Формула расчета падения напряжения – в кабеле при питании нагрузок шлейфом

в кабеле при питании нагрузок шлейфом


Расчет падения напряжения при питании потребителей по радиальным схемам достаточно прост. Один участок, одно сечение кабеля, одна длина, один ток нагрузки. Подставляем эти данные в формулу и получаем результат.

При питании потребителей по магистральным схемам (шлейфом) расчет падения напряжения выполнить сложнее. Фактически, приходится выполнять несколько расчетов падения напряжения для одной линии: нужно выполнять расчет падения напряжения для каждого участка. Дополнительные сложности возникают при изменении потребляемой мощности электроприемников, запитанных по магистральной схеме. Изменение мощности одного электроприемника отражается на всей цепочке.

Насколько часто на практике встречается питание по магистральным схемам и шлейфом? Примеров привести можно много:

  • В групповых сетях — это сети освещения, розеточные сети.
  • В жилых домах этажные щиты запитаны по магистральным схемам.
  • В промышленных и коммерческих зданиях также часто применяются магистральные схемы питания и питания шлейфом щитов.
  • Шинопровод является примером питания потребителей по магистральной схеме.
  • Питание опор наружного освещения дорог.

Рассмотрим расчет падения напряжения на примере наружного освещения.

Предположим, что нужно выполнить расчет падения напряжения для четырёх столбов наружного освещения, последовательно запитанных от щита наружного освещения ЩНО.

Длина участков от щита до столба, между столбами: L1, L2, L3, L4.
Ток, протекающий по участкам: I1, I2, I3, I4.
Падение напряжения на участках: dU%1, dU%2, dU%3, dU%4.
Ток, потребляемый светильниками на каждом столбе, Ilamp.

Столбы запитаны шлейфом, соответственно:

  • I4=Ilamp
  • I3=I4+Ilamp
  • I2=I3+Ilamp
  • I1=I2+Ilamp

Ток, потребляемый лампой, неизвестен, зато известна мощность лампы и её тип (либо из каталога, либо по п.6.30 СП 31-110-2003).

Ток определяем по формуле:

Формула расчета полного фазного тока

Iф — полный фазный ток
P — активная мощность
Uф — фазное напряжение
cosφ — коэффициент мощности
Nф — число фаз (Nф=1 для однофазной нагрузки, Nф=3 для однофазной нагрузки)

Напомню, что линейное (междуфазное) напряжение больше фазного напряжения в √3 раз:

При расчете падения напряжения в трехфазной сети подразумевают падение линейного напряжения, в однофазных — однофазного.

Расчет падения напряжения выполняется по формулам:

Формула расчета падения напряжения в трехфазной цепи


Формула расчета падения напряжения в однофазной цепи

Iф — полный фазный ток, протекающий по участку
R — сопротивление участка
cosφ — коэффициент мощности

Сопротивление участка рассчитывается по формуле

ρ — удельной сопротивление проводника (медь, алюминий)
L — длина участка
S — сечение проводника
N — число параллельнопроложенных проводников в линии

Обычно в каталогах приводят удельные значения сопротивления для различных сечений проводников

При наличии информации об удельных сопротивлениях проводников формулы расчета падения напряжения принимают вид:

Формула расчета падения напряжения в трехфазной цепи


Формула расчета падения напряжения в однофазной цепи

Подставляя в формулу соответствующие значения токов, удельных сопротивлений, длины, количества параллельнопроложенных проводников и коэффициента мощности, вычисляем величину падения напряжения на участке.

Нормативными документами регламентируется величина относительного падения напряжения (в процентах от номинального значения), которая рассчитывается по формуле:

U — номинальное напряжение сети.

Формула расчета относительного падения напряжения одинакова для трехфазной и однофазной сети. При расчете в трехфазной сети нужно подставлять трехфазное падение и номинальное напряжения, при расчете в однофазной сети — однофазные:

Формула расчета относительного падения напряжения в трехфазной сети


Формула расчета относительного падения напряжения в однофазной сети

С теорией закончено, рассмотрим, как это реализовать с использованием DDECAD.

Примем следующие исходные данные:

  • Мощность лампы 250Вт, cosφ=0,85.
  • Расстояние между столбами, от щита до первого столба L1=L2=L3=L4=20м.
  • Питание столбов осуществляется медным кабелем 3×10.
  • Ответвление от питающего кабеля до лампы выполнено кабелем 3×2,5, L=6м.

Для каждого столба в программе DDECAD создаём расчетную таблицу.

Заполняем данные для лампы в каждой расчетной таблице:

Подключаем к расчетной таблице Столб 3 расчетную таблицу Столб 4, к Столб 2 — Столб 3, к Столб 1 — Столб 2, к ЩНО — Столб 1:

Далее, из расчетной таблицы ЩНО рассчитанное программой значение падения напряжения в конце первого участка (Столб 1) переносим в зелёную ячейку расчетной таблицы Столб 1:

Переносить значения следует делая ссылку на ячейку расчетной таблицы вышестоящего щита. В случае Столб 1 и ЩНО это делается так:

  1. В расчетной таблице Столб 1 курсор устанавливают на зелёную ячейку в столбике «∆U».
  2. Нажимают «=».
  3. Переключаются на расчетную таблицу ЩНО.
  4. Устанавливают курсор на ячейку в столбике «∆U∑», находящуюся в строке Столб 1.
  5. Нажимают «Enter».

Получаем рассчитанное значение падения напряжения в конце второго участка (Столб 2) — 0,37% и рассчитанное падение напряжения на лампе — 0,27%.

Аналогично делаем для всех остальных расчетных таблиц и получаем рассчитанные значения падения напряжения на всех участках.
Так как мы выполнили связывание таблиц (средствами программы, подключая одну таблицу к другой, и вручную, перенося значения падения напряжения), то получили связанную систему. При внесении любых изменений всё будет

автоматически пересчитано.


Подпишитесь и получайте уведомления о новых статьях на e-mail

Читайте также:

ddecad.ru

Падение напряжения: расчет, формула, как найти

Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.

Мнемоническая диаграмма для закона Ома

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение  происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Закон Ома для участка цепи

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.

Падение напряжения на резисторе

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Пример калькулятора для автоматизации вычислений

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.

Таблица значений индуктивных сопротивлений

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Формула расчета

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Пример таблицы

Потери напряжения определены следующей формулой:

ΔU = ΔUтабл * Ма;

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

Однолинейная схема линии трехфазного тока

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

rusenergetics.ru

Расчет напряжения электропитания на потребителя, определение напряжения на нагрузке

Падение напряжения в электрической сети может стать настоящей проблемой с приобретением современных мощных электроприборов. Чаще всего от этого страдают жильцы старых многоквартирных и частных домов, проводка в которых проложена 20, а то и 30 лет назад. Для энергопотребителей тех времен сечения кабеля было вполне достаточно, однако сегодня практически все пользователи полностью перешли на электрическую технику, эксплуатация которой требует модернизации проводки.

Наглядную картину можно наблюдать на примере освещения. Когда в электрической сети падает напряжение при подключении нагрузки с малым сопротивлением, лампы начинают гореть с меньшей яркостью. Причиной такого явления может быть недостаточное сечение проводки.

Чтобы убедиться в том, что источник выдает больший вольтаж, чем потребитель, необходимо вычислить напряжение на нагрузке. Сделать это можно путем включения в цепь вольтметра или по формуле. В первом случае измерительный прибор, который изначально имеет достаточно высокое сопротивление на входе, необходимо подключать параллельно линии. Это позволяет избежать шунтирования нагрузки и искажения результатов измерения.




Как рассчитать напряжение по формуле

Когда возникают перебои в подаче электроэнергии к приборам, важно проанализировать работу линии. При этом следует определить напряжение на нагрузке по формуле – такое решение дает максимально точный результат и позволяет вычислить другие параметры аналогичным способом. Так, формула расчета напряжения на нагрузке выглядит следующим образом:


U1 – напряжение источника;

ΔU – падение напряжения в линии;

I – ток в линии;

R0 – сопротивление линии.

В том случае, если сопротивление линии и напряжение источника постоянны, напряжение на нагрузке напрямую зависит от силы тока в линии.

Например, при подключении прибора в электрическую сеть с напряжением 220 В, током 10 А и сопротивлением линии, равным 2 Ом, напряжение на нагрузке составит:


В режиме холостого хода падения напряжения в линии нет (ΔU = 0), поэтому напряжение на нагрузке теоретически равно вольтажу источника (U2 = U1). Однако на практике напряжение источника равняться напряжению потребителя не может, поскольку и проводка, и источник электроэнергии, и подключенный к сети прибор имеют собственное сопротивление.

Пример. Напряжение источника составляет 220 В, внутреннее его сопротивление можно не учитывать. Сопротивление проводки – 1 Ом. Сопротивление включенного в сеть электрического прибора – 12 Ом. Суммарное сопротивление цепи составит 13 Ом. Ток в линии рассчитывается по закону Ома и составляет:


Напряжение на нагрузке вычисляется по формуле, приведенной выше:


Таким образом, видно, что напряжение на нагрузке меньше исходных 220 В, остальной вольтаж «теряется» на проводах.

Падение напряжения при подключении нагрузки потребителя

Из-за скачков вольтажа в сети страдают преимущественно жители частного сектора, дачных и коттеджных поселков. Из-за чего же происходит падение напряжения при подключении потребителя?

Первая причина этого явления – недостаточное сечение электрической проводки в доме. Дело в том, что слишком тонкие жилы кабеля не выдерживают большой нагрузки, которая возникает при включении в сеть электроприборов с высокой мощностью. Вторая причина – некачественные контакты в местах соединения проводов, что создает дополнительное сопротивление на линии.

Из-за падения напряжения в обоих случаях есть риск перегрева проводки или участка, в котором находится неисправный контакт. Это может стать причиной полного прекращения подачи электроэнергии на объект и даже возгорания.

Иногда падение напряжения наблюдается не на стороне пользователя, а на линиях электропередач. Оно может возникать вследствие перегрузки подстанции. В этом случае решить проблему может лишь поставщик электроэнергии путем замены устаревшей подстанции на более новую модель с современной релейной защитой. Еще одной причиной низкого напряжения может быть недостаточное сечение проводов на линии электропередач, а также нестабильное распределение нагрузки фаз на стороне подстанции. Как и в первом случае, устранить эти недочеты может только поставщик коммунальной услуги.

Узнать, действительно ли поставщик электроэнергии виноват в «провалах» напряжения, можно, опросив соседей. Если у них подобной проблемы нет, значит, стоит искать причину на территории участка. Зачастую этот вопрос успешно решается путем замены проводки на новый кабель с большим сечением. Однако в некоторых случаях падение напряжения продолжает наблюдаться. Причина может заключаться в так называемых «скрутках» – соединениях проводов путем их скручивания. Д

systemssec.ru

Падение напряжения по длине кабеля формула


Расчет падения напряжения в кабеле при постоянном токе - блог СамЭлектрик.ру

Выбор сечения провода для постоянного тока. Падение напряжения (пояснения в статье)

Говорят, что в своё время между Эдисоном и Тесла проходило соперничество – какой ток выбрать для передачи на большие расстояния – переменный или постоянный? Эдисон был за то, чтобы для передачи электричества использовать постоянный ток. Тесла утверждал, что переменный ток легче передавать и преобразовывать.

Впоследствии, как известно, победил Тесла. Сейчас повсеместно используется переменный ток, в России с частотой 50 Гц. Такой ток дешевле передавать на большие расстояния. Хотя, есть и линии электропередач постоянного тока специального применения.

А если использовать высокие напряжения (например, 110 или 10 кВ), то выходит значительная экономия на проводах, по сравнению с низким напряжением. Об этом я рассказываю в статье про то, чем отличается напряжение 380В от 220В.

Тесла потом пошёл ещё дальше – нашёл способ, как передавать электрический ток совсем без проводов. Чем вызвал большое недовольство производителей меди. Но это уже тема совсем другой статьи.

Кстати, если Вам интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

Забегая вперед, скажу, что расчет сечения провода для постоянного тока строится на двух критериях:

  1. Падение напряжения (потери)
  2. Нагрев провода

Первый пункт для постоянного тока наиболее важен, а второй лишь вытекает из первого.

Теперь обстоятельно, по порядку, для тех, кто хочет ПОНИМАТЬ.

Падение напряжения на проводе

Статья будет конкретная, с теоретическими выкладками и формулами. Кому не интересно, что откуда и почему, советую перейти сразу к Таблице 2 – Выбор сечения провода в зависимости от тока и падения напряжения.

И ещё – расчет потерь напряжения на длинной мощной трехфазной кабельной линии. Пример расчета реальной линии.

Итак, если взять неизменной мощность, то при понижении напряжения ток должен возрастать, согласно формуле:

P = I U.       (1)

При этом падение напряжения на проводе (потери в проводах) за счет сопротивления рассчитывается, исходя из закона Ома:

U = R I.       (2)

Из этих двух формул видно,  что при понижении питающего напряжения потери на проводе возрастают. Поэтому чем ниже питающее напряжение, тем большее сечение провода нужно использовать, чтобы передать ту же мощность.

Для постоянного тока, где используется низкое напряжение, приходится тщательно подходить к вопросу сечения и длины, поскольку именно от этих двух параметров зависит, сколько вольт пропадёт зря.

Сопротивление медного провода постоянному току

Сопротивление провода зависит от удельного сопротивления ρ,  которое измеряется в Ом·мм²/м. Величина удельного сопротивления определяет сопротивление отрезка провода длиной 1 м и сечением 1 мм².

Сопротивление того же куска медного провода длиной 1 м рассчитывается по формуле:

R = (ρ l) / S, где                 (3)

R – сопротивление провода, Ом,

ρ – удельное сопротивление провода, Ом·мм²/м,

l – длина провода, м,

S – площадь поперечного сечения, мм².

Сопротивление медного провода равно 0,0175 Ом·мм²/м, это значение будем дальше использовать при расчетах.

Не факт, что производители медного кабеля используют чистую медь “0,0175 пробы”, поэтому на практике всегда сечение берется с запасом, а от перегрузки провода используют защитные автоматы, тоже с запасом.

Из формулы (3) следует, что для отрезка медного провода сечением 1 мм² и длиной 1 м сопротивление будет 0,0175 Ом. Для длины 1 км – 17,5 Ом. Но это только теория, на практике всё хуже.

Ниже приведу табличку, рассчитанную по формуле (3), в которой приводится сопротивление медного провода для разных площадей сечения.

Таблица 0. Сопротивление медного провода в зависимости от площади сечения

S, мм² 0,5 0,75 1 1,5 2,5 4 6 10
R для 1м 0,035 0,023333 0,0175 0,011667 0,007 0,004375 0,002917 0,00175
R для 100м 3,5 2,333333 1,75 1,166667 0,7 0,4375 0,291667 0,175

Расчет падения напряжения на проводе для постоянного тока

Теперь по формуле (2) рассчитаем падение напряжения на проводе:

U = ((ρ l) / S) I ,             (4)

То есть, это то напряжение, которое упадёт на проводе заданного сечения и длины при определённом токе.

Вот такие табличные данные будут для длины 1 м и тока 1А:

Таблица 1. Падение напряжения на медном проводе 1 м разного сечения и токе 1А:

S, мм² 0,5 0,75 1 1,5 2,5 4 6 8 10
U, B 0,0350 0,0233 0,0175 0,0117 0,0070 0,0044 0,0029 0,0022 0,0018

Эта таблица не очень информативна, удобнее знать падение напряжения для разных токов и сечений. Напоминаю, что расчеты по выбору сечения провода для постоянного тока проводятся по формуле (4).

Таблица 2. Падение напряжения при разном сечении провода (верхняя строка) и токе (левый столбец).

Длина = 1 метр

S,мм²

I,A

1 1,5 2,5 4 6 10 16 25
1 0,0175 0,0117 0,0070 0,0044 0,0029 0,0018 0,0011 0,0007
2 0,0350 0,0233 0,0140 0,0088 0,0058 0,0035 0,0022 0,0014
3 0,0525 0,0350 0,0210 0,0131 0,0088 0,0053 0,0033 0,0021
4 0,0700 0,0467 0,0280 0,0175 0,0117 0,0070 0,0044 0,0028
5 0,0875 0,0583 0,0350 0,0219 0,0146 0,0088 0,0055 0,0035
6 0,1050 0,0700 0,0420 0,0263 0,0175 0,0105 0,0066 0,0042
7 0,1225 0,0817 0,0490 0,0306 0,0204 0,0123 0,0077 0,0049
8 0,1400 0,0933 0,0560 0,0350 0,0233 0,0140 0,0088 0,0056
9 0,1575 0,1050 0,0630 0,0394 0,0263 0,0158 0,0098 0,0063
10 0,1750 0,1167 0,0700 0,0438 0,0292 0,0175 0,0109 0,0070
15 0,2625 0,1750 0,1050 0,0656 0,0438 0,0263 0,0164 0,0105
20 0,3500 0,2333 0,1400 0,0875 0,0583

www.el-cab.ru

разность напряжения в двух точках

Ed Valitov 26.11.2018

Доброго дня, уважаемые гости и читатели нашего блога! Сегодня мы хотели бы рассказать Вам о том, как выбрать электрический провод для системы энергоснабжения объекта так, чтобы

не пришлось кусать локти, сетуя на скачки напряжения или нехватку мощности для одновременного питания всего комплекса оборудования.

Основной акцент в этом деле делаем на диаметр провода для проходящего по нему тока, и расчет падения напряжения в кабеле как раз и призван решить эту задачу.

Давайте вместе выясним, как производится расчет, а также узнаем, каким образом можно увеличить показатель силового напряжения электрической сети, повысив тем самым безопасность электроустановок.

Содержание статьи

Что нам нужно знать?

Всем известно, что кабельная проводка передает электроэнергию от источника – линии электропередачи – к конечному потребителю – жилым, административным зданиям, строительным объектам и т.п.

При движении тока по металлическому проводу часть энергии теряется в нем из-за сопротивления току самого металла.

Поэтому потребителю достается не та часть электричества, которая отошла от источника, а несколько меньшая с учетом потерь при движении тока.Для обеспечения оптимального распределения нагрузки и стабильности напряжения провод для электрической сети необходимо выбирать определенного размера – сечения, которое определяет диаметр провода.

Падение напряжения будет также зависеть от длины проводника.

Расчетная величина падения не должна сильно отклоняться от исходного нормативного значения.

При увеличении подключаемой нагрузки также возрастают препятствия для прохождения тока.

Кроме того, при небольшой силе тока увеличивается сопротивление проводника, поэтому происходит падение напряжения, ведь все мы из школы помним математическую зависимость:

I = U / R.

Поэтому, если взять два разных по длине проводника одинакового сечения, то потери выше у более длинного из них.Следовательно, при прокладке токоведущего кабеля для ЛЭП или других электрических установок основным критерием наряду с сечением проводника выступает его длина.

А можно ли рассчитать эту величину в обычных бытовых условиях, используя подручные средства?

Разумеется, определить снижение напряжения мы сможем тремя способами:

  • Используя два вольтметра, производим замер этой величины в на концах кабеля.
  • Измеряем напряжение последовательно на разных участках провода. При этом методе показания могут быть не объективными, т.к. возможно изменение нагрузки или условий работы сети.
  • Подключаем один электроприбор параллельно замеряемому кабелю. Здесь также возможны погрешности, потому что длинные соединительные провода способны влиять на искомую характеристику.

Важно. Значение этой величины может быть минимальным — от 0,1 В. Советуем применять для измерения приборы не ниже класса точности 0,2.

Причины падения напряжения

В большинстве случае для монтажных работ выбор останавливают на жилах двух сортов металла. Это:

  1. медь;
  2. алюминий.

Они защищены изоляционной обмоткой.

Реже применяют термоусадку для самостоятельной изоляции жильных проводов.

То есть задача изоляции – создать диэлектрическую оболочку для проводника, потому как в одном кабеле все провода лежат очень плотно друг к другу.

При протяженных линиях сердечники под обмоткой создают некоторый заряд с ёмкостным сопротивлением, по причине чего и возникает падение напряжения.

Оно происходит по следующему алгоритму.

  1. Проводящая жила под воздействием тока греется, затем создается ёмкостное реактивное сопротивление.
  2. Преобразования в элементах цепи делают мощность электрической энергии индуктивной.
  3. Сопротивление каждой фазы всей цепи возникает из-за резистивного сопротивления проводов.
  4. Каждая токопроводящая жила имеет полное сопротивление при подключении кабеля на токовую нагрузку.
  5. Если используются три фазы, то линии тока в них симметричны, нейтральная жила при этом проводит почти нулевой ток.
  6. Полное (комплексное) сопротивление создает потери напряжения, потому что ток в цепи движется с некоторым отклонением за счет реактивного сопротивления.

Данную схему можно представить графически: горизонтальная прямая линия, выходящая из определенной точки – сила тока.

Из той же точки выходит линия входного напряжения U1 и линия выходного напряжения U2, первая под большим, а вторая под меньшим углом к вектору силы тока.

Падение напряжения будет равно геометрической разнице между направлениями U1 и U2.

На рисунке – отрезок AB и есть падение, это гипотенуза треугольника.

Катеты BC и AC – показатели понижения напряжения с учетом реактивного и активного сопротивлений.

Линия AD – это значение энергетических потерь. Эту схему удобно применять, когда нет доступного способа описать показатель понижения напряжения математически, т.к. вручную его рассчитывать довольно трудно.

Результат падения напряжения

А что становится результатом этого процесса в фундаментальном смысле?

Давайте посмотрим, что происходит при снижении этой характеристики электрической энергии.

В соответствии с нормативной документацией ПУЭ, потери при движении тока от трансформаторной подстанции до самого отдаленного участка по электрической нагрузке для населенного пункта должны быть не более 9 %.

При этом потери в размере 4 % разрешаются от главного ввода до потребителя электроэнергии, а 5 % – от трансформатора до главного ввода.

В трехфазных коммуникациях нормативный показатель по ГОСТ 29322-2014 составляет 400 В ± 10 % при нормальной эксплуатации линии.Отклонение этой величины от норматива может приводить к следующим результатам для стационарных объектов или электрических приборов.

  1. Сбои в работе электроустановок, неправильная работа оборудования, выход его из строя, нарушение освещения объекта.
  2. Отключение электроприборов или сбои их корректной работы.
  3. Понижение ускорения вращения у электрических двигателей при старте, потери энергии, отключение устройств при нагреве.
  4. Некорректное распределение электронагрузки от начала линии до удаленного конца провода между объектами потребления.
  5. Работа на 50 % осветительных устройств помещения.

Нормальным значением для потерь при стандартном рабочем режиме электролинии является 5 %.

Эту величину допускается принимать для электросетей на этапе проекта.

Относительно токов большой мощности строятся протяженные электрические магистрали.

Важно. К устройству ЛЭП на всех стадиях предъявляются высокие требования. Поэтому важно просчитывать потери на всех участках магистрали, от главного магистрального пути до линий второстепенного назначения.

Рассчитываем падение напряжения

При вычислении обязательно учитываем активное и реактивное сопротивления, составляющие комплексное (общее) сопротивление цепи, а также мощность.

Формула для расчета этого показателя на участке цепи длиной L выглядит так:

∆U = (P * r0 + Q * x0) * L / Uном,

где

  • P — активная мощность;
  • Q — реактивная мощность;
  • r0 — активное сопротивление;
  • x0 — реактивное сопротивление;
  • Uном — номинальное напряжение.

Как мы сказали выше, на практике допускаются отклонения от нормативного показателя по ПУЭ. Разрешенные пределы отклонения:

  • силовые линии – ±5 %;
  • внутреннее и наружное бытовое освещение – ±5 %;
  • производственное освещение (также для общественных зданий) – от +5 % до -2,5 %.

В итоге вычисления мы получим процентный показатель.

Приведем пример. Суммарная потребляемая мощность всех приборов в доме – 2 кВт. Все приборы подключены к сети. Тогда сила тока I = 2 * 1000/220 = 9 А.

Далее нам необходимо знать формулу расчета потерь напряжения. Она выглядит следующим образом:

∆U = (I * р * L) / S.

Используя эту формулу, получаем потери в кабеле:

∆U = (I * R / U) * 100 % = 2 (два провода) * 0,0175 / 1,5 * 30 = 0,7 Ом.

                Тогда значение понижения напряжения будет равняться:

∆U = (9 * 0,7 / 220) * 100 % = 2,86 %.

Полученная величина вполне вписывает в нормативный по ПУЭ показатель 5 % отклонения.

Это значение, к тому же, очень выгодно для конечного потребителя, поскольку он получает электроэнергию полной мощности с потреблением электричества более низкого напряжения.

Это позволяет существенно снизить затраты потребителей на электроэнергию.

Еще один способ определения величины потерь напряжения предполагает использование таблицы, которая представлена в профильных методических указаниях для инженеров ЛЭП.

Там учтены все технические качества линии и оборудования, в зависимости от которых можно «достать» значение потерь для определенных условий эксплуатации.

Как уменьшить падение напряжения в электрической сети

При выполнении работ по прокладке кабеля сечение провода, взятое по допустимому понижению, превосходит таковую величину, выбранную по нагреву проводника.

Это приводит к удорожанию электричества для потребителя. Как уменьшить этот показатель? Ведь от него зависит итоговая цена за 1 кВт электроэнергии.

Опишем несколько способов сделать это.

  • Установить стабилизатор около нагрузки для устойчивости сети.
  • Повысить значение потенциала у начала кабеля, подключившись к отдельному трансформатору.
  • Расположить на небольшом расстоянии от потребителя блок питания или понижающий трансформатор при подключенной нагрузке 12-36 В.

Как уменьшить потери в кабеле

Потери напряжения приводят к дополнительным затратам.

Для того чтобы понизить этот показатель, можно воспользоваться следующими методами.

  • увеличить сечение питающих кабелей;
  • уменьшить количество ломаных линий (поворотов) в проводке, тем самым уменьшив длину маршрута проводника для снижения общего сопротивления;
  • понизить температуру окружающей среды, т.к. при нагревании металла возрастает его сопротивление, охлаждение даст обратный эффект;
  • уменьшить нагрузку на сеть;
  • привести угол между вектором напряжения и вектором силы тока к единице.

Замечание. Для того чтобы понизить сопротивление кабеля, а, соответственно, потери электричества в нем, можно попробовать улучшить вентиляцию в конструкциях кабеля и кабельных лотках.

Дорогие читатели, мы с Вами рассмотрели очередной вопрос, касающийся нашей безопасности в отношении электроснабжения, именно, узнали, как произвести правильный расчет падения напряжения.

Если информация была Вам полезна, порекомендуйте наш блог своим друзьям, подписывайтесь на нас в социальных сетях и будьте всегда под защитой! Всего Вам хорошего.

Понравилась статья ? Поделитесь с друзьями!

fireflyer.ru

Расчет потери напряжения при постоянной нагрузке

Формулы

На рис. G27 ниже даны формулы, обычно используемые для расчета потери напряжения в цепи на километр длины. Если:

  • Ib: ток полной нагрузки, в амперах
  • L: длина кабеля, в километрах
  • R: сопротивление кабеля, в Ом/км, то:

  для меди, где S – площадь поперечного сечения проводника (жилы кабеля) в мм2

  для алюминия

Примечание: R можно пренебречь, если сечение проводника свыше 500 мм2.

  • X: индуктивное реактивное сопротивление кабеля в Ом/км.

Примечание: Х можно пренебречь для проводов сечением меньше 50 мм2.
При отсутствии любой другой информации, примите Х = 0,08 Ом/км.

  • φ: фазовый угол между напряжением и током рассчитываемой цепи, обычно имеет следующие значения:

  -  цепь освещения лампами накаливания: cos φ = 1;
  -  питание двигателя:
     •  при запуске: cos φ = 0,35;
     •  в режиме нормальной работы: cos φ = 0,8;

  • Un: напряжение между фазами;
  • Vn: напряжение фаза - нейтраль.

Для кабелепроводов и шинопроводов заводского изготовления, значения активного и реактивного сопротивлений даются производителем.


Рис. G27: Формулы расчета падения напряжения

Упрощенная таблица

Вычислений можно избежать, используя таблицу на рис.G28, которая дает, с достаточной точностью, значение потери межфазного напряжения на 1 км кабеля на 1 А, в зависимости от:

  • типа цепи: цепь питания двигателя, где значение cos φ близко к 0,8, или цепь освещения, где cos φ близок к единице;
  • типа кабеля: одножильный и трехжильный.

Потерю напряжения в кабеле можно вычислить, как:
К x Ib x L, где:
К – дано в таблице;
Ib – ток полной нагрузки в амперах;
L – длина кабеля в км.

Колонку «Питание двигателя», «cos φ = 0,35» на рис. G28 можно использовать для вычисления потери напряжения во время запуска двигателя (см. пример 1, рис. G28).

Cечение мм2 Однофазная цепь Симметричная трехфазная цепь
Питание двигателя Освещение  Питание двигателя Освещение 
Рабочий режим Запуск Рабочий режим Запуск
Cu AI cos φ = 0,8 cos φ = 0,35 cos φ = 1 cos φ = 0,8 cos φ = 0,35 cos φ = 1
1,5   24 10,6 30 20 9,4 25
2,5   14,4 6,4 18 12 5,7 15
4   9,1 4,1 11,2 8 3,6 9,5
6 10 6,1 2,9 7,5 5,3 2,5 6,2
10 16 3,7 1,7 4,5 3,2 1,5 3,6
16 25 2,36 1,15 2,8 2,05 1 2,4
25 35 1,5 0,75 1,8 1,3 0,65 1,5
35 50 1,15 0,6 1,29 1 0,52 1,1
50 70 0,86 0,47 0,95 0,75 0,41 0,77
70 120 0,64 0,37 0,64 0,56 0,32 0,55
95 150 0,48 0,30 0,47 0,42 0,26 0,4
120 185 0,39 0,26 0,37 0,34 0,23 0,31
150 240 0,33 0,24 0,30 0,29 0,21 0,27
185 300 0,29 0,22 0,24 0,25 0,19 0,2
240 400 0,24 0,2 0,19 0,21 0,17 0,16
300 500 0,21 0,19 0,15 0,18 0,16 0,13


Рис. G28: Потеря напряжения между фазами ∆U для цепи, в вольтах на 1 ампер на 1 км

Примеры

Пример 1 (см. рис. G29)

Трехжильный медный кабель сечением 35 мм2 длиной 50 м подает питание к двигателю Uн = 400 В, потребляющему:

  • 100 A при cos φ = 0,8 при нормальной постоянной нагрузке;
  • 500 A (5 In) при cos φ = 0,35 во время запуска.

Отклонение напряжения в начале кабеля, подсоединяющего двигатель (то есть на распределительном щите (рис. G30), который распределяет ток в 1000 А), составляет - 10 В линейного напряжения.

Каково отклонение напряжения на зажимах двигателя:

  • в рабочем режиме;
  • во время запуска.

Решение:

  • Отклонение напряжения на двигателе в рабочем режиме будет равно:

В таблице G28 дано соотношение 1 В/A/км, и согласно этому:
∆U для кабеля = 1 x 100 x 0,05 = 5 В
∆U общее = 10 + 5 = 15 В , то есть:

Это значение меньше, чем разрешенное (8%), и является приемлемым.

  • Потеря напряжения в кабеле во время запуска двигателя:

∆Uкабеля = 0,52 x 500 x 0,05 = 13 В

Из-за дополнительного тока, потребляемого во время запуска двигателя, падение напряжения на распределительном щите превысит 10 Вт.

Предположим, что ток, подаваемый на распределительный щит во время запуска двигателя, равен 900 + 500 = 1400 А, тогда отклонение напряжения на распределительном щите пропорционально увеличится:

∆U для распределительного щита = 14 В
∆U для кабеля двигателя = 13 В
∆U общее = 13+ 14 = 27 В, то есть:


Отклонение = 6,75% (напряжение на зажимах = 400 - 27 = 373 В) приемлемо во время запуска двигателя.

Рис. G29: Пример 1

Пример 2

(см. рис. G30):

Трехфазная четырехпроводная линия с медными проводниками сечением 70 мм2 и длиной 50 м проводит ток 150 A. Линия питает, кроме прочих нагрузок, 3 однофазных цепи освещения, каждая из которых состоит из медного провода сечением 2,5 мм2, длиной 20 м,и проводит ток 20 A.

Предполагается, что токи в кабельной линии сечением 70 мм2 являются симметричными, и три цепи освещения подсоединены к линии в одной и той же точке.

Какова потеря напряжения от ТП до конечных точек цепей освещения?

Решение:

  • Потеря напряжения в четырехпроводной линии:

На рис. G28 показано значение 0,55 В/A/км

∆U линии = 0,55 x 150 x 0,05 = 4,125 В (линейное)

Фазная потеря напряжения:

   В между фазой и нейтралью.

  • Потеря напряжения в каждой из однофазных цепей освещения:

∆U для однофазной цепи = 18 x 20 x 0,02 = 7,2 В

Таким образом, общая потеря напряжения будет равна:

7,2 + 2,38 = 9,6 В

Это значение является удовлетворительным, так как оно меньше, чем максимальная допустимая потеря напряжения, составляющая 6%.

Рис. G30: Пример 2

ru.electrical-installation.org

4.1. Определения

Падение напряжения – это геометрическая разность напряжений в начале и конце ЛЭП. Падение напряжения – это векторная величина.

Потеря напряжения – это алгебраическая разность тех же напряжений в начале и конце ЛЭП. Потеря напряжения – это скалярная величина.

Отклонение напряжения (отклонение от номинального значения) – это алгебраическая разность между фактическим напряжением в данный точке сети и номинальным этой же точке сети, при медленном его изменении:

Колебания напряжения – при быстром изменении (>1% в сек.).

В общем случае потеря в ЛЭП складывается из потерь в прямом и обратном проводах. Но в 3-х фазной ЛЭП с симметричной нагрузкой потеря напряжения в обратном проводе отсутствует, т.к. ток в нем (в нейтральном проводе) равен нулю.

4.2. Падение и потеря напряжения в 3-х фазной лэп с симметричной нагрузкой

На схеме замещения одной фазы электропередачи, приведенной на рис. 4.1:

r – активное сопротивление провода ЛЭП.

х – реактивное сопротивление провода.

zн – комплексное сопротивление нагрузки (характеризуется углом φ).

Рис. 4.1. Схема замещения одной фазы электропередачи.

Считаем - известно. Построим векторную диаграмму и найдем вектор(рис. 4.2).

Рис. 4.2. Векторная диаграмма электропередачи.

ас – падение напряжения.

аb – потеря напряжения.

На практике отрезок ad считают потерей напряжения, пренебрегая отрезком db.

- продольная слагающая падения напряжения (потеря).

,

.

- фазная потеря напряжения.

- линейная потеря. Умножим и разделим на :

.

Поперечная слагающая падения напряжения изображается отрезком cd:

- поперечная слагающая падения напряжения.

Модуль вектора напряжения в начале ЛЭП определяется по теореме Пифагора:

В расчетах распределительных сетей (сетей среднего 6-35 кВ и низкого напряжений) обычно учитывают только продольную составляющую напряжения.

4.3. Расчет потери напряжения в ответвлениях от 3-х фазной лэп

В трехфазном ответвлении с симметричной нагрузкой , поэтому потеря напряжения в контуре одной фазы (например В):

а). Двухфазное ответвление:

Рис. 4.3. Двухфазное ответвление от трехфазной ЛЭП.

Нагрузки фаз активны и равны между собой:иIB=IC..

Сечение проводов невелико, , поэтому- не учитывается.

- сечения и длины фазных и нейтрального проводников одинаковы.

Рис. 4.4. Построение вектора тока в нейтральном проводе и определение потери ΔUB.

Фазное напряжение UВ в начале ответвления по второму закону Кирхгофа:

,

.

Модули токов Ib и IN равны: Ib = IN, сопротивления rB = rNтакже равны.

Потеря напряжения в контуре фазы В (рис.4.4):

Однофазное ответвление (рис. 4.5).

Рис. 4.5. Однофазное ответвление.

Потеря напряжения: .

При прочих равных условиях потеря напряжения зависит от числа фаз ответвления:

- 3-х фазное ответвление – коэффициент 1 – самая малая потеря;

- 2-х фазное ответвление – коэффициент потери = 1,5;

- однофазное ответвление – коэффициент 2 – максимальная потеря.

4.4. Формулы потерь напряжения в 3-х фазной ЛЭП.

, Вольт;

С учетом размерностей величин, входящих в формулу: ,,:

.

Имеется ЛЭП постоянного сечения с несколькими нагрузками по длине (рис.4.6):

Рис. 4.6. ЛЭП С несколькими нагрузками по длине (магистральная ЛЭП).

Потеря напряжения в линии может быть определена исходя из мощностей отдельных участков Pi, Qiи длин этих участков Li, или мощностей нагрузок pi, qi и расстояний до источника питания li.

.

Если нагрузка равномерно распределена вдоль линии (рис.4.7), то для расчета потери напряжения ее считают сосредоточенной в середине нагруженного участка.

Рис.4.7. ЛЭП с нагрузкой, равномерно распределенной по длине.

Тогда ,где Рр = ∑ рi, Qp = ∑ qi.

В маломощных сетях напряжением ниже 1000 В часто и/или. В этом случае произведениемQ·x можно пренебречь и формула потери напряжения приобретает следующий вид:

, где

- удельное активное сопротивление проводников.

- длина ЛЭП.

На практике часто используется формула потери напряжения через момент мощности:

, где

- момент нагрузки (момент мощности),

- сечение.

;

- коэффициент зависящий от количества фаз, материала проводов и напря­же­ния сети. Например, для 3-х фазной сети, провода из алюминия, напряже­ние 380/220 В: .

Для однофазной сети 220 В , т.е в 6 раз меньше, чем для трехфазной:

мощность в 3 раза меньше, а потеря напряжения – в 2 раза больше из-за

дополнительной потери и в нейтральном проводе. Итого 3·2 = 6.

studfile.net

Оставить комментарий

avatar
  Подписаться  
Уведомление о