Управление однофазным асинхронным двигателем – Управление скоростью вращения однофазных двигателей

Управление скоростью вращения однофазных двигателей

 

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки - рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

 

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

 

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя - разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

S=(n1-n2)/n2

n1 скорость вращения магнитного поля

n2 - скорость вращения ротора

При этом обязательно выделяется энергия скольжения - из-за чего сильнее нагреваются обмотки двигателя.

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз - то есть, снижением питающего напряжения.

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

 

Автотрансформаторное регулирование напряжения

 

Автотрансформатор - это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

 

 На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

 

 Преимущества данной схемы:

      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора

 Недостатки:

      • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
      • все недостатки присущие регулировке напряжением

 

 

Тиристорный регулятор оборотов двигателя

 

В данной схеме используются ключи - два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно "отрезается" кусок вначале или, реже в конце волны напряжения.

Таким образом изменяется среднеквадратичное значение напряжения.

Данная схема довольно широко используется для регулирования активной нагрузки - ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

Ещё один способ регулирования - пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно - шумы и рывки при работе.

Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

  • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
  • добавляют на выходе конденсатор для корректировки формы волны напряжения
  • ограничивают минимальную мощность регулирования напряжения - для гарантированного старта двигателя
  • используют тиристоры с током в несколько раз превышающим ток электромотора

  

 Достоинства тиристорных регуляторов:

      • низкая стоимость
      • малая масса и размеры 

  Недостатки:

      • можно использовать для двигателей небольшой мощности
      • при работе возможен шум, треск, рывки двигателя 
      • при использовании симисторов на двигатель попадает постоянное напряжение
      • все недостатки регулирования напряжением

  

 

Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом. 

 

Транзисторный регулятор напряжения

 

Как называет его сам производитель - электронный автотрансформатор или ШИМ-регулятор.

Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы - полевые или биполярные с изолированным затвором (IGBT).

Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

Выходной каскад такой же как и у частотного преобразователя, только для одной фазы - диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

 

  Плюсы электронного автотрансформатора:

        • Небольшие габариты и масса прибора
        • Невысокая стоимость
        • Чистая, неискажённая форма выходного тока
        • Отсутствует гул на низких оборотах
        • Управление сигналом 0-10 Вольт

 Слабые стороны:

        • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
        • Все недостатки регулировки напряжением

 

Частотное регулирование

Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина - не было дешёвых силовых высоковольтных транзисторов и модулей.

Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие - массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

На данный момент частотное преобразование - основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

Однофазные двигатели могут управляться:

  • специализированными однофазными ПЧ
  • трёхфазными ПЧ с исключением конденсатора

 

Преобразователи для однофазных двигателей

 

В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей - INVERTEK DRIVES.

Это модель Optidrive E2

 

Для стабильного запуска и работы двигателя используются специальные алгоритмы.

При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

Xc=1/2πfC

f - частота тока

С - ёмкость конденсатора

 В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя - в некоторых моделях это сделать довольно сложно.

 

 Преимущества специализированного частотного преобразователя:

        • интеллектуальное управление двигателем
        • стабильно устойчивая работа двигателя
        • огромные возможности современных ПЧ:
          • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
          • многочисленные защиты (двигателя и самого прибора)
          • входы для датчиков (цифровые и аналоговые)
          • различные выходы
          • коммуникационный интерфейс (для управления, мониторинга)
          • предустановленные скорости
          • ПИД-регулятор

 Минусы использования однофазного ПЧ:

        • ограниченное управление частотой
        • высокая стоимость

 

Использование ЧП для трёхфазных двигателей

 

 

Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

 

Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого - магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

При работе без конденсатора это приведёт к:

  • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
  • разному току в обмотках

Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

 

 Преимущества:

          • более низкая стоимость по сравнению со специализированными ПЧ
          • огромный выбор по мощности и производителям
          • более широкий диапазон регулирования частоты
          • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

 Недостатки метода:

          • необходимость предварительного подбора ПЧ и двигателя для совместной работы
          • пульсирующий и пониженный момент
          • повышенный нагрев
          • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

 

 

masterxoloda.ru

Однофазный асинхронный электродвигатель

Дмитрий Левкин

Однофазный асинхронный электродвигатель — это асинхронный электродвигатель, который работает от электрической сети однофазного переменного тока без использования частотного преобразователя и который в основном режиме работы (после пуска) использует только одну обмотку (фазу) статора.

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Основными компонентами любого электродвигателя являются ротор и статор. Ротор - вращающаяся часть электродвигателя, статор - неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой "беличьей клеткой". Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Запустить

Остановить

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Запустить

Остановить

Разложение пульсирующего магнитного потока на два вращающихся

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр - в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Запустить

Остановить

Вращающееся магнитное поле пронизывающее ротор

Ток индуцируемый в роторе переменным магнитным полем

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 - активное сопротивление стержней ротора, Ом,
  • x2обр - реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

С помощью одной фазы нельзя запустить ротор

Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой - однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением - двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки

Разное сопротивление и индуктивность обмоток

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском - двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Ёмкостной сдвиг фаз с пусковым конденсатором

Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются - конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Двигатель с экранированными полюсами - двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами - короткозамкнутый в виде "беличьей" клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф', а другая Ф" - по экранированной части полюса. Поток Ф" наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф", создавая результирующий поток в экранированной части полюса Фэ=Ф"+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф' создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф'.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор - короткозамкнутый типа "беличья клетка".

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.


engineering-solutions.ru

Простой преобразователь частоты для асинхронного электродвигателя.

РадиоКот >Схемы >Питание >Преобразователи и UPS >

Простой преобразователь частоты для асинхронного электродвигателя.

Итак коль уж асинхронный двигатель так распространён и трехфазная система напряжения созданная М. О. Доливо-Добровольским так удобна.  А  современная элементная база так хороша. То сделать преобразователь частоты –это лишь вопрос личного желания и некоторых финансовых возможностей.  Возможно кто  то скажет « Ну, зачем мне инвертор , я поставлю фазосдвигающий  конденсатор и все решено» . Но при этом обороты не покрутишь и в мощности потеряешь и потом это не интересно.

Возьмём за основу – в быту есть однофазная  сеть 220в, народный размер двигателя до 1 кВт.  Значить соединяем обмотки двигателя треугольником.  Дальше –проще, понадобится драйвер трехфазного моста IR2135(IR2133) выбираем  такой потому, что он применяется в промышленной технике имеет вывод  SD и удобное расположение выводов. Подойдёт и IR2132 , но у неё dead time больше и выхода SD нет. В качестве генератора PWM выберем микроконтроллер AT90SPWM3B  - доступен, всем понятен, имеет массу возможностей и недорого стоит, есть  простой программатор   -https://real.kiev.ua/avreal/. Силовые транзисторы  6 штук IRG4BC30W выберем с некоторым запасом по току  - пусковые токи АД могут превышать номинальные в 5-6 раз. И пока  не ставим "тормозной"  ключ и резистор, будем тормозить и намагничивать перед пуском  ротор постоянным током, но об этом позже .... Весь процесс работы отображается на 2-х строчном ЖКИ индикаторе.  Для управления достаточно 6 кнопок (частота +, частота -, пуск, стоп, реверс, меню).
Получилась вот такая схема.

Я вовсе не претендую  на законченность конструкции и предлагаю  брать данную конструкцию за некую основу для энтузиастов домашнего  электропривода.  Приведённые здесь платы были сделаны под имеющиеся в моём распоряжении детали.

Конструктивно инвертор выполнен на двух платах – силовая часть ( блок питания , драйвер и транзисторы моста , силовые клеммы) и цифровая часть (микроконтроллер + индикатор ). Электрически платы соединены гибким шлейфом. Такая конструкция выбрана для  перехода в будущем  на контроллер TMS320 или STM32 или STM8.
Блок питания собран по классической схеме и в комментариях не нуждается. Микросхема  IL300 линейная опто развязка  для управления током 4-20Ма. Оптроны ОС2-4 просто дублируют  кнопки «старт, стоп, реверс» для гальванически развязанного управления. Выход оптрона  ОС-1 «функция пользователя» (сигнализация и пр.)
Силовые транзисторы и диодный мост закреплены на общий радиатор. Шунт  4 витка манганинового провода диаметром 0.5мм  на оправке 3 мм.
Сразу замечу некоторые узлы и элементы вовсе не обязательны.  Для того что бы просто крутить двигатель ,  не нужно внешнее управление током 4-20 Ма. Нет необходимости в трансформаторе тока, для оценочного измерения подойдёт и токовый шунт. Не нужна внешняя сигнализация.  При мощности  двигателя 400 Вт и площади радиатора 100см2  нет нужды в термодатчике.

ВАЖНО! – имеющиеся на плате  кнопки управления изолированы от сети питания только пластмассовыми толкателями. Для безопасного управления необходимо использовать опторазвязку.

Возможные изменения в схеме в зависимости от микропрограммы.
Усилитель DA-1 можно подключать к трансформатору тока или к шунту. Усилитель DA-1-2 может быть использован для измерения напряжения сети или для измерения сопротивления терморезистора если не используется термодатчик  PD-1.
В случае длинных соединительных  проводов необходимо на каждый провод хотя бы надеть помехоподавляющие кольцо.  Имеют место помехи. Так например –пока я этого не сделал у меня «мышь» зависала.
Так же считаю важным отметить проверку надёжности изоляции АД –т.к. при коммутации силовых транзисторов выбросы напряжение на обмотках могут достигать значений 1,3 Uпит.

Общий вид.

Немного про управление.

Начитавшись  книжек с длинными  формулами в основном описывающих как делать синусоиду при помощи PWM. И как стабилизировать скорость вращения вала двигателя посредством таходатчика и ПИД регулятора. Я пришёл к выводу –АД имеет достаточно  жёсткую характеристику во всём диапазоне допустимых нагрузок на валу.
Поэтому для личных нужд вполне подойдет  управление описанное законом Костенко М.П. или как его ещё называют  скаляроное.  Достаточное для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40.  Т.е. грубо говоря мы в самом простом случае делаем обычную 3-х фазную розетку с переменной частотой и напряжением меняющимися в прямой зависимости.  С небольшими «но» на начальных участках характеристики необходимо выполнять IR компенсацию т.е. на малых частотах нужно фиксированное напряжение . Втрое «но» в питающие двигатель напряжение замешать 3 гармонику.  Всё остальное сделают за нас физические принципы  АД.  Более подробно про это можно прочесть в документе AVR494.PDF
Основываясь на моих личных наблюдениях и скромном опыте именно эти   методы без особых изысков чаще всего применяются в приводах мощностью до 15 кВт.
Далее не буду углубляться в теорию и  описание мат моделей АД. Это и без меня достаточно хорошо изложили профессора ещё в 60-х.
 
Но ни  в коем случае не стоит недооценивать сложности управления АД. Все мои упрощения  оправданны только некоммерческим применением инвертора.

Плата силовых элементов.

В программе V-1.0 для AT90SPWM3B  реализовано
1-  Частотное  управление  АД .Форма напряжения синусоида с 3 гармоникой.
2-  Частота  задания 5 Гц -50 Гц с шагом  1 Гц. Частота ШИМ  4 кГц.
3-  Фиксированное время разгона –торможения
4-  Реверс (только через кнопку СТОП)
5-  Разгон до заданной частоты с шагом 1 Гц
6 – Индикация показаний канала АЦП 6 (разрядность 8 бит.,  оконный фильтр апертура 4 бита)
       я использую этот канал для замера тока  шунта.
7 – Индикация режима работы START,STOP,RUN,RAMP, и Частота в Гц.
8-  Обработка сигнала авария от мс IR2135

Торможение двигателя принудительное – без выбега. При этом нужно помнить – если на валу будет висеть огромный вентилятор или маховик  то напряжение на звене постоянного тока может достичь опасных значений. Но я думаю вертолёты с приводом от АД строить никто не будет

Функции микропрограммы в будущих версиях    

1 -намагничивание ротора перед пуском
2- торможение постоянным током
3 –прямой реверс
4 – частота задания 1 -400  Гц.
5 – ограничение, контроль  тока двигателя.
6 -  переключаемые зависимости U/F
7 – контроль звена постоянного тока.
8 – некоторые макросы управления –это вообще в далёких планах.

Испытания.
Данная конструкции была проверена с двигателем 0.18кВт  и  0.4 кВт  и  0.8 кВт. Все двигатели остались довольны.
Только при малых оборотах и долговременной работе необходимо принудительное охлаждение АД.


 Строка для программатора
av_28r4.exe -aft2232 -az  +90pwm3b -e -w -v -fckdiv=1,psc2rb=0,psc1rb=0,psc0rb=0,pscrv=0,bodlevel=5 -c01.hex

Небольшое "вечернее" видео испытаний

Файлы:
плата микроконтроллера -layout5.0
силовой модуль -layout5.0
Программа для МК
Схема
схема S_plan7 -архив rar

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Управление однофазным асинхронным двигателем

Войдите , пожалуйста. Хабр Geektimes Тостер Мой круг Фрилансим. Войти Регистрация. Скалярный частотник для однофазного асинхронного двигателя DIY или Сделай сам Начнём с того, что у каждого программера должен быть токарный станок.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Преобразователь частоты для асинхронного электродвигателя. Что это такое, как он устроен.

Устройство для пуска и торможения однофазного асинхронного двигателя с пусковым конденсатором


С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями. Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне.

При разности частоты вращения пульсирующих магнитных полей возникает вращающий момент. Именно этим принципом руководствуются при регулировании скорости вращения асинхронного двигателя с помощью частотного преобразователя. Электродвигатель по факту может считаться двухфазным, но у него только одна рабочая обмотка статора, вторая, расположенная относительно главной под углом в 90 о является пусковой.

Ротор однофазного двигателя коротко замкнутый, помещенный в неподвижное магнитное поле статора, начинает вращаться. Кондиционеры воздуха, холодильные компрессоры, электрические вентиляторы, обдувочные агрегаты, водяные, дренажные и фекальные насосы, моечные машины используют в своей конструкции асинхронный трехфазный двигатель.

Все типы частотников преобразуют переменное сетевое напряжение в постоянное напряжение. Достоинства схемы — напряжение выхода имеет чистую синусоиду. Способность трансформатора к перегрузкам имеет большой запас по мощности. Использование тиристорного регулятора оборотов двигателя. Применяются тиристорные ключи, подключенные встречно-параллельно.

Схема тиристорного регулирования однофазного асинхронного электродвигателя. При использовании для регулирования скорости вращения однофазных асинхронных двигателей, чтобы избежать негативного влияния индукционной нагрузки производят модификацию схемы. Добавляют LRC-цепи для защиты силовых ключей, для корректировки волны напряжения используют конденсатор, минимальная мощность двигателя ограничивается, так гарантируется старт двигателя.

Тиристор должен иметь ток выше тока электродвигателя. В схеме используется широтно-импульсная модуляция ШИМ с применением выходного каскада, построенного на использовании полевых или биполярных IGBT транзисторах. Схема использования ШИМ для регулирования однофазного асинхронного электродвигателя.

Частотное регулирование асинхронного однофазного электродвигателя считается основным способом регулирования частоты электродвигателя , мощности, эффективности использования, скорости и показателей энергосбережения. Схема управления электродвигателем без исключения из конструкции конденсатора.

Частотный преобразователь разрешает своему владельцу снизить энергопотребление и автоматизировать процессы в управлении оборудованием и производством. Основные компоненты частотного преобразователя: выпрямитель, конденсатор, IGBT-транзисторы, собранные в выходной каскад. Благодаря способности управлением параметрами выходной частоты и напряжения достигается хороший энергосберегающий эффект. Энергосбережение выражается в следующем:. Уменьшая частоту до 40Гц, уменьшается величина напряжения до В, означает, что уменьшается количество оборотов вращения насоса и потребление энергии снижается в 2,56 раз.

Для повышения энергетической эффективности использования частотного преобразователя в управлении электродвигателем необходимо сделать следующее:. Компактное устройство преобразования частоты служит для управления однофазными электродвигателями для оборудования бытового предназначения. Большинство частотных преобразователей обладает следующими конструктивными возможностями:.

Современный преобразователь Optidrive с основными функциональными особенностями. Важно: Однофазный преобразователь частоты, питаясь от однофазной сети напряжением В, выдает три линейных напряжения, величина каждого из них по В. То есть, линейное напряжение между 2 фазами находится в прямой зависимости от величины выходного напряжения самого частотника. Главная задача однофазного преобразователя частоты — обеспечить питание как одно- так и трехфазного электродвигателя.

В этом случае ток двигателя будет соответствовать параметрам подключения от трехфазной сети, и оставаться постоянным. Первое на что обращаем внимание при выборе частотника для своего оборудования — это соответствие сетевого напряжения и номинального значения тока нагрузки, на который рассчитан двигатель.

Способ подключения выбирается относительно рабочего тока. Главным в схеме подключения является наличие фазосдвигающего конденсатора, он служит для сдвига напряжения, поступающего на пусковую обмотку. Она служит для пускового включения двигателя, иногда после того, как двигатель заработал, пусковая обмотка вместе с конденсатором отключается, иногда остается включенной.

Выходное линейное напряжение устройства на каждой фазе равно выходному напряжению частотника, то есть на выходе будет три напряжения линии, каждое по В. Для запуска может использоваться только пусковая обмотка. Фазосдвигающий конденсатор не может обеспечить равномерный фазовый сдвиг в пределах границ частот инвертора. Частотник обеспечит равномерный сдвиг фаз. Для того, чтобы исключить из схемы конденсатор, нужно:. Схема подключения однофазного асинхронного двигателя без использования конденсатора.

Подключение трехфазного двигателя в однофазную сеть В. Регулирование однофазного асинхронного двигателя с помощью частотного преобразователя Главная Регулирование однофазного асинхронного двигателя с помощью частотного преобразователя.

Содержание: 1 Принцип работы однофазной асинхронной машины 2 Основные виды однофазных электроприводов 3 Управление скоростью вращения однофазных двигателей 3. Схема регулировки с помощью автотрансформатора. Частотный преобразователь.


Управление однофазным электродвигателем

В первом случае для уменьшения или увеличения частоты вращения применяются промышленные регуляторы напряжения — инверторные частотные преобразователи. А с вопросом, как регулировать обороты электродвигателя в домашних условиях, попробуем разобраться подробнее. Необходимо сразу сказать, что для разных типов однофазных и трехфазных электрических машин должны применяться разные регуляторы мощности. Лучший способ уменьшить обороты вашего устройства — не в регулировке частоты вращения самого движка, а посредством редуктора или ременной передачи. При этом сохранится самое главное — мощность устройства. Электродвигатели этого типа могут быть постоянного или переменного тока, с последовательным, параллельным или смешанным возбуждением для переменного тока применяется только первые два вида возбуждения. Коллекторный электродвигатель состоит из ротора, статора, коллектора и щеток.

Для управления скоростью асинхронного двигателя применяют частотные преобразователи. Также см. Частотно-регулируемый привод.

Регулирование оборотов однофазного электродвигателя

Помимо распространенных 3-х фазных асинхронных двигателей, на рынке предлагают однофазные моторы. Чаще всего ими являются насосы и вентиляторы. Самые популярные агрегаты в промышленности и в быту. И тут возникает вопрос? Как же ими управлять и регулировать скорость. Способов великое множество. Однофазный асинхронный двигатель Способы подключения мотора Подключение преобразователя частоты и однофазного двигателя. Всем привет! С вами Гридин Семён, и в этом посте мы поговорим с вами о нюансах управления асинхронными однофазными двигателями. Какой способ управления лучше?

Вы точно человек?

Контроллер управления асинхронным двигателем by shantidas on Sketchfab. Импульсные блоки питания Линейные блоки питания Радиолюбителю конструктору Светодиоды, ламы и свет 3D печать и 3D модели Реверс однофазного конденсаторного двигателя с пультом ДУ Цифровая схема реверса однофазного асинхронного двигателя на микроконтроллере PIC12F Это несложное цифровое устройство было разработано для управления однофазным асинхронным электродвигателем типа 6АЕ80 номинальной мощностью Вт. Одним из условий было наличие проводного пульта дистанционного управления с кабелем длиной 5 - 6 метров, небольшой вес пульта и низковольтное управление для электробезопасности оператора.

Мощный линейный источник питания. Простой термостат на компараторе.

Управление асинхронным двигателем

Однофазные асинхронные двигатели - машины небольшой мощности, которые по конструктивному исполнению напоминают аналогичные трехфазные электродвигатели с короткозамкнутым ротором. Однофазные асинхронные двигатели отличаются от трехфазных двигателей устройством статора, где в пазах магнитопровода находится двухфазная обмотка, состоящая из основной, или рабочей, фазы с фазной зоной эл. Одна рабочая фаза, присоединенная к питающей сети переменного напряжения, не может вызвать вращения ротора, так как ток ее возбуждает переменное магнитное поле с неподвижной осью симметрии, характеризуемое гармонически изменяющейся во времени магнитной индукцией. Схема включения однофазного асинхронного двигателя с короткозамкнутым ротором. Это поле можно представить двумя составляющими - одинаковыми круговыми магнитными полями прямой и обратной последовательностей, вращающимися с магнитными индукциями, вращающимися в противоположные стороны с одной и той же скоростью.

ESQ-A200-2S0015

Схема контроллера оборотов вращения двигателя 12 в изображена на рисунке. Обороты регулируются с помощью потенциометра. Если на вход поступают импульсы с частотой 8 кГц, то напряжение питания будет 12 вольт. При пуске трехфазного двигателя на всю мощность, передаётся ток, действие повторяется около 7 раз. Сила тока сгибает обмотки двигателя, образуется тепло, на протяжении долгого времени. Преобразователь представляет собой инвертор, обеспечивающий превращение энергии.

Управление однофазным асинхронным двигателем – Скалярный частотник для однофазного асинхронного двигателя / Habr.

Управление скоростью вращения однофазных двигателей

Каждый день инженеры проектируют системы, в которых используются асинхронные двигатели с однофазным питанием. В свою очередь, управление скоростью однофазных двигателей желательно в большинстве применений, так как это не только обеспечивает требуемую скорость, но и уменьшает потребление электроэнергии, и снижает уровень акустического шума. Большинство серийно выпускаемых однофазных двигателей не реверсивные, то есть они разработаны, чтобы вращаться только в одном направлении.

Как подключить однофазный двигатель к преобразователю частоты?

Изобретение относится к области электротехники и может быть использовано при проектировании электроприводов, в которых необходимо осуществлять экономически и технически обоснованную узкую задачу двухступенчатого регулирования скорости однофазного асинхронного двигателя. Техническим результатом является повышение эффективности двухскоростной системы управления однофазным асинхронным двигателем. Двухскоростная система управления однофазного асинхронного двигателя содержит генератор синусоидального напряжения, выход которого соединен с входом двухполупериодного выпрямителя, выход которого подключен через конденсатор к первичной обмотке трансформатора, его вторичная обмотка с помощью двухпозиционного коммутатора соединена с обмоткой статора однофазного асинхронного двигателя, которая в зависимости от скоростного режима с помощью двухпозиционного коммутатора соединяется либо с вторичной обмоткой трансформатора, либо с выходом генератора синусоидального напряжения. Изобретение относится к области электротехники и может найти применение при проектировании электроприводов, в которых необходимо осуществлять экономически и технически обоснованную узкую задачу двухступенчатого регулирования скорости однофазного асинхронного двигателя.

С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

Двухскоростная система управления однофазного асинхронного двигателя

Преобразователь частоты ESQ-A - это преобразователь частоты общего назначения с векторным управлением, предназначенный для управления асинхронными однофазными электродвигателями с конденсаторным пуском. ESQ-A это малогабаритный однофазный частотный преобразователь для управления однофазным асинхронным короткозамкнутым двигателем с конденсатором, предназначен для управления и преобразования частоты в маломощных однофазных асинхронных двигателях с конденсаторным пуском в таких приборах как кондиционеры воздуха, холодильные компрессоры, моечные машины, электровентиляторы, обдувочные аппараты, насосы, механический инструмент и прочее электрооборудование, где используются однофазные асинхронные двигатели. Применяется на однофазных электродвигателях имеющих возможность снятия конденсатора. Преимущества: - новейшие технологии векторного управления - улучшенный вращательный момент однофазного двигателя и бесперебойное переключение скорости - автоматическая энергосберегающая функция, возможность поддерживать постоянное напряжение на выходе при колебаниях напряжения в источнике питания - съемный пульт управления - встроенный RS опционально - встроенный ПЛК - встроенный ПИД-регулятор - автоматическая регулировка выходного напряжения. ESQ-A это инвертор для управления однофазного электрического двигателя, поэтому его проводка отличается от проводки инверторов для блоков управления стандартных трёхфазовых электрических двигателей. Управление осуществляется по трем проводам. Более подробно ознакомиться с характеристиками, подключением и функционалом можно перейдя по ссылке:.

Доливо-Добровольским так удобна. То сделать преобразователь частоты —это лишь вопрос личного желания и некоторых финансовых возможностей. Но при этом обороты не покрутишь и в мощности потеряешь и потом это не интересно.


all-audio.pro

Частотное управление асинхронным однофазным двигателем

Просмотр полной версии : ПЧВ и однофазный двигатель. Можно ли их подружить между собой? Может у кого появятся светлые мысли как это запустить? Заранее благодарен за ответы. ПВЧ работает с техфазными асинхронными двигателями Есть у меня для тебя очень светлая мысль.


Поиск данных по Вашему запросу:

Частотное управление асинхронным однофазным двигателем

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Самодельный частотник для асинхронного двигателя на STM8S часть2

Как подключить однофазный двигатель к преобразователю частоты?


С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне. При разности частоты вращения пульсирующих магнитных полей возникает вращающий момент. Именно этим принципом руководствуются при регулировании скорости вращения асинхронного двигателя с помощью частотного преобразователя.

Электродвигатель по факту может считаться двухфазным, но у него только одна рабочая обмотка статора, вторая, расположенная относительно главной под углом в 90 о является пусковой. Ротор однофазного двигателя коротко замкнутый, помещенный в неподвижное магнитное поле статора, начинает вращаться.

Кондиционеры воздуха, холодильные компрессоры, электрические вентиляторы, обдувочные агрегаты, водяные, дренажные и фекальные насосы, моечные машины используют в своей конструкции асинхронный трехфазный двигатель. Все типы частотников преобразуют переменное сетевое напряжение в постоянное напряжение.

Достоинства схемы — напряжение выхода имеет чистую синусоиду. Способность трансформатора к перегрузкам имеет большой запас по мощности. Использование тиристорного регулятора оборотов двигателя. Применяются тиристорные ключи, подключенные встречно-параллельно. При использовании для регулирования скорости вращения однофазных асинхронных двигателей, чтобы избежать негативного влияния индукционной нагрузки производят модификацию схемы.

Добавляют LRC-цепи для защиты силовых ключей, для корректировки волны напряжения используют конденсатор, минимальная мощность двигателя ограничивается, так гарантируется старт двигателя. Тиристор должен иметь ток выше тока электродвигателя. В схеме используется широтно-импульсная модуляция ШИМ с применением выходного каскада, построенного на использовании полевых или биполярных IGBT транзисторах.

Частотное регулирование асинхронного однофазного электродвигателя считается основным способом регулирования частоты электродвигателя, мощности, эффективности использования, скорости и показателей энергосбережения. Частотный преобразователь разрешает своему владельцу снизить энергопотребление и автоматизировать процессы в управлении оборудованием и производством.

Основные компоненты частотного преобразователя: выпрямитель, конденсатор, IGBT-транзисторы, собранные в выходной каскад. Благодаря способности управлением параметрами выходной частоты и напряжения достигается хороший энергосберегающий эффект. Энергосбережение выражается в следующем:.

Уменьшая частоту до 40Гц, уменьшается величина напряжения до В, означает, что уменьшается количество оборотов вращения насоса и потребление энергии снижается в 2,56 раз. Для повышения энергетической эффективности использования частотного преобразователя в управлении электродвигателем необходимо сделать следующее:. Компактное устройство преобразования частоты служит для управления однофазными электродвигателями для оборудования бытового предназначения.

Большинство частотных преобразователей обладает следующими конструктивными возможностями:. Важно: Однофазный преобразователь частоты, питаясь от однофазной сети напряжением В, выдает три линейных напряжения, величина каждого из них по В.

То есть, линейное напряжение между 2 фазами находится в прямой зависимости от величины выходного напряжения самого частотника. Главная задача однофазного преобразователя частоты — обеспечить питание как одно- так и трехфазного электродвигателя. В этом случае ток двигателя будет соответствовать параметрам подключения от трехфазной сети, и оставаться постоянным. Первое на что обращаем внимание при выборе частотника для своего оборудования — это соответствие сетевого напряжения и номинального значения тока нагрузки, на который рассчитан двигатель.

Способ подключения выбирается относительно рабочего тока. Главным в схеме подключения является наличие фазосдвигающего конденсатора, он служит для сдвига напряжения, поступающего на пусковую обмотку.

Она служит для пускового включения двигателя, иногда после того, как двигатель заработал, пусковая обмотка вместе с конденсатором отключается, иногда остается включенной.

Выходное линейное напряжение устройства на каждой фазе равно выходному напряжению частотника, то есть на выходе будет три напряжения линии, каждое по В. Для запуска может использоваться только пусковая обмотка. Фазосдвигающий конденсатор не может обеспечить равномерный фазовый сдвиг в пределах границ частот инвертора.

Частотник обеспечит равномерный сдвиг фаз. Для того, чтобы исключить из схемы конденсатор, нужно:. Watch this video on YouTube. Преобразователи частоты представляют собой устройства силовой промышленной электроники и предназначены для преобразования однофазного или трехфазного напряжения сети переменного тока постоянной частоты в трехфазное напряжение регулируемой частоты.

Возможность регулирования частоты выходного напряжения позволяет применять частотные преобразователи для изменения скорости вращения электродвигателей, одновременно обеспечивая умную защиту подключенной нагрузки.

Кроме основной защиты от перегрузки по току, большая часть современных преобразователей частоты оснащена функциями защиты от понижения напряжения источника питания защита ЗМН , перенапряжения, однофазного короткого замыкания на землю и других неисправностей. Наличие этих опций значительно увеличивает срок безаварийной эксплуатации электродвигателей. Системы под управлением частотных преобразователей обладают высоким коэффициентом полезного действия.

Окупаемость использования систем управления с преобразователями частоты в среднем достигается в первые года после внедрения. Выпрямленное напряжение от шины постоянного тока поступает на IGBT транзисторы, которые управляются через оптическую развязку от драйвера ШИМ.

На драйвер сигналы управления через схему согласования уровней передаются от микропроцессора, содержащего алгоритм управления. По этому алгоритму происходит управление работой драйвера и далее взаимозависимое открытие-закрытие соответствующих выходных транзисторов.

В результате на выходе каждого из трех каналов будут получены сигналы синусоидальной формы со смещением друг относительно друга. Чем выше частота переключения ШИМ — тем больше форма синусоиды близка к идеальной.

Эти значения могут быть изменены пользователем в процессе подготовки к эксплуатации. Помимо распространенных 3-х фазных асинхронных двигателей, на рынке предлагают однофазные моторы. Чаще всего ими являются насосы и вентиляторы. Самые популярные агрегаты в промышленности и в быту. И тут возникает вопрос? Как же ими управлять и регулировать скорость. Способов великое множество. Однофазный асинхронный двигатель Способы подключения мотора Подключение преобразователя частоты и однофазного двигателя.

Всем привет! С вами Гридин Семён, и в этом посте мы поговорим с вами о нюансах управления асинхронными однофазными двигателями.

Какой способ управления лучше? Наибольшее применение такие моторы нашли в быту и малом бизнесе. Они необходимы там, где нет трёхфазной сети. Мощность их ограничивается лишь частотой сети. Сами по себе аппараты маломощные, в диапазоне от Ватт до 2 килоВатт. Принцип работы однофазного двигателя заключается в смещении обмоток в пространстве относительно друг друга.

Ключевым моментом является сдвиг фазы в обмотках на градусов. Как правило, он подключён последовательно в цепи статорной обмотки. По конструкции моторы могут различаться. Так что, не к любому можно подключить преобразователь частоты, нужно обращать внимание прежде всего на схему подключения обмоток. Двухфазный двигатель с рабочей и пусковой обмоткой точно не сможет запуститься, совсем другой принцип работы. Мы к этому ещё вернёмся….

Какой из способов лучше всего? Знаете, всё зависит от задачи, которую нужно решить… А так на вкус и цвет, сами знаете…. Бюджетное подключение трехфазных моторов к однофазной сети. Просто цепляем конденсатор последовательно в цепи обмотки и превращаем аппарат из трехфазного в однофазный. Вот схема:. Как подбирать ёмкость в этом случае я расписывать не буду. В просторах интернета есть полно информации по этому поводу. Это один из самый старых способов управления.

Две обмотки двигателя подключаются параллельно, одна из них с конденсатором. К точкам обмоток соединяем симисторный регулятор. Их актуальность, по-моему мнению, ещё не пропала. Лучше всего использовать для не тяжёлых нагрузок вентиляторы, насосы. Учитывайте, что сим. Если ток активной нагрузки равен 50, то индуктивный будет 5.

На выходе устройства формируется напряжение сетевой частоты 50 Гц и настраивается среднеквадратичное число. Таким образом мы меняем время открытого состояния симистора за период следования напряжения.

Единственный недостаток: момент на валу падает относительно снижения напряжения. Вот вам пример Autonics SPK Входы для регулировки скорости универсальные.

Сюда можно подключить и потенциометр 1 кОм, и датчик с токовым сигналом мА, и напряжение В. О популярности преобразователя частоты нет смысла говорить. Так как это устройство давно известно всем. Частотный способ является основным в нашем 21 веке. Скорость регулируется с помощью ШИМ-модуляции.

Достаточно сложный девайс, требующий отдельной статьи. По входному напряжению существуют как и В, так и В. Но что же получается по выходу?


Преобразователь частоты для асинхронного двигателя

С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями. Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне. При разности частоты вращения пульсирующих магнитных полей возникает вращающий момент. Именно этим принципом руководствуются при регулировании скорости вращения асинхронного двигателя с помощью частотного преобразователя. Электродвигатель по факту может считаться двухфазным, но у него только одна рабочая обмотка статора, вторая, расположенная относительно главной под углом в 90 о является пусковой. Ротор однофазного двигателя коротко замкнутый, помещенный в неподвижное магнитное поле статора, начинает вращаться.

Три способа управления однофазными асинхронными двигателями. Однофазным частотным преобразователем с выходом 1 фаза В ( вариант 1).

Регулирование однофазного асинхронного двигателя с помощью частотного преобразователя

Рост автоматизации в современном мире приводит к возникновению необходимости использования инновационных и практичных систем, а также устройств управления электрическим оборудованием. Для таких целей применяется непосредственно однофазный преобразователь частоты. Данное устройство позволяет управлять и преобразовывать такой параметр в небольших по мощности однофазных асинхронных агрегатах, которые запускаются в работу с помощью специальных элементов. Это позволяет сэкономить расход ресурсов и активировать режим сбережения ресурсов на инновационном, эффективном уровне. Чтобы понять для чего необходимо такое устройство, изначально нужно разобраться с особенностями функционирования однофазного асинхронного оснащения. В основе работы этого двигателя лежит взаимодействие между вращающимся магнитным полем неподвижной части оборудования и токами, которые наводятся им в вале машины. Если возникают отклонения частоты вращения переменных магнитных полей, то формируется момент силы. Именно этот принцип и используется при регулировании угловой скорости машины посредством внедрения частотного преобразователя. Такие устройства активно применяются в различных производственных направлениях. Преимущества этого варианта состоят в бюджетности, компактности и автономности функционирования.

Однофазный преобразователь частоты

Назначение Малогабаритный однофазный частотный преобразователь для управления однофазным асинхронным короткозамкнутым двигателем с конденсатором. Данная продукция предназначена для управления и преобразования частоты в маломощных однофазных асинхронных двигателях с конденсаторным пуском в таких приборах как кондиционеры воздуха, холодильные компрессоры, моечные машины, электровентиляторы, обдувочные аппараты, насосы, механический инструмент и прочее электрооборудование, где используются однофазные асинхронные двигатели. Особенности - технологии векторного управления; - улучшенный вращательный момент однофазного двигателя и бесперебойное переключение скорости; - автоматическая энергосберегающая функция; - съемный пульт управления; - встроенный RS; - встроенный ПЛК; - встроенный ПИД-регулятор; - автоматическая регулировка выходного напряжения. Принцип работы Частотный преобразователь с ШИМ представляет собой инвертор с двойным преобразованием напряжения. Сначала сетевое напряжение или В выпрямляется входным диодным мостом, затем сглаживается и фильтруется с помощью конденсаторов.

С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

Преобразователи частоты

Преобразователь частоты предназначен для управления скоростью вращения трехфазного асинхронного электродвигателя с короткозамкнутым ротором. Стоит обратить внимание, что стандартные частотные преобразователи не предназначены для работы с однофазными двигателями. Почти все представленные на рынке частотные преобразователи предназначены для управления скоростью вращения трехфазного асинхронного электродвигателя с короткозамкнутым ротором. Чаще, когда говорят "однофазный преобразователь частоты", имеют ввиду частотный преобразователь с питанием от однофазный сети напряжением В. Такой преобразователь имеет на выходе 3 фазы по В и также предназначен для управления трехфазным асинхронным двигателем.

Однофазные частотные преобразователи (220 В)

Однофазный преобразователь частоты В служит для регулировки скоростных показателей электродвигателя. Это в значительной степени облегчает управление устройством, приводит его параметры к оптимальным показателям, повышает его срок эксплуатации и снижает расход электроэнергии. Благодаря таким характеристикам, представленное оборудование пользуется широкой популярностью как среди домашних пользователей, так и среди представителей корпоративной сферы. Особенность частотных преобразователей однофазного типа — трансформирование напряжения переменного типа, идущее от центральной сети, в импульсное, частота которого варьируется от 0 до колебаний в секунду. Ротор асинхронного электродвигателя, приобретающий питание синусоидального вида, характеризуется скоростью вращения, изменяемой прямо пропорционально частоте этого питания. При этом на вход инвертора подается однофазное напряжение. На выходе формируется напряжение уже трехфазного типа, частота которого кГц. Оно и питает электромотор.

Управление электроприводами · Преобразователи Малогабаритный однофазный частотный преобразователь для управления однофазным асинхронным короткозамкнутым двигателем с конденсатором. Данная продукция.

Регулирование оборотов однофазного электродвигателя

Частотное управление асинхронным однофазным двигателем

Войдите , пожалуйста. Хабр Geektimes Тостер Мой круг Фрилансим. Войти Регистрация. Скалярный частотник для однофазного асинхронного двигателя DIY или Сделай сам Начнём с того, что у каждого программера должен быть токарный станок.

Однофазные частотные преобразователи – Частотник для однофазного электродвигателя, принцип действия

Частотный асинхронный преобразователь частоты служит для преобразования сетевого трёхфазного или однофазного переменного тока частотой 50 60 Гц в трёхфазный или однофазный ток, частотой от 1 Гц до Гц. Промышленностью выпускаются частотные преобразователи электроиндукционного типа, представляющего собой по конструкции асинхронный двигатель с фазным ротором , работающий в режиме генератора-преобразователя, и преобразователи электронного типа. Частотные преобразователи электронного типа часто применяют для плавного регулирования скорости асинхронного электродвигателя или синхронного двигателя за счет создания на выходе преобразователя электрического напряжения заданной частоты. Электронный преобразователь частоты состоит из схем, в состав которых входит тиристор или транзистор , которые работают в режиме электронных ключей. В основе управляющей части находится микропроцессор , который обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач контроль, диагностика, защита.

В первом случае для уменьшения или увеличения частоты вращения применяются промышленные регуляторы напряжения — инверторные частотные преобразователи.

Частотный регулятор для асинхронного двигателя

Здравствуйте, гость Вход Регистрация. Правила Форума. Искать только в этом форуме? Дополнительные параметры. Частотные преобразователи на однофазную нагрузку , не могу найти :.

Три способа управления однофазными асинхронными двигателями

Мы являемся диллером по продаже преобразователей частоты ЕSQ. Частотный преобразователь ESQ-A для однофазных электродвигателей. Характеристики управления. Автоматическое усиление вращающего момента, ручное усиление вращающего момента 0.


all-audio.pro

Устройство для управления однофазными асинхронными двигателями

В статье приводится описание универсально­го устройства, которое обеспечивает пуск и тор­можение однофазного асинхронного конденса­торного двигателя с короткозамкнутым ротором при параллельном включении его вспомогатель­ной обмотки с главной через рабочий конденса­тор (КОАД). Устройство также обеспечивает пуск и торможение однофазного асинхронного двига­теля с короткозамкнутым ротором с пусковой об­моткой, отключаемой по окончании процесса пу­ска двигателя (АОД).

Известны устройства для управления КОАД, описанные в [1, 2]. Наиболее близким по техни­ческой сущности и достигаемому результату к предлагаемому устройству является устройство для управления двигателем, приведенное в [1], которое обеспечивает пуск и торможение КОАД. Устройство содержит однополюсный переключа­тель на два положения, с помощью которого под­ключается к сети главная обмотка двигателя и че­рез фазосмещающий конденсатор — вспомога тельная. Последовательная цепочка из диода, резистора и тормозного конденсатора, который шунтирован обмоткой реле, служит для торможе­ния двигателя, замыкающие контакты реле вклю­чены в цепь диода, шунтирующего контакты пе­реключателя в цепи питания КОАД.

Однако такое устройство не обеспечивает уп­равление асинхронным двигателем с пусковой об­моткой, отключаемой по окончании пуска.

Целью предлагаемого технического решения является расширение функциональных возмож­ностей известного устройства.

Данная цель достигается тем, что устройство ля управления КОАД, которое описано в [1], до­полнительно снабжено размыкающими контакта­ми герконового реле и выключателем, размыка­ющие контакты реле включены последовательно с фазосмещающим конденсатором КОАД и шун­тированы цепью выключателя.

Сущность предлагаемого технического реше­ния поясняется рис.1, на котором представлена универсальная схема управления асинхронными однофазными двигателями как с рабочим кон­денсатором — КОАД, так и с пусковой обмоткой, отключаемой по окончании процесса пуска — ОАД (авторское свидетельство автора статьи [3]).

Рис. 1

Описание устройства

Устройство содержит переключатель SA1, с помощью которого подключается к сети главная обмотка «Г» электродвигателя, а также пусковая обмотка «П» через фазосдвигающий элемент — конденсатор С1 и размыкающие контакты 1-2 герконового реле К1, параллельно которым включен выключатель SА2. Обмотка К1 реле шунтирована времязадающим конденсатором С2 и подключена к зажимам главной обмотки «Г» электродвигателя через резистор R1 и диод VD1, который катодом соединен с переключателем SA1. Контакты переключателя SA1 в цепи главной обмотки «Г» электродвигателя шунтированы по­следовательной цепочкой из замыкающих кон­тактов 1-3 реле К1 и диода VD2.

При пуске электродвигателя с пусковой обмот­кой «П», отключаемой по окончании пуска (двига­тель ОАД), контакты выключателя SA2 должны быть разомкнуты. При пуске электродвигателя с обмоткой «В» (вспомогательная), не отключаемой по окончании пуска (двигатель КОАД), контакты выключателя SА2 должны быть замкнуты.

Работа устройства

При пуске электродвигателя с пусковой об­моткой (АОД), размыкают выключатель SA2 и включают переключатель SA1 («Пуск»). В этом случае обтекается током главная обмотка «Г» и пусковая «П» через фазосдвигающий конденса­тор С1 и замкнутые контакты 1-2 реле К1. АОД за­пускается. Одновременно протекает ток через последовательную цепочку из диода VD1, резис­тора R1 и конденсатора С2. Конденсатор С2 за­ряжается, и величина тока, протекающего по не­му, уменьшается, а через обмотку реле К1 увели­чивается. При определенном токе обмотки реле К1 оно переключается и замыкает контакты 1-3. В результате, пусковая обмотка «П» с фазосмеща­ющим элементом С1 отключается контактами 1-2 от сети, а последовательная цепочка из диода VD2 и замкнутые контакты 1-3 шунтирует замкну­тые контакты переключателя SA1. Пуск АОД окон­чен. В течение всего последующего времени рабо­ты АОД контакты 1-2 разомкнуты, а контакты 1-3 реле К1 замкнуты.

При отключении АОД от сети переключателем SA1 его обмотки главная «Г» и пусковая «П» со­единяются параллельно переключателем SA1 и обтекаются выпрямленным током сети через ди­од VD2, замкнутые контакты 1-3 реле К1. АОД ин­тенсивно тормозится. По окончании разряда кон­денсатора С2 на обмотку реле К1, последнее размыкает свои контакты 1-3 в цепи диода VD2, отключая обмотки «Г» и «П» АОД от сети.

Одновременно, устройство обеспечивает пуск и торможение двигателей (КОАД) с постоян­но включенными обмотками. В этом случае кон­такты выключателя SA2 должны быть замкнуты. При включении двигателя обтекается током глав­ная обмотка «Г» через переключатель SA1 и вспо­могательная «В» через замкнутые контакты вы­ключателя SA2 и конденсатор С1. В остальном работа схемы при пуске и торможении аналогич­на вышеописанному за исключением того, что обмотка «В» и конденсатор С1 остаются подклю­ченными к сети через замкнутые контакты вы­ключателя SA2 в течение всего времени работы двигателя.

Таким образом, введение в устройство размы­кающих контактов реле и выключателя, измене­ние взаимосвязей между элементами обеспечи­вают пуск и динамическое торможение электро­двигателя. Также уменьшается искрения контак­тов включателя «Пуск» SA1 за счет шунтирующего действия цепочки из диода VD2 и контактов реле 1-3. Устройство пригодно не только для конден­саторных двигателей, но и двигателей с пусковой обмоткой, отключаемой по окончании пуска.

Детали и наладка устройства практически ни­чем не отличаются от указанных в [2].

Литература

  1. Авторское свидетельство №813641 СССР, М. Кл3. Н 02 Р 3/24, Н 02 К 17/04. Однофазный асинхронный электродвигатель с устройством для динамического торможения / К.В. Коломойцев (СССР). — №2692759 / 24-07: заяв. 07.12.78; опуб.15.03.81 Бюл. №10.
  2. Коломойцев К.В. Однофазный асинхронный конденсаторный двигатель с устройством для ди­намического торможения // Электрик. — 2011. — №5. — С.48-49.
  3. Авторское свидетельство N2984383 СССР, М. Кл3. Н 02 Р 3/24, Н 02 К 17/04. Однофазный асинхронный электродвигатель с устройством для торможения / К.В. Коломойцев (СССР). — №3243286 / 24-07: заяв. 02.02.81.

Автор: Константин Коломейцев, г. Ивано-Франковск
Источник: Радиоаматор №1/2017

Возможно, вам это будет интересно:

meandr.org

Принцип работы частотного преобразователя для асинхронного двигателя

Содержание:
  1. Что такое частотный преобразователь
  2. Принцип действия
  3. Настройка частотного преобразователя для электродвигателя
  4. Подбор частотного преобразователя для двигателя
  5. Видео

Трехфазные асинхронные двигатели нашли самое широкое применение в промышленности и других областях. Современное оборудование просто невозможно представить без этих агрегатов. Одной из важнейших составляющих рабочего цикла машин и механизмов является их плавный пуск и такая же плавная остановка после выполнения поставленной задачи. Такой режим обеспечивается путем использования преобразователей частоты. Эти устройства проявили себя наиболее эффективными в больших электродвигателях, обладающих высокой мощностью.

С помощью преобразователей частоты успешно выполняется регулировка пусковых токов, с возможностью контроля и ограничения их величины до нужных значений. Для правильного использования данной аппаратуры необходимо знать принцип работы частотного преобразователя для асинхронного двигателя. Его применение позволяет существенно увеличить срок службы оборудования и снизить потери электроэнергии. Электронное управление, кроме мягкого пуска, обеспечивает плавную регулировку работы привода в соответствии с установленным соотношением между частотой и напряжением.


Что такое частотный преобразователь

Основной функцией частотных преобразователей является плавная регулировка скорости вращения асинхронных двигателей. С этой целью на выходе устройства создается трехфазное напряжение с переменной частотой.

Преобразователи частоты нередко называются инверторами. Их основной принцип действия заключается в выпрямлении переменного напряжения промышленной сети. Для этого применяются выпрямительные диоды, объединенные в общий блок. Фильтрация тока осуществляется конденсаторами с высокой емкостью, которые снижают до минимума пульсации поступающего напряжения. В этом и заключается ответ на вопрос для чего нужен частотный преобразователь.

В некоторых случаях в схему может быть включена так называемая цепь слива энергии, состоящая из транзистора и резистора с большой мощностью рассеивания. Данная схема применяется в режиме торможения, чтобы погасить напряжение, генерируемое электродвигателем. Таким образом, предотвращается перезарядка конденсаторов и преждевременный выход их из строя. В результате использования частотников, асинхронные двигатели успешно заменяют электроприводы постоянного тока, имеющие серьезные недостатки. Несмотря на простоту регулировки, они считаются ненадежными и дорогими в эксплуатации. В процессе работы постоянно искрят щетки, а электроэрозия приводит к износу коллектора. Двигатели постоянного тока совершенно не подходят для взрывоопасной и запыленной среды.

В отличие от них, асинхронные двигатели значительно проще по своему устройству и надежнее, благодаря отсутствию подвижных контактов. Они более компактные и дешевые в эксплуатации. К основному недостатку можно отнести сложную регулировку скорости вращения традиционными способами. Для этого было необходимо изменять питающее напряжение и вводить дополнительные сопротивления в цепь обмоток. Кроме того, применялись и другие способы, которые на практике оказывались неэкономичными и не обеспечивали качественной регулировки скорости. Но, после того как появился преобразователь частоты для асинхронного двигателя, позволяющий плавно регулировать скорость в широком диапазоне, все проблемы разрешились.

Одновременно с частотой изменяется и подводимое напряжение, что позволяет увеличить КПД и коэффициент мощности электродвигателя. Все это позволяет получить высокие энергетические показатели асинхронных двигателей, продлить срок их эксплуатации.


Принцип действия частотного преобразователя

Эффективное и качественное управление асинхронными электродвигателями стало возможно за счет использования совместно с ними частотных преобразователей. Общая конструкция представляет собой частотно-регулируемый привод, который позволил существенно улучшить технические характеристики машин и механизмов.

В качестве управляющего элемента данной системы выступает преобразователь частоты, основной функцией которого является изменение частоты питающего напряжения. Его конструкция выполнена в виде статического электронного узла, а формирование переменного напряжения с заданной изменяемой частотой осуществляется на выходных клеммах. Таким образом, за счет изменения амплитуды напряжения и частоты регулируется скорость вращения электродвигателя.

Управление асинхронными двигателями осуществляется двумя способами:

  • Скалярное управление действует в соответствии с линейным законом, согласно которому амплитуда и частота находятся в пропорциональной зависимости между собой. Изменяющаяся частота приводит к изменениям амплитуды поступающего напряжения, оказывая влияние на уровень крутящего момента, коэффициент полезного действия и коэффициент мощности агрегата. Следует учитывать зависимость выходной частоты и питающего напряжения от момента нагрузки на валу двигателя. Для того чтобы момент нагрузки был всегда равномерным, отношение амплитуды напряжения к выходной частоте должно быть постоянным. Данное равновесие как раз и поддерживается частотным преобразователем.
  • Векторное управление удерживает момент нагрузки в постоянном виде во всем диапазоне частотных регулировок. Повышается точность управления, электропривод более гибко реагирует на изменяющуюся выходную нагрузку. В результате, момент вращения двигателя находится под непосредственным управлением преобразователя. Нужно учитывать, что момент вращения образуется в зависимости от тока статора, а точнее – от создаваемого им магнитного поля. Под векторным управлением фаза статорного тока изменяется. Эта фаза и есть вектор тока осуществляющий непосредственное управление моментом вращения.

Настройка частотного преобразователя для электродвигателя

Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель. Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если частотник предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом. В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.

Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя. Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы. Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.

При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя. Предварительно обмотки в двигателе соединяются по схеме «звезда» или «треугольник», в зависимости от напряжения, выдаваемого преобразователем. Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».

Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации. Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте. Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.

После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса. Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения. Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.


Частотные преобразователи для асинхронных двигателей

Благодаря частотным преобразователям, работа современных асинхронных двигателей отличается высокой эффективностью, устойчивостью и безопасностью. Это особенно важно, поскольку каждый электродвигатель отличается индивидуальными особенностями режима работы. Поэтому оптимизации параметров питания агрегатов с использованием преобразователей частоты придается большое значение. Когда частотный преобразователь выбирается для каких-либо конкретных целей, в этом случае должны обязательно учитываться его рабочие параметры.

Нормальная работа устройства будет зависеть от типа электродвигателя, его мощности, диапазона, скорости и точности регулировок, а также от поддержания стабильного момента вращения вала. Эти показатели имеют первостепенное значение и должны органично сочетаться с габаритами и формой аппарата. Следует обратить особое внимание на то, как расположены элементы управления и будет ли удобно им пользоваться.

Выбирая устройство, необходимо заранее знать, в каких условиях оно будет эксплуатироваться. Если сеть однофазная, то и преобразователь должен быть таким же. То же самое касается и трехфазных аппаратов. Многое зависит от мощности асинхронных двигателей. Если при запуске на валу необходим высокий пусковой момент, то и частотный преобразователь должен быть рассчитан на большее значение тока.


electric-220.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о