм числа  по основанию :

Итак,

Логарифмом числа  по основанию  называется показатель степени, в которую надо возвести  , чтобы получить .

То есть основное логарифмическое тождество:

            ,  ,  

является по сути математической записью определения логарифма.

Математическая операция  логарифмирование является обратной по отношению к операции возведения в степень, поэтому свойства логарифмов тесно связаны со свойствами степени.

Перечислим основные свойства логарифмов:

(,  ,   ,  ,  

1. 

2. 

3. 

4. 

5. 

Следующая группа свойств позволяет представить  показатель степени выражения, стоящего под знаком логарифма, или стоящего в основании логарифма в виде коэффициента  перед знаком логарифма:

6. 

7. 

8. 

9. 

Следующая группа формул позволяет перейти от логарифма с данным основанием к логарифму с произвольным основанием, и называется формулами перехода к новому основанию:

10. 

11. 

12. (следствие из свойства 11)

Следующие три свойства не очень известны, однако они часто используются при решении логарифмических уравнений, или при упрощении выражений, содержащих логарифмы:

13. 

14. 

15. 

 

Частные случаи:

- десятичный логарифм

 -  натуральный логарифм

При упрощении выражений, содержащих логарифмы  применяется общий подход:

1. Представляем десятичные дроби в виде обыкновенных.

2. Смешанные числа представляем в виде неправильных дробей.

3. Числа, стоящие в основании логарифма и под знаком логарифма раскладываем на простые множители.

4. Стараемся привести все логарифмы к одному основанию.

5. Применяем свойства логарифмов.

Давайте рассмотрим примеры упрощения выражений, содержащих логарифмы.

Пример 1.

Вычислить:

Упростим все показатели степеней: наша задача привести их к логарифмам, в основании которых стоит то же число, что и в основании степtни.

==(по свойству 7)=(по свойству 6) =

Подставим показатели, которые у нас получились в исходное выражение. Получим:

Ответ: 5,25

 

Пример 2. Вычислить:

Приведем все логарифмы к основанию 6 (при этом логарифмы из знаменателя дроби "перекочуют" в числитель):

Разложим числа, стоящие под знаком логарифма на простые множители:

Применим свойства 4 и 6:

Введем замену  

Получим:

Ответ:  1 

 

Скачать таблицу логарифм и его свойства

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Презентация урока для интерактивной доски по алгебре (10 класс) по теме: Десятичные и натуральные логарифмы. Формула перехода к другому основанию.

Слайд 1

Урок алгебры в 10 классе по теме: « Десятичные и натуральные логарифмы. Формула перехода к другому основанию » Автор работы: Ефимова Наталья Владимировна , учитель математики высшей квалификационной категории ГБОУ СОШ № 899 г. Москва

Слайд 2

Цели урока. Повторить свойства логарифмов Решать задачи Решать уравнения Ввести понятия натурального и десятичного логарифмов

Слайд 3

Свойства логарифмов. (а >0,a 1,b>0,c>0 , n0 ) :

Слайд 4

Найдите значение выражений 4 - 0,5 -0,5 4 3 9 3 25 1 1 -2 2

Слайд 5

Решите уравнение

Слайд 6

Сравните ответы 1 2 3 4 5 6 7 8 25 13 9 10

Слайд 7

Тренировочный тест 1.Вычислить: 0,3 log 0,3 2 – 5 – 4,91; 2) – 4,7; 3) – 3; 4) 2. 2. Найдите значение выражения: log 2 16 + log 2 2 1) 4; 2) 5; 3) 6; 4) 4,5. 3.Найдите значение выражения : log 0,3 9 -2log 0,3 10 1) 2; 2) 1; 3) – 2; 4) 90. 4. Найдите x : lg x = 1/2lg9 – 2/3lg8 1) 3/4; 2) 4/3; 3) 3/2; 4) 6. 5. Упростите выражение: 3 2+log 3 15 1) 17; 2) 135; 3) 225; 4) 30.

Слайд 8

Проблема Обратите внимание - действия с логарифмами возможны только при одинаковых основаниях ! А если основания разные!?

Слайд 9

Десятичным логарифмом называется логарифм по основанию 10. Он обозначается lg , т.е. log 10 m = lg т Натуральным логарифмом называется логарифм по основанию е . Он обозначается ln , т.е. log e m = ln m . Число е является иррациональным, его приближённое значение 2.718281828.

Слайд 10

Переход к другому основанию Теорема Пусть дан логарифм log a b . Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство: В частности, если положить c = b , получим:

Слайд 11

Воспользуемся сначала свойством Теперь перейдем к основанию 2

Слайд 12

2) Найдите значение выражения

Слайд 13

3)Найдите значение выражения , если Решение: Решение: Ответ: 12

Слайд 14

Первое упоминание натурального логарифма сделал Николас Меркатор в работе Logarithmotechnia , опубликованной в 1668 году, хотя учитель математики Джон Спайделл ещё в 1619 году составил таблицу натуральных логарифмов. Ранее его называли гиперболическим логарифмом, поскольку он соответствует площади под гиперболой

Слайд 15

Происхождение термина натуральный логарифм Сначала может показаться, что поскольку наша система счисления имеет основание 10, то это основание является более «натуральным», чем основание e . Но математически число 10 не является особо значимым. Его использование скорее связано с культурой, оно является общим для многих систем счисления, и связано это, вероятно, с числом пальцев у людей. Некоторые культуры основывали свои системы счисления на других основаниях: 5, 8, 12, 20 и 60. log e является «натуральным» логарифмом, поскольку он возникает автоматически и появляется в математике очень часто. .

Слайд 16

е=2,718281828459045235360…. Саму константу впервые вычислил швейцарский математик Бернулли в ходе решения задачи о предельной величине процентного дохода. Бернулли показал, что процентный доход в случае сложного процента имеет предел: и этот предел равен 2,71828… Экспоненту помнить способ есть простой: два и семь десятых, дважды Лев Толстой(1828) 2,7 1828 1828

Слайд 17

Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год Почему была выбрана именно буква e , точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a , b , c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой.

Слайд 18

Таблицы логарифмов Первые таблицы логарифмов были составлены швейцарским математиком Бюрги в 1590 году . Немного позднее таблицы логарифмов также составил шотландский ученый Непер . Непер брал за основание логарифма число, очень близкое к единице но меньшее, чем единица. Непер опубликовал свои таблицы в 1614, а Бюрги в 1620 году. Позднее Непер и его сотрудник Бригс перевели первые таблицы Непера на новое основание — 10. Таблицы десятичных логарифмов были впервые опубликованы в 1624 году. Именно поэтому они также носят название Бригговы . В России первые таблицы логарифмов были изданы в 1703 году

Слайд 19

1 группа 2 группа ; Задания для самостоятельной работы

Слайд 20

Домашнее задание 1. Найдите 2. Вычислите:

Слайд 21

Спасибо за урок.

nsportal.ru

Таблица. Натуральные логарифмы. - таблицы Tehtab.ru

Таблица. Натуральные логарифмы.

Пример: ln(13)=2,5649

Таблица. Натуральные логарифмы.
Единицы
0 1 2 3 4 5 6 7 8 9
Десятки                    
0 0 0,6931 1,0986 1,3863 1,6094 1,7918 1,9459 2,0794 2,1972
1 2,3026 2,3979 2,4849 2,5649 2,6391 2,7081 2,7726 2,8332 2,8904 2,9444
2 2,9957 3,0445 3,091 3,1355 3,1781 3,2189 3,2581 3,2958 3,3322 3,3673
3 3,4012 3,434 3,4657 3,4965 3,5264 3,5553 3,5835 3,6109 3,6376 3,6636
4 3,6889 3,7136 3,7377 3,7612 3,7842 3,8067 3,8286 3,8501 3,8712 3,8918
5 3,912 3,9318 3,9512 3,9703 3,989 4,0073 4,0254 4,0431 4,0604 4,0775
6 4,0943 4,1109 4,1271 4,1431 4,1589 4,1744 4,1897 4,2047 4,2195 4,2341
7 4,2485 4,2627 4,2767 4,2905 4,3041 4,3175 4,3307 4,3438 4,3567 4,3694
8 4,382 4,3944 4,4067 4,4188 4,4308 4,4427 4,4543 4,4659 4,4773 4,4886
9 4,4998 4,5109 4,5218 4,5326 4,5433 4,5539 4,5643 4,5747 4,5850 4,5951
10 4,6052 4,6151 4,625 4,6347 4,6444 4,654 4,6634 4,6728 4,6821 4,6913

tehtab.ru

Натуральный логарифм, функция ln x

Приведены основные свойства натурального логарифма, график, область определения, множество значений, основные формулы, производная, интеграл, разложение в степенной ряд и представление функции ln x посредством комплексных чисел.

Определение

Натуральный логарифм
– это функция   y = ln x, обратная к экспоненте, x = e y, и являющаяся логарифмом по основанию числа е:   ln x = loge x.

Натуральный логарифм широко используется в математике, поскольку его производная имеет наиболее простой вид: (ln x)′ = 1/x.

Исходя из определения, основанием натурального логарифма является число е:
е ≅ 2,718281828459045...;
.

График натурального логарифма ln x

График функции y = ln x.

График натурального логарифма (функции y = ln x) получается из графика экспоненты зеркальным отражением относительно прямой y = x.

Натуральный логарифм определен при положительных значениях переменной x. Он монотонно возрастает на своей области определения.

При x → 0 пределом натурального логарифма является минус бесконечность ( – ∞ ).

При x → + ∞ пределом натурального логарифма является плюс бесконечность ( + ∞ ). При больших x логарифм возрастает довольно медленно. Любая степенная функция xa с положительным показателем степени a растет быстрее логарифма.

Свойства натурального логарифма

Область определения, множество значений, экстремумы, возрастание, убывание

Натуральный логарифм является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные свойства натурального логарифма представлены в таблице.

 
Область определения 0 < x + ∞
Область значений – ∞ < y < + ∞
Монотонность монотонно возрастает
Нули, y = 0 x = 1
Точки пересечения с осью ординат, x = 0 нет
+ ∞
– ∞

Значения ln x

ln 1 = 0

Основные формулы натуральных логарифмов

Формулы, вытекающие из определения обратной функции:

Основное свойство логарифмов и его следствия

Формула замены основания

Любой логарифм можно выразить через натуральные логарифмы с помощью формулы замены основания:

Доказательства этих формул представлены в разделе "Логарифм".

Обратная функция

Обратной для натурального логарифма является экспонента.

Если    ,   то   

Если    ,   то    .

Производная ln x

Производная натурального логарифма:
.
Производная натурального логарифма от модуля x:
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Интеграл вычисляется интегрированием по частям:
.
Итак,

Выражения через комплексные числа

Рассмотрим функцию комплексной переменной z:
.
Выразим комплексную переменную z через модуль r и аргумент φ:
.
Используя свойства логарифма, имеем:
.
Или
.
Аргумент φ определен не однозначно. Если положить
, где n – целое,
то будет одним и тем же числом при различных n.

Поэтому натуральный логарифм, как функция от комплексного переменного, является не однозначной функцией.

Разложение в степенной ряд

При имеет место разложение:

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов.     Опубликовано:   Изменено:

1cov-edu.ru

0 comments on “Переход от десятичного логарифма к натуральному – 10. . . —

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *