Защитное заземление и зануление – Защитное заземление. Зануление

Что такое заземление и зануление

Заземление и зануление

aver.ru → Важно → Заземление и зануление

Печать

Заземление и зануление.

Заземление электроустановки — преднамеренное электрическое соединение ее корпуса с заземляющим устройством.

Заземление электроустановок бывает двух типов: защитное заземление и зануление, которые имеют одно и тоже назначение – защитить человека от поражения электрическим током, если он прикоснулся к корпусу электроприбора, который из-за нарушения изоляции оказался под напряжением.

Защитное заземление – преднамеренное соединение с землей частей электроустановки. Применятся в сетях с изолированной нейтралью, например, в старых домах с сетями 220В.

В случае возникновения пробоя изоляции между фазой и корпусом электроустановки корпус ее может оказаться под напряжением. Если к корпусу в это время прикоснулся человек – ток, проходящий через человека, не представляет опасности, потому что его основная часть потечет по защитному заземлению, которое обладает очень низким сопротивлением. Защитное заземление состоит из заземлителя и заземляющих проводников.

Есть два вида заземлителей – естественные и искусственные.

К естественным заземлителям относятся металлические конструкции зданий, надежно соединенные с землей.

В качестве искусственных заземлителей используют стальные трубы, стержни или уголок, длиной не менее 2, 5 м, забитых в землю и соединенных друг с другом стальными полосами или приваренной проволокой. В качестве заземляющих проводников, соединяющих заземлитель с заземляющими приборами обычно используют стальные или медные шины, которые либо приваривают к корпусам машин, либо соединяют с ними болтами. Защитному заземлению подлежат металлические корпуса электрических машин, трансформаторов, щиты, шкафы.

Защитное заземление значительно снижает напряжение, под которое может попасть человек, но это напряжение, может быть не равно нулю. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление. При повреждении изоляции ток замыкания протекает по корпусу электроустановки, заземлителю и далее по земле к нейтрали трансформатора, вызывая на их сопротивлении падение напряжения, которое хотя и меньше 220 В, но может быть ощутимо для человека. Для уменьшения этого напряжения необходимо принять меры к снижению сопротивления заземлителя относительно земли, например, увеличить количество исскуственных заземлителей.

Зануление — преднамеренное электрическое соединение частей электроустановки, нормально не находящихся под напряжением с глухо заземленной нейтралью трансформатора через нулевой провод сети. Это приводит к тому, что замыкание любой из фаз на корпус электроустановки превращается в короткое замыкание этой фазы с нулевым проводом. Ток в этом случае возникает значительно больший, чем при использовании защитного заземления, и защитная аппаратура сработает эффективнее. Быстрое и полное отключение поврежденного оборудования — основное назначение зануления. Применятся в новых домах.

Модульные здания можно недорого купить на http://zavodmps.ru/.

Различают нулевой рабочий проводник и нулевой защитный проводник.

Нулевой рабочий проводник служит для питания электроустановок и имеет одинаковую с другими проводами изоляцию и достаточное сечение для рабочего тока.

Нулевой защитный проводник служит для создания кратковременного тока короткого замыкания для срабатывания защиты и быстрого отключения поврежденной электроустановки от питающей сети. В качестве нулевого защитного провода могут быть использованы стальные трубы электропроводок, а также нулевые провода, которые не должны иметь предохранителей и выключателей. Нулевой рабочий проводник и нулевой защитный проводник обычно приходят с подстанции, где заземляется сердечник трансформатора.

Профилактический контроль изоляции проводят не реже 1 раза в 3 года. Сопротивление изоляции проводов измеряют мегаомметрами на номинальное напряжение 1000 В на участках при снятых плавких вставках и при выключенных токоприемниках между каждым фазным проводом и нулевым рабочим проводом и между каждыми двумя проводами. Сопротивление изоляции должно быть не меньше 0, 5 Мом.

Обозначения системы заземления.

Системы заземления различаются по схемам соединения и числу нулевых рабочих и защитных проводников.

Первая буква в обозначении системы заземления определяет характер заземления источника питания.

T — непосредственное соединения нейтрали источника питания с землёй.

I — все токоведущие части изолированы от земли.

Вторая буква в обозначении системы заземления определяет характер заземления открытых проводящих частей электроустановки здания.

T — непосредственная связь открытых проводящих частей электроустановки здания с землёй, независимо от характера связи источника питания с землёй.

N — непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания.

Буквы, следующие через чёрточку за N, определяют способ устройства нулевого защитного и нулевого рабочего проводников.

C — функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.

S — функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками.

Основные системы заземления.

1. Система заземления TN-C.

К системе TN-C относятся трехфазные четырехпроводные (три фазных проводника и PEN- проводник, совмещающий функции нулевого рабочего и нулевого защитного проводников) и однофазные двухпроводные (фазный и нулевой рабочий проводники) сети зданий старой постройки.

2. Система заземления TN-C-S.

В настоящее время применение системы TN-C на вновь строящихся и реконструируемых объектах не допускается. При эксплуатации системы TN-C в здании старой постройки, предназначенном для размещения средств, информатики и телекоммуникаций, следует обеспечить переход от системы TN-C к системе TN-S (TN-C-S).

Система TN-C-S характерна для реконструируемых сетей, в которых нулевой рабочий и защитный проводники объединены только в части схемы, например, во вводном щитке (квартирном щитке).

3. Система заземления TN-S.

В системе TN-S нулевой рабочий и нулевой защитный проводники проложены отдельно. Такая схема исключает обратные токи в проводнике РЕ, что снижает риск возникновения электромагнитных помех. При эксплуатации системы TN-S необходимо следить за соблюдением назначения проводников РЕ и N. Оптимальным случаем с точки зрения минимизации помех является наличие пристроенной трансформаторной подстанции, что позволяет обеспечить минимальную длину проводника от ввода кабелей электроснабжения до главного заземляющего зажима. Система TN-S при наличии пристроенной подстанции не требует повторного заземления, так как имеется основной заземлитель на ТП.

4. Система заземления TT.

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически не зависимый от заземлителя нейтрали трансформаторной подстанции.

5. Система заземления IT.

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в будет низким и не повлияет на условия работы присоединенного оборудования. Такая система используется, как правило, в электроустановках зданий, к которым предъявляются повышенные требования по безопасности.

4. Схема контурного заземления.

2. Заземляющие проводники

3. Заземляемое оборудование

4. Производственное здание.

5. Схема заземления дома с применением системы TN-C-S.

2. Заземлитель молниезащиты

3. Металлические трубы водопровода, канализации, газа

4. Главная заземляющая шина

5. Естественный заземлитель (арматура фундамента здания)

Заземление и зануление.

Чем отличается заземление от зануления

Для безопасной работы на различных электоустановках и проводниках используется соединение открытых металлических отводов с землей и подключение сети к нулевому кабелю. Но немногие начинающие мастера точно знают, чем отличается заземление и зануление электроустановок и электрооборудования.

Определение заземления

Заземление – это умышленное подключение открытых частей электрического оборудования, которые находятся под напряжением, к специальному заземляющему отводу, шине или другому защитному оборудованию. Это может быть арматура в земле, часть электроустановки и другие приспособления. Такой подход, согласно ПУЭ, является обязательной мерой преднамеренной защиты как жилого, так и нежилого фонда. Это же гласят правила и требования ГОСТ 12.1.030-81 ССБТ (электробезопасность и система стандартов безопасности труда).

Фото — схема

Практически в каждом современном доме установлена схема заземления TN-C-S или TN-S. Но в зданиях старой постройки заземление зачастую вообще отсутствует, поэтому владельцам квартиры в таких постройках приходится своими силами организовывать землю. Такая система называется TN-C. Выполняется при помощи подключения отвода к заземляющему контуру, который может располагаться непосредственно в земле у здания или возле трансформаторной будки.

Теоретически, такую модернизацию проводки может организовать специальная монтажная компания, но практикуется это редко. Чаще к щитку на этаже (в многоквартирном доме) подводится земля, и уже к ней подключаются остальные провода.

  1. Если фаза попадает на открытый металлический отвод любого электрического устройства, то в нем появляется напряжение. Это же случается, если, к примеру, нарушена изоляция кабеля. Человеческое тело – отличный проводник тока, если Вы дотронетесь к такому отводу, то получите сильный удар током. Заземление поможет избежать это;
  2. Блуждающие токи уходят в заземляющий проводник, этим гарантируется охрана жизни;
  3. В особенности опасно напряжение, которое попадает на радиаторы отопления. В таком случае, все батареи в доме становятся проводниками тока. Но если установлена земля, то все напряжение уйдет по проводнику.

Фото — вариант земли

Если нет возможности провести полноценный заземляющий контур, тогда используются другие способы. К примеру, сейчас очень распространено подключение переносных заземляющих штырей (портативные шины). Их действие никак не отличается от стандартного стационарного отвода, но при этом они гораздо практичнее по своему функционалу.

Фото — переносная шина

Назначение зануления

Иногда зануление и заземление путают друг с другом, так в чем разница между ними? Зануление применяется по ПУЭ только для промышленных установок и не является гарантом безопасности. Если фаза попадает на открытую часть устройства, то ток не уходит. После этого происходит сопряжение двух фаз, и, как следствие, короткое замыкание. Нулевой проводник необходим для быстрого реагирования дифференциального защитного автомата на КЗ, но не для защиты человека от поражения током. Поэтому его принято использовать только на производстве, где требуется быстрое отключение питания в случае аварийной ситуации.

Фото — схема зануления

Нужно ли делать зануление в частном доме или квартиры? Нет, это необязательно, и даже чревато различными негативными последствиями. Скажем, если нулевой провод сгорит, то большее количество электрических устройств, к которым он был подключен, сломается из-за чрезвычайно высокого скачка напряжения. Стоит помнить, что Ваша безопасность не пострадает, если вместе с занулением обустроить также заземление, установить УЗО и защитный выключатель.

Фото — принцип работы зануления

Как установить зануление, чтобы устройство, подключенное к нему, не сгорело:

  1. Нужно использовать трехжильный провод с изоляцией. Одна жила отведена для фазы, вторая для нуля, третья для заземления;
  2. Земля подключается в самом конце электромонтажных работ на корпус безопасного проводника к заземляющему контуру и т. д. Наиболее практичен специальный заземляющий отвод у щита;
  3. В целях безопасности обязательно устанавливаются различные выключатели питания и прочие защитные установки.

Видео: в чем разница зануления и заземления

Главное отличие

Самое главное, что нужно запомнить: схемы зануления и заземления имеют различное защитное действие. Ноль гарантирует быструю реакцию на изменение потенциалов или утечку тока для обеспечивающих защиту установок. Соответственно, при высоком напряжении обеспечивается отключение всех потребителей энергии: осветительных приборов, компьютера и других машин (в том числе, станков, трансформаторов).

Фото — отличие зануления и заземления

Заземлением же обеспечивается выравнивание потенциалов и защита от поражения током. Земля чаще применяется в домашних условиях, её монтаж можно легко сделать своими руками. Но здесь нет гарантии, что предохранители быстро отреагируют на утечку. Оптимальным вариантом для повышения гарантии безопасности является совместное применение зануления и заземления сетей и открытых частей машин.

Перед установкой любого из этих вариантов защиты, нужно обязательно получить разрешение на проведение работ. Также дополнительно проводится расчет защитного проводника, подведение к каждому потребителю в жилище земли и установка защитного оборудования.

Заземление и зануление: в чем разница и задачи устройств

Присутствующее электричество в домах должно быть безопасным для использования человеком. Вследствие чего необходимо обустроить защиту от утечек тока и нарушения изоляции, и в этом успешно поможет процедура заземление и зануление, а в чем их разница разберемся в нашей статье.

Известно, что для квартирного жилья проще сделать зануление, чем обустроить заземляющий контур, особенно, если хозяин проживает на последнем этаже высотки. Поэтому поговорим о каждом из этих приемов.

Что такое заземление и его особенности

Заземляющее устройство представляет собой — конструкцию из металла, снижающую уровень напряжения до минимального значения, которое безопасно для человека в случае прикосновения.

Важно! Заземление устанавливается только в тех местах, где предусматривается изоляция нейтрального проводника.

Помимо защитной функции установки, можно выделить еще увеличение аварийного тока замыкания. Если в подобной ситуации электрическая цепь обладает высоким сопротивлением, тогда риск поражения электрическим током для человека и домашних животных увеличивается. Также использование контура заземления сосредоточено в молниезащитных установках. Здесь защитное заземление играет роль комплекта проводников, принимающих высоковольтное напряжение и передающее его глубоко в грунт. По назначению заземлители подразделяют на три класса:

  • грозозащитный. Специализируется на отводе молниеносного напряжения, используется для разрядников;
  • рабочий. Поддерживает оптимальную работоспособность электрических установок в любых условиях, включительно аварийных;
  • защитный. Предупреждает поражения живых организмов высоким пробойным напряжением.

Заземление в частном доме схема

Некоторые электрики с большим опытом за плечами утверждают, что заземление и зануление не имеют масштабных отличий. Полагают, что зануление является неотъемлемой частью заземления в определенных условиях.

Зануление: назначение и характеристики

Зануление вместо заземления часто используется в квартирах, где отсутствует традиционная система заземления или она имеет устаревший вид. Такой тип защиты подразумевает соединение металлических деталей, не проводящих ток с глухозаземленным нулевым проводником. Устроен этот механизм для того, чтобы на момент повреждения изоляции и выхода тока на корпус приборов, осуществлялось короткое замыкание, вследствие чего происходило срабатывание автоматических выключателей и УЗО.

Важно! Практикуя вместо заземления зануление — обязательно устанавливайте автоматы и устройства защитного отключения.

Следует внимательно и регулярно проверять провод нейтрали, так как в случае выхода высокого тока, под напряжением оказываются все приборы, на которые выполнено зануление. Эта ситуация объясняется автоматическим переключением зануленных приспособлений к фазе. Поэтому в целях безопасности не рекомендуется подключать к нулю автоматы и другие средства защиты. Тем не менее, полностью обезопасить себя от удара током, можно лишь установив повторные заземлители на каждые 200 м электрической сети.

Чем отличается заземление от зануления?

Отличие заземления от зануления более чем очевидно. Если обустроено заземление, мы получаем быстрое снижение напряжения тока до безопасного минимума для человека. Напомним, что не наносит вред напряжение со значением до 50 Вольт.

Если установлено зануление, из-за пробоя тока происходит обесточивание определённого участка цепи, и переход короткого замыкания в другую часть или на корпус электроприбора. Во всяком случае есть высокий риск попадания человека под опасный разряд.

Посмотрите схему, в которой обозначено заземление и зануление.

Мы с вами разобрались, как отличить ноль от заземления, теперь ответим на ряд вопросов, которые задают начинающие электрики.

Квартирное зануление: «за» и «против»

Как мы уже говорили и сейчас подчеркнем, что пользование занулением ни при каких обстоятельствах не рекомендуется. Благодаря характеристикам потенциального вида защиты все понимают, чем это грозит.

Как выполнить заземление

Предположим, ваш холодильник или посудомоечная машина занулены, и вдруг пробой тока или путаница проводников во время ремонта, — эти приборы перегорят, прежде чем сработает автоматический выключатель, разумеется, если он у вас установлен. В противном случае придется реставрировать всю электрическую проводку в квартире.

Важно! Устанавливать УЗО, дифференциальный автомат или автоматический выключатель нужно не только в комплексе с системой зануления, но и для увеличения безопасности сети с обустроенным заземлением.

Если говорить о новостройках, то здесь часто используется система заземления TN-C-S или TN-S — это относительно новые конструкции, следовательно, о занулении не может быть и речи.

Какие требования нужно учесть при заземлении и занулении?

Подумать о рациональном монтаже защитных устройств нужно с тех, пор, когда только протянули электропроводку. Поэтому рассмотрим некоторые требования касательно зануления и заземления.

По сути, любые электрические цепи и установки, имеющие изоляцию нулевого проводника, предусматривают монтаж защитного заземления и оперативного поиска замыкания в грунт.

  1. В случаях, когда установка или устройство обладает глохозаземленным нулевым проводником с мощностью до 1000 В, в такой ситуации предусматривается установка зануления.
  2. Подобная установка может быть оснащена трансформатором, с потребностью 380 В. В этом случае, отсюда разрешено подключить всего один потребитель энергии.
  3. В случае заземления нуля в трехфазной цепи с мощностью электроустановки 1000 В, устанавливается эффективная защита, предупреждающая пробой опасного тока. Его принято монтировать в нулевой проводник или фазу от нижнего напряжения.

В чем отличие заземления и зануления схема

Важно! В жилом помещении и общественных заведениях принято занулять и заземлять приспособления с потребностью более 1300 Вольт.

В случае защиты электрической сети и ее потребителей рекомендуется руководствоваться правилами устройства электроустановок (ПУЭ).

Источники: http://aver.ru/all/zazemlenie-i-zanulenie/, http://www.asutpp.ru/osnovy-elektrotexniki/zazemlenie-i-zanulenie.html, http://prokommunikacii.ru/elektrika/zazemlenie/zazemlenie-i-zanulenie-v-chem-raznica-i-zadachi-ustrojjstv.html

electricremont.ru

Защитное заземление и зануление

Введение

Защитное заземление, (зануление), является основной мерой защиты металлоконструкции. Основная цель этого мероприятия — защитить от возможного удара током пользователя прибора при замыкании на корпус в том случае, например поражения электрическим током в случае замыкания фазного провода на, когда нарушена изоляция. Иными словами, заземление является дублером защитных функций предохранителей. Заземлять все электроприборы, имеющиеся в доме, нет необходимости: у большинства из них имеется надежный пластмассовый корпус, который сам по себе защищает от поражения электрическим током. Защитное зануление отличается от заземления тем, что корпуса машин и аппаратов соединяются не с «землей», а с заземленным нулевым проводом, идущим от трансформаторной подстанции по четырехпроводной линии электропередач. Для обеспечения полной безопасности человека сопротивление заземлителей (вместе с контуром) не должно превышать 4 ом. С этой целью два раза в год (зимой и летом) производится их контрольная проверка специальной лабораторией.

Заземление — преднамеренное электрическое соединение какой-либо точки электрической сети, электроустановки или оборудования, с заземляющим устройством.

Заземляющее устройство состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы. Качество заземления определяется значением сопротивления заземляющего устройства, которое можно снизить, увеличивая площадь заземлителей или проводимость среды — используя множество стержней, повышая содержание солей в земле и т. д. Электрическое сопротивление заземляющего устройства определяется требованиями ПУЭ

Терминология

· Глухозаземлённая нейтраль — нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно. Глухозаземлённым может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трёхпроводных сетях постоянного тока.

· Изолированная нейтраль — нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству или присоединённая к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

Обозначения

Обозначение на схемах (два символа справа)

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение PE (Protective Earthing) и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов. Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Обозначения системы заземления

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

· T — непосредственное соединения нейтрали источника питания с землёй;

· I — все токоведущие части изолированы от земли.

Вторая буква определяет состояние открытых проводящих частей относительно земли:

· T — открытые проводящие части заземлены, независимо от характера связи источника питания с землёй;

· N — непосредственная связь открытых проводящих частей электроустановки с глухозаземленной нетралью источника питания.

Буквы, следующие через чёрточку за N, определяют характер этой связи — функциональный способ устройства нулевого защитного и нулевого рабочего проводников:

· S — функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками;

· C — функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.

Защитная функция заземления

Принцип защитного действия

Защитное действие заземления основано на двух принципах:

· Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

· Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).

Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые ÷ сотые доли секунды — время срабатывания УЗО).

Разновидности систем заземления

Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT. Система TN-C

Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном AEG в 1913 году. Рабочий ноль и PE-проводник (англ. ProtectionEarth) в этой системе совмещены в один провод. Самым большим недостатком была возможность появления фазного напряжения на корпусах электроустановок при аварийном обрыве нуля. Несмотря на это, данная система все еще встречается в постройках стран бывшего СССР.

Система TN-S

Разделение нулей в TN-S и TN-C-S

На замену условно опасной системы TN-C в 1930-х годах была разработана система TN-S (фр.Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Кирхгофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току.

Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако, в случае обрыва нулевого провода до точки разделения, корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.

Система TN-C-S

В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с точкой заземления трансформаторной подстанции. Для обеспечения этой связи на участке трансформаторная подстанция — электроустановки здания применяется совмещенный нулевой защитный и рабочий проводник (PEN), в основной части электрической цепи — отдельный нулевой защитный проводник (PE).

Система TT

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически независимый от заземлителя нейтрали трансформаторной подстанции.

Система IT

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в такой системе будет низким и не повлияет на условия работы присоединенного оборудования. Система IT применяется, как правило, в электроустановках зданий и сооружений специального назначения, к которым предъявляются повышенные требования надежности и безопасности, например в больницах для аварийного электроснабжения и освещения.

Зануление — это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземленной нейтральной точкой генератора или трансформатора, в сетях трехфазного тока; с глухозаземленным выводом источника однофазного тока; с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности. Защитное зануление является основной мерой защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземленной нейтралью.

Принцип действия

Принцип действия зануления

Принцип работы зануления: если напряжение (фаза) попадает на соединенный с нулем металлический корпус прибора, происходит короткое замыкание. Автоматический выключатель, включенный в поврежденную цепь срабатывает от короткого замыкания и отключает линию от электричества. Кроме этого, отключение электричества от линии может выполнять плавкий предохранитель. В любом случае, ПУЭ регламентируют время автоматического отключения поврежденной линии. Для номинального фазного напряжения сети 380/220 В. оно не должно превышать 0,4 с.

mirznanii.com

описание технологии и отличия от заземления

Защитное зануление — система, в которой токопроводящие части оборудования, не находящиеся в норме под напряжением, соединены с нейтралью. В защитных целях преднамеренно создается соединение между открытыми проводящими элементами глухозаземленной нейтрали (в сетях трехфазного тока).

В сетях однофазного тока создают контакт с глухозаземленным выводом источника однофазного тока, а в случае с постоянным током — с глухозаземленной точкой источника тока. Хотя зануление характеризуется серьезными недостатками, система по-прежнему широко применяется во многих сферах для защиты от тока.

к содержанию ↑

Разница между занулением и заземлением

Между занулением и заземлением имеются отличия:

  1. В случае заземления лишний ток и появившееся на корпусе напряжение перенаправляются в грунт. Принцип действия зануления основан на обнулении на щитке.
  2. Заземление более эффективно с точки зрения защиты человека от удара током.
  3. Заземление основано на быстром и значительном уменьшении напряжения. Тем не менее, какое-то (уже неопасное) напряжение остается.
  4. Зануление заключается в создании соединения между металлическими деталями, в которых отсутствует напряжение. Принцип зануления основан на умышленном создании короткого замыкания при пробое изоляции или попадании тока на нетоковедущие части электроустановок. Как только происходит замыкание, в дело вступает автоматический выключатель, перегорают предохранители или срабатывают иные средства защиты.
  5. Заземление чаще всего используют на линиях с изолированной нейтралью в системах типа IT и TT в трехфазных сетях, где напряжение не превышает тысячи вольт. Заземление применяют при напряжении более тысячи вольт с нейтралью в любом режиме. Зануление используют в глухозаземленных нейтралях.
  6. При занулении все элементы электроприборов, не находящиеся в стандартном режиме под напряжением, соединяются с нулем. Если фаза случайно коснется зануленных элементов, резко увеличивается ток и отключается электрооборудование.
  7. Заземление не зависит от фаз электроприборов. Для организации зануления требуется соблюдение жестких условий подключения.
  8. В современных домах зануление применяется редко. Однако этот способ защиты все еще встречается в многоэтажных домах, где по каким-либо причинам нет возможности организовать надежное заземление. На предприятиях, где имеются повышенные нормативы по электробезопасности, основной способ защиты — зануление.

Обратите внимание! Для правильного определения нулевых точек и выбора способа защиты понадобится помощь квалифицированного электрика. Сделать заземление, собрать элементы контура и установить его в грунт можно и своими руками.

к содержанию ↑

Схема работы

Как было сказано выше, зануление основано на провоцировании короткого замыкания после попадания фазы на металлический корпус электроустановки, соединенной с нулем. Так как сила тока возрастает, подключается защитный механизм, отключающий электропитание.

По нормативам Правил установки электроустановок в случае нарушения целостности линии она должна отключаться автоматически. Регламентируется время на отключение — 0,4 секунды (для сетей 380/220В). Для отключения используются специальные проводники. Например, в случае однофазной проводки задействуется третья жила кабеля.

Для правильного зануления важно, чтобы петля фазы-нуля характеризовалась невысоким сопротивлением. Так обеспечивается срабатывание защиты за нужный промежуток времени.

Организация зануления требует высокой квалификации, поэтому такие работы должны выполнять только квалифицированные электрики.

На схеме ниже показан принцип работы системы:

к содержанию ↑

Область применения

Защитное зануление используют в электроустановках с четырехпроводными электросетями и напряжением до 1 кВт в следующих случаях:

  • в электроустановках с глухозаземленной нейтралью в сетях TN-C-S, TN-C, TN-S с проводниками типов N, PE, PEN;
  • в сетях с постоянным током и заземленной средней точкой источника;
  • в сетях с переменным током и тремя фазами с заземленным нулем (220/127, 660/380, 380/220).

Сети 380/220 допускаются в любых сооружениях, где зануление электроустановок обязательно. Для жилых помещений с сухими полами зануление обустраивать не нужно.

Электрооборудование 220/127 используются в специализированных помещениях, где отмечается повышенный риск поражения током. Такая защита необходима в условиях улицы, где занулению подлежат металлические конструкции, к которым прикасаются работники.

к содержанию ↑

Проверка эффективности зануления

Чтобы проверить, насколько действенно зануление, нужно сделать замер сопротивления петли фаза-ноль в наиболее отдаленной от источника электропитания точке. Это даст возможность проверить защищенность в случае воздействия тока на корпус.

Сопротивление измеряется с использованием специализированной аппаратуры. Измерительные приборы оснащены двумя щупами. Один щуп направляют на фазу, второй — на зануленную электроустановку.

По результатам измерений устанавливают уровень сопротивления на петле фазы и нуля. С полученным результатом рассчитывают ток однофазного замыкания, применяя закон Ома. Расчетное значение тока однофазного замыкания должно быть равно или превышать ток срабатывания защитного оборудования.

Предположим, что для предохранения электроцепи от перегрузок и коротких замыканий подключен автомат-выключатель. Ток срабатывания составляет 100 Ампер. По результатам измерений сопротивление петли фазы и нуля равно 2 Ом, а фазовое напряжение в сети — 220 Вольт. Делаем расчет тока однофазного замыкания на основе закона Ома:

I = U/R = 220 Вольт/2 Ом = 110 Ампер.

Поскольку расчетный ток короткого замыкания превышает ток мгновенного срабатывания автомата-выключателя, делаем вывод об эффективности защитного зануления. В противном случае понадобилась бы замена автомата-выключателя на прибор с меньшим током срабатывания. Другой вариант решения проблемы — сокращение сопротивления петли фаза-ноль.

Нередко при проведении расчетов ток срабатывания автомата умножают на коэффициент надежности (Кн) или коэффициент запаса. Причина в том, что отсечка не всегда равна указанному показателю, то есть возможна определенная погрешность. Поэтому использование коэффициента позволяет получить более надежный результат. Для старого оборудования Кн составляет от 1,25 до 1,4. Для новой техники применяется коэффициент 1,1, так как такие автоматы работают с большей точностью.

к содержанию ↑

Опасность зануления в квартире

Скачки напряжения опасны как для людей, так и для бытовой техники в квартирах. В многоквартирных домах одной из квартир достанется низкое напряжение, а другой — высокое. Если в розетке квартиры случится обрыв нулевого проводника, при следующем включении электроустановки (например, бойлера) человека ударит током.

Особенно зануление опасно в двухпроводной системе. К примеру, при проведении электромонтажных работ электрик может заменить нулевой проводник на фазный. В электрощитах эти жилы далеко не всегда обозначены определенным цветом. Если замена произойдет, электрическое оборудование окажется под напряжением.

По нормативам Правил установки электроустановок на бытовом уровне зануление не разрешается для использования в бытовых целях именно по причине его небезопасности. Зануление эффективно только для защиты больших объектов производственного назначения. Однако, несмотря на запрет, некоторые люди решаются на установку зануления в собственном жилье. Происходит это либо по причине отсутствия иных методов решения проблемы, либо из-за недостаточности знаний по данному предмету.

Зануление в квартире технически осуществимо, но эффективность такой защиты непредсказуема, как и возможные негативные последствия. Далее рассмотрим ряд ситуаций, которые возникают при наличии зануления квартире.

к содержанию ↑

Зануление в розетках

В некоторых случаях защиту электроприборов предлагают выполнить путем перемычки клеммы розеточного рабочего нуля на защитный контакт. Такие действия противоречат пункту 1.7.132 ПУЭ, поскольку предполагают задействование нулевого провода двухпроводной электросети в качестве как рабочего, так и защитного нуля одновременно.

На вводе в жилое помещение чаще всего расположено устройство, предназначенное для коммутации фазы и нуля (двухполюсный прибор или так называемый пакетник). Коммутация нуля, используемого как защитный проводник, не допускается. Иными словами, запрещено использовать в качестве защиты проводник, электроцепь которого включает коммутационный аппарат.

Опасность защиты с применением перемычки в розетке состоит в том, что корпуса электроустановок в случае повреждения нуля (независимо от участка) попадают под фазное напряжение. Если нулевой проводник обрывается, электроприемник перестает функционировать. В этом случае провод кажется обесточенным, что провоцирует на необдуманные действия со всеми вытекающими последствиями.

Обратите внимание! При обрыве нуля источником опасности становится любая техника в квартире или в частном доме.

к содержанию ↑

Перепутаны местами фаза и ноль

При проведении электромонтажных работ в двухпроводном стояке своими руками существует немалая вероятность путаницы между нулем и фазой.

В домах с двухпроводной системой жилы кабелей лишены отличительных признаков. При работе с проводами в этажном щитке электрик может попросту ошибиться, перепутав фазу и ноль местами. В результате корпуса электроустановок попадут под фазное напряжение.

к содержанию ↑

Отгорание нуля

Обрыв нуля (отгорание нуля) часто случается в зданиях с плохой проводкой. Чаще всего проводка в таких домах проектировалась, исходя из 2 киловатт на единицу жилья. На сегодняшний день электропроводка в домах старого типа не только износилась физически, но и не способна удовлетворить возросшее количество бытовой техники.

При обрыве нуля дисбаланс возникает на трансформаторной подстанции, от которой питается многоквартирное здание. Перекос возможен в общем электрическом щите здания или в этажном щитке дома. Следствием этого станет беспорядочное понижение напряжения в одних квартирах и повышение — в других.

Низкое напряжение губительно для некоторых видов электробытовой техники, в том числе кондиционеров, холодильников, вытяжек и прочих аппаратов, оснащенных электрическими двигателями. Высокое напряжение представляет опасность для всех видов электроустановок.

к содержанию ↑

Альтернатива занулению

В подсистеме TN-S зануление защитного проводника PE осуществляется лишь на одном участке — на контуре заземления трансформаторной подстанции или электрогенератора. В этой точке разделяется PEN-проводник, и далее защита и рабочий ноль нигде не встречаются.

В такой схеме энергоснабжения заземление и зануление органично взаимодействуют, создавая условия для высокой электробезопасности. Однако в системах, где нейтраль изолирована (IT, TT), зануление не используется. Электрическое оборудование, работающее в рамках системы TT и IT, заземляется за счет собственных контуров. Так как система IT предполагает подачу питания только специфическим потребителям, рассматривать такой способ организации защиты в жилых домах не имеет смысла. Единственная альтернатива неправильному, а потому опасному занулению шины PE — система TT. Особенно актуальна такая система, потому что переход на технически прогрессивные системы TN-S, TN-C-S технически и финансово затруднен для домов, чей возраст превышает 20 – 25 лет.

Электрическая сеть, построенная по стандарту TT, призвана обеспечивать качественную защиту от попадания под напряжение нетоковедущих частей. Все работы по организации зануления должны осуществляться в соответствии с нормами, указанными в пункте 1.7.39 Правил установки электроустановок.

Защитное зануление: описание технологии и отличия от заземления

220.guru

Заземление и зануление электроустановок | Electricdom.ru

Заземление электроустановки — преднамеренное электрическое соединение ее корпуса с заземляющим устройством.

Заземление электроустановок бывает двух типов: защитное заземление и зануление, которые имеют одно и тоже назначение — защитить человека
от поражения электрическим током, если он прикоснулся к корпусу элекроустановки или других ее частей, которые оказались под напряжением.

Защитное заземление — преднамеренное электрическое соединение части электроустановки с заземляющим устройством с целью обеспечения электробезопасности. Предназначено для защиты человека от прикосновения к корпусу электроустаноувки или других ее частей, оказавшихся под напряжением. Чем ниже сопротивление заземляющего устройства, тем лучше. Чтобы воспользоваться преимуществами заземления, надо купить розетки с заземляющим контактом.

В случае возникновения пробоя изоляции между фазой и корпусом электроустановки корпус ее может оказаться под напряжением. Если к корпусу в это время прикоснулся человек — ток, проходящий через человека, не представляет опасности, потому что его основная часть потечет по защитному заземлению, которое обладает очень низким сопротивлением. Защитное заземление состоит из заземлителя и заземляющих проводников.

Есть два вида заземлителейестественные и искусственные.

К естественным заземлителям относятся металлические конструкции зданий, надежно соединенные с землей.

В качестве искусственных заземлителей используют стальные трубы, стержни или уголок, длиной не менее 2,5 м, забитых в землю и соединенных друг с другом стальными полосами или приваренной проволокой. В качестве заземляющих проводников, соединяющих заземлитель с заземляющими приборами обычно используют стальные или медные шины, которые либо приваривают к корпусам машин, либо соединяют с ними болтами. Защитному заземлению подлежат металлические корпуса электрических машин, трансформаторов, щиты, шкафы.

Защитное заземление значительно снижает напряжение, под которое может попасть человек. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление. При повреждении изоляции ток замыкания протекает по корпусу электроустановки, заземлителю и далее по земле к нейтрали трансформатора, вызывая на их сопротивлении падение напряжения, которое хотя и меньше 220 В, но может быть ощутимо для человека. Для уменьшения этого напряжения необходимо принять меры к снижению сопротивления заземлителя относительно земли, например, увеличить количество искусcтвенных заземлителей.

Зануление — преднамеренное электрическое соединение частей электроустановки, нормально не находящихся под напряжением с глухо заземленной нейтралью с нулевым проводом. Это приводит к тому, что замыкание любой из фаз на корпус электроустановки превращается в короткое замыкание этой фазы с нулевым проводом. Ток в этом случае возникает значительно больший, чем при использовании защитного заземления. Быстрое и полное отключение поврежденного оборудования — основное назначение зануления.

Различают нулевой рабочий проводник и нулевой защитный проводник.

Нулевой рабочий проводник служит для питания электроустановок и имеет одинаковую с другими проводами изоляцию и достаточное сечение для прохождения рабочего тока.

Нулевой защитный проводник служит для создания кратковременного тока короткого замыкания для срабатывания защиты и быстрого отключения
поврежденной электроустановки от питающей сети. В качестве нулевого защитного провода могут быть использованы стальные трубы электропроводок и нулевые провода, не имеющие предохранителей и выключателей.

Обозначения системы заземления

Cистемы заземления различаются по схемам соединения и числу нулевых рабочих и защитных проводников.

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

T — непосредственное соединения нейтрали источника питания с землёй.

I — все токоведущие части изолированы от земли.

Вторая буква в обозначении системы заземления определяет характер заземления открытых проводящих частей электроустановки здания:

T — непосредственная связь открытых проводящих частей электроустановки здания с землёй, независимо от характера связи источника питания с землёй.

N — непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания.

Буквы, следующие через чёрточку за N, определяют способ устройства нулевого защитного и нулевого рабочего проводников:
C — функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.
S — функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками.

Основные системы заземления

1. Система заземления TN-C

К системе TN-C относятся трехфазные четырехпроводные (три фазных проводника и PEN- проводник, совмещающий функции нулевого рабочего и нулевого защитного проводников) и однофазные двухпроводные (фазный и нулевой рабочий проводники) сети зданий старой постройки. Эта система простая и дешевая, но она не обеспечивает необходимый уровень электробезопасности.

2. Система заземления TN-C-S

В настоящее время применение системы TN-C на вновь строящихся и реконструируемых объектах не допускается. При эксплуатации системы TN-C в
здании старой постройки, предназначенном для размещения компьютерной техники и телекоммуникаций, необходимо обеспечить переход от системы TN-C к системе TN-S (TN-C-S).

Система TN-C-S характерна для реконструируемых сетей, в которых нулевой рабочий и защитный проводники объединены только в части схемы, во вводном устройстве электроустановки (например, вводном квартирном щитке). Во вводном устройстве электроустановки совмещенный нулевой защитный и рабочий проводник PEN разделен на нулевой защитный проводник PE и нулевой рабочий проводник N. При этом нулевой защитный проводник PE соединен со всеми открытыми токопроводящими частями электроустановки. Система TN-C-S является перспективной для нашей страны, позволяет обеспечить высокий уровень электробезопасности при относительно небольших затратах.

3. Система заземления TN-S

В системе TN-S нулевой рабочий и нулевой защитный проводники проложены отдельно. С подстанции приходит пяти жильный кабель. Все открытые проводящие части электроустановки соединены отдельным нулевым защитным проводником PE. Такая схема исключает обратные токи в проводнике РЕ, что снижает риск возникновения электромагнитных помех. Хорошим вариантом для минимизации помех является пристроенная трансформаторная подстанция (ТП), что позволяет обеспечить минимальную длину проводника от ввода кабелей электроснабжения до главного заземляющего зажима. Система TN-S при наличии пристроенной подстанции не требует повторного заземления, так как на этой подстанции имеется основной заземлитель. Такая система широко распространена в Европе.

4. Система заземления TT

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически не зависимый от заземлителя нейтрали трансформаторной подстанции.

5. Система заземления IT

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в будет низким и не повлияет на условия работы присоединенного оборудования. Такая система используется, как правило, в электроустановках зданий, к которым предъявляются повышенные требования по безопасности.

Схема контурного заземления

1. Заземлители
2. Заземляющие проводники
3. Заземляемое оборудование
4. Производственное здание.

Пример схемы заземления дома

1. Водонагреватель
2. Заземлитель молниезащиты
3. Металлические трубы
водопровода, канализации, газа
4. Главная заземляющая шина

5. Естественный заземлитель (арматура фундамента здания)

Меры для защиты от поражения электрическим током

Для защиты человека от поражения электрическим током применяют защитные средства — резиновые перчатки, инструмент с изолированными ручками,
резиновые боты , резиновые коврики, предупредительные плакаты.

Контроль изоляции проводов

Для предупреждения несчастных случаев от поражения электрическим током необходимо контролировать состояние изоляции проводов электроустановок. Состояние изоляции проводов проверяют в новых установках, после реконструкции, модернизации, длительного перерыва в работе.
Профилактический контроль изоляции проводов проводят не реже 1 раза в 3 года. Сопротивление изоляции проводов измеряют мегаомметрами на номинальное напряжение 1000 В на участках при снятых плавких вставках и при выключенных токоприемниках между каждым фазным проводом и нулевым рабочим проводом и между каждыми двумя проводами. Сопротивление изоляции должно быть не меньше 0,5 Мом.

www.electricdom.ru

Заземление и зануление электроустановок: виды, достоинства и недостатки

Любая электроустановка состоит не только из проводников электрического тока. Они помещаются в корпуса и оболочки, закрыты кожухами. Между токоведущими частями корпусами, в которых они находятся или на которых расположены, размещаются изоляционные материалы.

Все изоляторы подвержены способности повреждаться. При этом они теряют свои свойства и начинают проводить электрический ток. Потенциал рабочих частей электроустановки, находящихся под напряжением, проникает через место повреждения на токопроводящие корпуса и оболочки. При прикосновении к ним человека последний получает опасный для жизни удар электрическим током.

Способы защиты от опасных потенциалов

Ситуацию с повреждением междуфазной изоляции электрооборудования мгновенно пресекают защитные устройства: автоматические выключатели или предохранители. Но она лишь косвенно представляет опасность для человека.

Опаснее для людей как раз однофазное замыкание, в результате которого корпуса электродвигателей, электрошкафов, кабельных конструкций оказываются под напряжением.

Чтобы исключить риск поражения электротоком, нужно, чтобы при попадании напряжения на корпус произошло гарантированное короткое замыкание и потенциал на корпусе был максимально снижен.

Первое защитное действие достигается созданием цепи между корпусом и заземленной нейтралью электроустановки. При замыкании возникает ток, достаточно большой для срабатывания тех же защитных аппаратов, работающих при междуфазных замыканиях. Это называется защитным отключением.

Для реализации второго метода всем потенциально опасным металлическим частям электрооборудования придают потенциал земли. Делается это преднамеренным их соединением с заземляющим устройством. Мероприятие носит название – защитное заземление.

Системы заземления электроустановок до 1000 В получили в 7-м издании ПУЭ классификацию. Рассмотрим эти системы по очереди.

Система заземления TN-C

В этой конструкции нет ничего нового. Она была такой долгие годы.

Для питания потребителей в ней используется 4 провода. Три из них – фазные, один – нулевой. По последнему протекает рабочий ток нагрузки. Но он же используется и для реализации защитных целей, соединяясь с контуром заземления нейтрали силового трансформатора, питающего электроустановки. К нему же присоединяются и корпуса электрооборудования. Называется он проводником PEN. Из-за того, что в нем сочетаются функции защиты и транспортировки рабочего тока к месту назначения, он получил название «совмещенный проводник».

В итоге реализуются обе задачи: ток замыкания на землю высок – отключение поврежденного участка происходит достаточно быстро. К тому же при повреждении малое сопротивление PEN-проводника шунтирует тело прикоснувшегося к корпусу человека, имеющее сопротивление порядка килоома. Большая часть тока стекает в землю.

Но по PEN-проводнику протекает рабочий ток нагрузки. Контактные соединения от этого могут нарушиться, соединение – стать ненадежными или прерваться вовсе.

Так исчезает столь необходимая связь с заземляющим устройством.

Даже, если имеется повторное заземление PEN-проводника на вводе в здание.

Мало того, наличие тока в этом проводнике приводит к возникновению потенциала, увеличивающегося по мере удаления от точки связи с контуром заземления.

А при обрыве проводника PEN картина и вовсе ужасающая. Потенциал на корпусах за местом обрыва может теоретически достигнуть и 220 В.

Добавим ко всему этому технологически трудную реализацию соединения корпусов некоторых электроприемников с PEN. Как заземлить корпус электроплитки, подключаемой к сети через розетку?

Развитие бытовых электроприборов, требующих применения защитных мер по электробезопасности, привело к усовершенствованию системы TN-C. Подробнее о системе TN-C можно почитать в отдельной статье.

Система заземления TN-S

Отличие от предыдущей рассмотренной системы заземления в том, что функции рабочего-нулевого и защитного проводника разделены в разных физических проводниках. Нулевой рабочий (N) – проводит ток нагрузки, нулевой защитный (РЕ) – подключается к контуру заземления.

В результате происходит полное избавление от потенциала на корпусах, появляющихся в «особо отдаленных районах» электрической сети, а также – при обрывах проводников. Максимум, что грозит при отсутствии целостности проводника РЕ – отсутствие защиты. Но оборваться у него шансов немного – ток-то по нему не протекает, с чего бы вдруг потеряться выполненным по всем электрическим правилам контактным соединениям?

Поскольку сечение РЕ-проводников в составе кабельных линий обычно оказывается равным сечению фазных, упростилась задача присоединить их к корпусам любого электрооборудования.

Даже к заземляющему контакту розетки. Что позволило распространить защитные меры безопасности на все бытовые электроприборы: на ту же электроплитку, в частности.

Правда, в силовые кабельные линии добавилась лишняя жила. Ну что же – за безопасность надо платить.

Все вновь монтируемые электроустановки теперь, как правило, выполняются по этой системе заземления.

Подробнеео системе TN-S можно почитать в отдельной статье.

Система заземления TN-C-S.

Существенной проблемой при реализации системы TN-S является то, что реконструкция электроустановок и строительство новых происходит зачастую без реконструкции самой трансформаторной подстанции. Обычно переделывается какая-то ее часть, начиная от распределительного щита на вводе до последнего потребителя. До этого щитка система заземления неизбежно сохраняет старую конструкцию.

Эта проблема заранее решена тем же самым пунктом ПУЭ, описывающим переходной вариант системы заземления, обозначенный, как TN-C-S. В нем нетронутая реконструкцией часть электроустановки вполне себе официально не меняет своей структуры, оставаясь то же TN-C. А вот с некоторой точки распределительная сеть выполняется по новым правилам.

Суть в разделении проводника PEN на два: рабочий и защитный.

Выполняется это во вводном распределительном устройстве. В нем устанавливается две распределительных шинки: N и РЕ. Проводник PEN в обязательном порядке присоединяется к РЕ, а между самими шинками монтируется перемычка.

Подробнее о системе TN-C-S можно почитать в отдельной статье.

Почему к РЕ?

Если перемычка между шинами оборвется (этого нельзя исключать ни в коем случае), то при таком способе соединения нулевая рабочая шина потеряет связь с нейтралью электроустановки. При этом возможны тяжелые последствия для электрооборудования – но соединение с защитной шиной не пострадает, люди останутся в безопасности.

К тому же не заметить сей факт обрыва невозможно. Его сразу побегут искать.

При обратной же схеме коммутации обрыв перемычки заметят разве что при плановых измерениях целостности защитной цепи. А за это время люди останутся без защиты – корпуса «повиснут в воздухе». Хорошо бы, если так.

Предоставленная сама себе сеть из соединенных между собой защитных проводников таит не меньшую опасность, чем при обрыве PEN-проводника система TN-C.

Блоки питания бытовой аппаратуры (компьютеров или стиральных машин, к примеру) и полупроводниковые ПРА люминесцентных ламп при отсутствии соединения их корпусов с заземляющим устройством выдают на них потенциал порядка 110 В через конденсаторы входного помехоподавляющего фильтра блока питания. Он распространяется по всей сети, появляясь на прочих металлических частях, соединенных с РЕ-проводником.

Не стоит забывать о том, что эта система унаследовала от TN-C ее главные недостатки: потенциал на PEN-проводнике и опасные напряжения на нем при его обрыве. Главный метод борьбы с ними – собственный контур повторного заземления, вывод от которого присоединяется к шине РЕ вводного щитка.

Но есть и другие системы заземления, использующиеся в частных случаях для защиты людей.

Система заземления ТТ

В предыдущих системах все заземляющие устройства соединяются в единую цепь проводниками PEN или (и) РЕ. В системе ТТ потребитель имеет свой собственный контур заземления, не связанной с проводником PEN питающей линии. Все его электрооборудование связано с этим контуром проводниками РЕ.

Таким образом, исчезают проблемы с возможным обрывом питающего потребителя PEN- проводника. Он используется как нулевой рабочий и никак не связан с корпусами.

Защита с помощью предохранителей и автоматических выключателей у потребителя работает только на устранение междуфазных замыканий, а также – между фазой и нулевым проводником.

Мерой же для защитного отключения служит обязательная установка УЗО у потребителя.

Внедрение этого метода заземления имеет показания к применению и при большой протяженности питающих линий, когда повышенное сопротивление петли фаза-нуль не позволяет произвести защитное отключение в нормируемое время.

Подробнеео системе TT можно почитать в отдельной статье.

Система заземления IT

А здесь нулевой проводник отсутствует вовсе, так как эта система – с изолированной нейтралью. Подключение нагрузки возможно только на линейные напряжения сети.

Ничего опасного для потребителя при возникновении повреждения одной фазы на корпус не происходит. Ток замыкания на землю ничтожен и не принесет организму особого вреда.

А для ликвидации опасных по величине токов все линии защищают УЗО в обязательном порядке.

Но для фиксации замыканий на землю в таких сетях устанавливаются специальные элементы – реле утечки. При его срабатывании повреждение требуется активно поискать. А при возникновении второго замыкания участок сети с повреждением подлежит немедленному отключению.

pue8.ru

Заземление и зануление электроустановок

Вся наша жизнь неотделима от всевозможных электрических приборов. Выход из строя любого электрооборудования – это частое и вполне нормальное явление, ни одно устройство не может работать вечно и без единого сбоя. Наша задача — обезопасить этих электрических помощников от короткого замыкания или возникающих в цепи перегрузок, а себя – от повреждения организма высоким напряжением. В первом случае на помощь приходят всевозможные защитные аппараты, а вот для  защиты человека применяется заземление и зануление электроустановок. Это одна из самых сложных частей электрики, но мы попробуем разобраться, в чем же различие этих работ, и в каких случаях нужно применять те или иные защитные меры.

Если автоматы, пробки и другие защитные устройства не срабатывают на возникшую неисправность, и в результате образуется пробой внутренней изоляции, на металлическом корпусе установки возникает повышенное напряжение.  Касание человеком такого прибора может привести к параличу мышц (при силе тока 20-25 мА), препятствующему самостоятельному отрыву от контакта, аритмии, нарушениям тока крови (при 50-100 мА) и даже летальному исходу.

Если части электроустановки в силу технических особенностей должны находиться под напряжением, то их  обязательно ограждают в соответствии с общепринятой техникой безопасности, например, специальными кожухами, барьерами или сетчатыми заграждениями. Для того чтобы предотвратить случайное поражение током при повреждении изоляционных слоев, применяется защитное заземление и зануление. Чтобы понять, чем отличается заземление от зануления, нужно знать, что они собой представляют.

Часто начинающие электрики не совсем понимают, в чем же заключается отличие зануления от заземления. Заземление – это соединение электроустановки с землей с целью снижения напряжения прикосновения до минимума. Оно применяется только в сетях с изолированной нейтралью. В результате установки заземляющего оборудования большая часть тока, поступающая на корпус, должна уйти по заземляющей части, сопротивление которой должно быть меньше остальных участков цепи.

Но это не единственная функция заземления. Защитное заземление электроустановок еще и способствует увеличению аварийного тока замыкания, как бы это ни противоречило его назначению. При использовании заземлителя с высоким значением сопротивления ток замыкания может быть слишком мал для срабатывания защитных устройств, и установка в аварийной ситуации останется под напряжением, представляя огромную опасность для человека и животных.

[include id=»1″ title=»Реклама в тексте»]

Заземлитель с  проводниками образует заземляющее устройство, где он, по сути, и есть проводник (группа проводников), соединяющий токопроводящие части установок с землей. По назначению эти устройства разделяются на следующие группы:

  • грозозащитные, для отвода импульсного тока молнии. Применяются для заземления молниеотводов и разрядников;
  • рабочие, для поддержания необходимого режима работы электроустановок, как в нормальных, так и в аварийных ситуациях;
  • защитные, для предотвращения повреждения живых организмов электрическим током, возникающим при пробое фазного провода на металлический корпус устройства.

Все заземлители делятся на естественные и искусственные.

  1. Естественные – это трубопроводы, металлоконструкции железобетонных сооружений, обсадные трубы и другие.
  2. Искусственные заземлители – это конструкции, сооружаемые специально  для этой цели, то есть стальные стержни и полосы, уголковая сталь, некондиционные трубы и другое.

Важно: для использования в качестве естественного заземления не подходят трубопроводы горючих жидкостей и газов, трубы, покрытые антикоррозийной изоляцией, алюминиевые проводники и оболочки кабелей. Категорически запрещается использовать в качестве заземляющих проводников в жилых помещениях водопроводные и отопительные трубы.

В зависимости от схемы соединения и количества нулевых защитных и рабочих проводником можно выделяются следующие системы заземления электроустановок:

Первая буква в названии системы говорит о типе заземления источника питания:

  • I – токоведущие части полностью изолированы от земли;
  • T – нейтраль источника питания соединяется с землей.

По второй букве можно определить, каким образом заземлены открытые проводящие части электроустановки:

  • N – непосредственная связь с точкой заземления источника питания;
  • T – непосредственная связь с землей.

Буквы, стоящие сразу за N, через дефис, говорят о способе устройства защитного PE и рабочего N нулевых проводников:

  • C – функции проводников обеспечиваются одним проводником PEN;
  • S – функции проводников обеспечиваются разными проводниками.

Устаревшая система TN-C ↑

Такое заземление электроустановок используется в трехфазных четырехпроводных и однофазных двухпроводных сетях, которые преобладают в зданиях старого образца. К сожалению, эта система, несмотря на свою простоту и доступность, не позволяет достичь высокого уровня электробезопасности и на вновь строящихся зданиях не применяется.

Для модернизации старых домов TN-C-S ↑

Защитное заземление электроустановок такого типа используется преимущественно в реконструируемых сетях, где рабочий и защитный проводники объединены во вводном устройстве схемы. Другими словами, эта система используется в том случае, если в старом здании, где эксплуатируется заземление типа TN-C, планируется расположить компьютерную технику или другие телекоммуникации, то есть для осуществления перехода к системе TN-S. Эта относительно недорогая схема отличается высоким уровнем безопасности.

Система TN-C-S позволяет перейти от устаревшей TN-C к TN-S

Специфика системы TN-S ↑

Такая система отличается расположением нулевого и рабочего проводников. Здесь они прокладываются отдельно, причем нулевой защитный проводник PE соединяет сразу все токопроводящие части электроустановки. Чтобы избежать повторного заземления, достаточно устроить трансформаторную подстанцию, имеющую основное заземление. К тому же такая подстанция позволяет добиться минимальной длины проводника от входа кабеля в электроустановку до заземляющего устройства.

Система TN-S:
1. Заземлитель;
2. Токопроводящие части установки.

Система TT, особенности ↑

Система, где все токоведущие открытые части непосредственно связаны с землей, причем заземлители электроустановки не имеют электрической зависимости от заземлителя нейтрали подстанции, получила название TT.

Система заземления TT отличается наличием заземлителей на каждую токопроводящую часть установки

Характерные отличия системы IT ↑

Отличием этой системы является изоляция нейтрали источника питания от земли или ее заземление через устройства с большим сопротивлением. Такой способ позволяет максимально снизить ток утечки на корпус или в землю, поэтому его лучше использовать в зданиях, где установлены жесткие требования по электробезопасности.

Система IT:
1. Сопротивление заземления нейтрали источника питания.
2. Заземлитель.
3. Открытые токопроводящие части.
4. Заземляющее устройство.

Зануление – это соединение металлических частей, не находящихся под напряжением, либо с заземленной нейтралью понижающего источника трехфазного тока, либо с заземленным выводом генератора однофазного тока. Используется для того, чтобы при пробое изоляции и попадании тока на любую нетоковедущую часть устройства, происходило короткое замыкание, приводящее к быстрому срабатыванию автоматического выключателя, перегоранию плавких предохранителей или реакции прочих систем защиты. В основном применяется в электроустановках с глухозаземленной нейтралью.

Принципиальная схема зануления электроустановок

Дополнительная установка УЗО в линию приведет к его срабатыванию в результате разности сил тока в фазном и нулевом рабочем проводе. Если будут установлены и УЗО, и автоматический выключатель, то пробой приведет к срабатыванию либо обоих устройств, либо к включению более быстродействующего элемента.

Важно: При установке зануления необходимо учитывать, что ток короткого замыкания обязательно должен достигать значения плавления вставки предохранителя или отключения автоматического выключателя, иначе свободное протекание тока замыкания по цепи приведет к возникновению напряжения на всех зануленных корпусах, а не только на поврежденном участке. Причем значение этого напряжения будет равно произведению сопротивления нулевого проводника на ток замыкания, а значит  чрезвычайно опасным для человеческой жизни.

За исправностью нулевого провода необходимо следить самым тщательным образом. Его обрыв приводит к появлению напряжения на всех зануленных корпусах, так как они автоматически оказываются подключенными к фазе. Именно поэтому категорически запрещается монтаж в нулевой провод любых средств защиты (выключателей или предохранителей), образующих его разрыв при срабатывании.

Для того чтобы уменьшить вероятность повреждения током при обрыве нулевого провода, через каждые 200 м линии выполняются повторные заземления. Такие же меры принимаются на концевых и вводных опорах. Сопротивление каждого повторного заземлителя не должно превышать 30 Ом, а общее сопротивление всех таких заземлений – 10 Ом.

Главная разница между занулением и заземлением заключается в том, что при заземлении безопасность обеспечивается быстрым снижением напряжения тока, а при занулении – отключением участка цепи, в котором случился пробой тока на корпус или любую другую часть электроустановки, при этом в промежуток времени между замыканием и прекращением подачи питания происходит снижение потенциала корпуса электроустановки, в противном случае через тело человека пройдет разряд электрического тока.

Электрическая схема заземления и зануления

Во всех электроустановках, где нейтраль изолирована, обязательно выполняется защитное заземление, а также должна предусматриваться возможность быстрого поиска замыканий на землю.

Если устройство имеет глухозаземленную нейтраль, а его напряжение менее 1000 В, то можно применять только  зануление. При оснащении такой электроустановки разделяющим трансформатором, вторичное напряжение должно быть не более 380 В, понижающим – не более 42 В. При этом от разделяющего трансформатора разрешается питать только один электроприемник с номинальным током защитного устройства не более 15 А. В этом случае запрещается заземление или зануление вторичной обмотки.

[include id=»2″ title=»Реклама в тексте»]

Если нейтраль трехфазной сети до 1000 В изолирована, то такие электроустановки должны иметь защиту от пробоя в результате повреждения изоляции между обмотками трансформатора и пробивной предохранитель, который монтируется в нейтраль или фазу со стороны нижнего напряжения.

Защитное заземление и зануление электроустановок необходимо проводить в следующих случаях:

  1. При переменном номинальном напряжении свыше 42 В и постоянном номинальном свыше 110 В особо опасных и наружных установках.
  2. При переменном напряжении свыше 380 В и постоянном свыше 440 В в любых электроустановках.

Заземляются корпуса электроустановок, приводы аппаратов, каркасы и металлические конструкции распределительных шкафов и щитов, вторичные обмотки трансформаторов, металлические оболочки кабелей и проводов, кабельные  конструкции, шинопроводы, короба, тросы, стальные трубы электропроводки и электрооборудование, расположенное на движущихся частях механизмов.

В жилых и общественных зданиях обязательно подлежат занулению (заземлению) электроприборы мощностью свыше 1300 Вт. Если подвесные потолки выполнены из металла, то необходимо заземлить все металлические корпуса осветительных приборов. Ванны и душевые поддоны, выполненные из металла, должны соединяться с водопроводными трубами металлическими проводниками. Делается это для выравнивания электрических потенциалов. Для заземления корпусов кондиционеров воздуха, электроплит и других электроприборов, мощность которых превышает 1300 Вт, применяется отдельный проводник, присоединяемый к нулевому проводнику сети питания. Его сечение и сечение фазного провода, проложенного от распределительного щита, должны быть равными.

Для выравнивания электрических потенциалов ванну следует обязательно замкнуть на водопроводные трубы

С полным перечнем оборудования, требующего заземления или зануления, а также устройств, где наоборот, допускается пренебречь этими защитными мероприятиями, можно ознакомиться в ПУЭ (Правилах устройства электроустановок). Здесь же можно найти все основные правила заземления электроустановок.

Устройство заземления и зануления  — это весьма ответственная работа. Малейшая ошибка в расчетах или пренебрежение, казалось бы, одним незначительным требованием может привести к большой трагедии. Выполнять заземление обязаны только люди, имеющие необходимые знания и опыт работы.

strmnt.com

Что такое защитное заземление и зануление?

Для обеспечения защиты людей при прикосновении к металлическим нетоковедущим частям, которые могут по каким-либо причинам оказаться под напряжением, наряду с другими средствами применяются защитное заземление и зануление.

Согласно ГОСТ 12.1.009-76 «Система стандартов безопасности труда. Электробезопасность. Термины и определения» защитное заземление — преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Назначение защитного заземления — устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т. е. при замыкании на корпус.

Защитному заземлению подлежат металлические нетоковедущие части электрооборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей и животных.

Принцип действия защитного заземления — снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасного значения.

Следует отметить, что в техническом кодексе установившейся практики «Электроустановки на напряжение до 750 кВ. Линии электропередачи воздушные и токопроводы, устройства распределительные и трансформаторные подстанции, установки электросиловые и аккумуляторные, электроустановки жилых и общественных зданий. Правила устройства и защитные меры электробезопасности. Учет электроэнергии. Нормы приемо-сдаточных испытаний», утвержденном постановлением Министерства энергетики Республики Беларусь от 23 августа 2011 г. № 44, дается определение не только термину «заземление», но и производным от него терминам:

заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством;

заземление защитное — заземление, выполненное в целях электробезопасности;

заземление функциональное (рабочее, технологическое) — заземление точки или точек системы, или установки, или электрооборудования в целях, отличных от целей электробезопасности.

Согласно ГОСТ 12.1.009-76 «Система стандартов безопасности труда. Электробезопасность. Термины и определения» зануление — преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Назначение зануления — устранение опасности поражения людей током при пробое на корпус.

Принцип действия зануления — превращение замыкания на корпус в однофазное короткое замыкание (т. е. замыкание между фазным и нулевым проводами) с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым автоматически отключить поврежденную установку от питающей сети. Такой защитой могут быть плавкие предохранители, магнитные пускатели со встроенной тепловой защитой, контакторы в сочетании с тепловыми реле, автоматы, осуществляющие защиту одновременно от токов короткого замыкания и от перегрузки.

Занулению подлежат металлические конструктивные нетоковедущие части электрооборудования, которые должны быть заземлены: корпуса машин, аппаратов и др. В сети с занулением корпус приемника нельзя заземлять, не присоединив его к нулевому защитному проводу.

www.ohranatruda.of.by

Оставить комментарий

avatar
  Подписаться  
Уведомление о