Что такое резонанс в электрической цепи – Понятие резонанса напряжений в электрических цепях переменного тока

в цепи переменного тока и напряжения

Многие люди, изучая электронику и все, что с ней связано, сталкиваются с таким понятием как резонанс токов. Что оно собой представляет, при каких условиях возникает резонанс токов, как используется и как его правильно подсчитать? Об этом далее.

Что это такое

Резонанс токов — разновидность состояния электрической цепи, когда общий вид токовых показателей совпадает по фазам уровню напряжения, а мощность реактивного вида равна нулю или же она представлена в активном виде.

. Резонанс токов

Этот вариант развития событий характерен для переменного тока и имеет не только положительные свойства, но и некоторые нежелательные последствия. Так, благодаря резонансу работает радиотехника, автоматика и проволочная телефония, но в то же время возникают перенапряжения и сбои в работе электрической системы.

Определение из учебного пособия

При каких условиях возникает

Условием того, чтобы возникло это явление, является равные показатели проводниковой частоты, где BL=BC. То есть емкостная с индуктивной проводимостью должна быть равна. Только тогда подобное явление резонанса токов наблюдается в электрической цепи. Он при этом может быть как положительным, так и отрицательным. В любом радиоприемнике есть колебательный контур, который из-за индуктивного или емкостного изменения, настраивается на нужный сигнал радиоволны. В другом случае, это ведет к тому, что появляются скачки напряжения или ток в цепи и появляется аварийная ситуация.

В условиях лаборатории, он возникает во время, когда изменяется емкость и не изменяется индуктивность катушки L. В таком случае формула выглядит как Bc=C

При каких условиях возникает

Как используется

Резонансные токи используются сегодня в некоторых фильтрующих системах, радиотехнике, электричестве, радиостанциях, асинхронных двигателях, высокоточных электрических сварных установках, колебательных генераторных электрических контурах и высокочастотных приборах. Нередко, когда они применяются, чтобы снизить генераторную нагрузку.

Обратите внимание! Простейшая цепь, где наблюдаются они, это параллельного вида колебательный контур. Такие контуры используются в современном промышленном индукционном котловом оборудовании и улучшают показатели КПД.

Сфера применения

Принцип действия

Токовый резонанс можно заметить во внутренней поверхности электрической цепи, которая имеет параллельное катушечное, резисторное и конденсаторное подсоединение. Главный принцип того, как работает стандартный аппарат, не сложен в понимании.

Когда включается электрическое питание, внутри конденсаторной установки накапливается заряд до номинального напряжения. В этом время отключается питающий источник и замыкается цепь в контур. Этот момент сопровождается переносом разряда на часть катушки. Далее показатели тока, которые проходят по катушке, генерируют магнитное поле. Создается электродвижущая самостоятельная индукционная сила по направлению встречному току. При полном конденсаторном разряде максимально увеличиваются токовые показатели. Объем энергии становится магнитным индукционным полем. В результате данный цикл повторяется, и катушечное поле преобразовывается в конденсаторный заряд.

Принцип работы

Как правильно рассчитать

Токовый резонанс очень важно правильно рассчитать, если есть параллельное соединение, предотвращающая появление помех около системы. Для правильного расчета необходимо понять, какие показатели мощности в электросети. Средняя стандартная мощность, рассеивающаяся при резонансном контуре, выражается при помощи среднеквадратичных токовых показателей и напряжения. При резонансе мощностный коэффициент равен единице и формула имеет вид, как на картинке.

Формула расчета

Чтобы правильно определить нулевой импеданс, понадобиться воспользоваться стандартной формулой, которая дана ниже.

Формула резонансных кривых

Что касается аппроксимирования резонанса колебательных частот, это можно выяснить по следующей формуле.

Расчет колебательного контура

Обратите внимание! Для получения максимально точных данных по приведенным формулам, округлять данные не нужно. Благодаря этому получится грамотный расчет, который приведет к достойной экономии переменного тока, если речь идет о подсчете в целях снижения счетов.

В целом, резонанс токов — это то, что происходит в части параллельного колебательного контура, в случае его подключения к источнику напряжения, частота какого может совпадать с контурной. Возникает при условиях, когда цепь, имеющая параллельное соединение резисторной катушки и конденсатора, равна проводимости BL=BC. Правильно сделать весь необходимый подсчет можно по специальной формуле или, прибегая к использованию специальных измерительных инструментов в виде мультиметра.

rusenergetics.ru

Резонанс напряжений. Что такое резонанс в электрической цепи

Резонанс является одним из самых распространенных в природе физических явлений. Явление резонанса можно наблюдать в механических, электрических и даже тепловых системах. Без резонанса у нас не было бы радио, телевидения, музыки и даже качелей на детских площадках, не говоря уже об эффективнейших диагностических системах, применяемых в современной медицине. Одним из самых интересных и полезных видов резонанса в электрической цепи является резонанс напряжений.

Элементы резонансной цепи

Явление резонанса может возникнуть в так называемой RLC-цепи, содержащей следующие компоненты:

  • R - резисторы. Эти устройства, относящиеся к так называемым активным элементам электрической цепи, преобразуют электрическую энергию в тепловую. Другими словами, они удаляют энергию из контура и преобразуют ее в тепло.
  • L - индуктивность. Индуктивность в электрических цепях - аналог массы или инерции в механических системах. Этот компонент не очень заметен в электрической цепи, пока не попробуешь сделать в ней какие-либо изменения. В механике, например, таким изменением является изменение скорости. В электрической цепи - изменение тока. Если оно по какой-либо причине происходит, индуктивность противодействует такому изменению режима цепи.
  • С – обозначение для конденсаторов, которые представляют собой устройства, хранящие электрическую энергию подобно тому, как пружины сохраняют механическую энергию. Индуктивность концентрирует и сохраняет магнитную энергию, в то время как конденсатор концентрирует заряд и тем самым хранит электрическую энергию.

Понятие резонансного контура

Ключевыми элементами резонансного контура являются индуктивность (L) и емкость (C). Резистор имеет тенденцию к гашению колебаний, поэтому он удаляет энергию из контура. При рассмотрении процессов, происходящих в колебательном контуре, мы его временно игнорируем, но необходимо помнить, что подобно силе трения в механических системах электрическое сопротивление в цепях невозможно устранить.

Резонанс напряжений и резонанс токов

В зависимости от способа соединения ключевых элементов резонансный контур может быть последовательным и параллельным. При подключении последовательного колебательного контура к источнику напряжения с частотой сигнала, совпадающей с собственной частотой, при определенных условиях в нем возникает резонанс напряжений. Резонанс в электрической цепи с параллельно соединенными реактивными элементами называется резонансом токов.

Собственная частота резонансного контура

Мы можем заставить систему колебаться с собственной частотой. Для этого сначала необходимо зарядить конденсатор, как показано на верхнем рисунке слева. Когда это будет выполнено, ключ переводится в положение, показанное на том же рисунке справа.

В момент времени "0" вся электрическая энергия сохраняется в конденсаторе, и ток в контуре равен нулю (рисунок внизу). Обратите внимание, что верхняя пластина конденсатора заряжена положительно, а нижняя - отрицательно. Мы не можем видеть колебания электронов в цепи, но мы можем измерить ток амперметром, а при помощи осциллоскопа отследить характер зависимости тока от времени. Отметим, что T на нашем графике - это время, необходимое для завершения одного колебания, носящего в электротехнике название "период колебания".

Ток течет по часовой стрелке (рисунок внизу). Энергия передается из конденсатора в катушку индуктивности. На первый взгляд может показаться странным, что индуктивность содержит энергию, однако это похоже на кинетическую энергию, содержащуюся в движущейся массе.

Поток энергии возвращается обратно в конденсатор, но обратите внимание, что полярность конденсатора теперь изменилась. Другими словами, нижняя пластина теперь имеет положительный заряд, а верхняя пластина - отрицательный заряд (рисунок внизу).

Теперь система полностью обратилась, и энергия начинает поступать из конденсатора опять в индуктивность (рисунок внизу). В итоге энергия полностью возвращается к своей отправной точке и готова начать цикл заново.

Частота колебаний может быть аппроксимирована следующим образом:

где: F - частота, L - индуктивность, C - емкость.

Рассмотренный на этом примере процесс отражает физическую суть резонанса напряжений.

Исследование резонанса напряжений

В реальных схемах LC всегда присутствует небольшое сопротивление, которое с каждым циклом уменьшает прирост амплитуды тока. После нескольких циклов ток уменьшается до нуля. Этот эффект называется "затухание синусоидального сигнала". Скорость затухания тока до нулевого значения зависит от величины сопротивления в цепи. Тем не менее, сопротивление не изменяет частоту колебаний резонансного контура. Если сопротивление достаточно велико, синусоидальные колебания в контуре не возникнут вообще.

Очевидно, там, где существует собственная частота колебаний, есть возможность возбуждения резонансного процесса. Мы делаем это, включая в последовательную цепь источник питания переменного ток (АС), как показано на рисунке слева. Термин "переменный" означает, что выходное напряжение источника колеблется с определенной частотой. Если частота источника питания совпадает с собственной частотой контура, возникает резонанс напряжений.

Условия возникновения

Сейчас мы рассмотрим условия возникновения резонанса напряжений. Как показано на последнем рисунке, мы вернули резистор в контур. При отсутствии резистора в контуре ток в резонансной цепи будет нарастать до некоторого максимального значения, определяемого параметрами элементов контура и мощностью источника питания. Увеличение сопротивления резистора в резонансной цепи повышает тенденцию к затуханию тока в контуре, но не влияет на частоту резонансных колебаний. Как правило, режим резонанса напряжений не наступает, если сопротивление цепи резонанса удовлетворяет условию R = 2(L/C)

0,5.

Использование резонанса напряжений для передачи радиосигнала

Явление резонанса напряжений является не только любопытнейшим физическим феноменом. Оно играет исключительную роль в технологии беспроводных коммуникаций – радио, телевидении, сотовой телефонии. Передатчики, используемые для беспроводной передачи информации, в обязательном порядке содержат схемы, предназначенные для резонирования на определенной для каждого устройства частоте, называемой несущей частотой. При помощи передающей антенны, подключенной к передатчику, он излучает электромагнитные волны на несущей частоте.

Антенна на другом конце приемо-передающего тракта получает этот сигнал и подает его на приемный контур, предназначенный для резонирования на частоте несущей. Очевидно, что антенна принимает множество сигналов на различных частотах, не говоря уже о фоновом шуме. Благодаря наличию на входе приемного устройства, настроенного на несущую частоту резонансного контура, приемник выбирает единственно правильную частоту, отсеивая все ненужные.

После детектирования амплитудно-модулированного (AM) радиосигнала, выделенный из него низкочастотный сигнал (НЧ) усиливается и подается на звуковоспроизводящее устройство. Это простейшая форма радиопередачи очень чувствительна к шумам и помехам.

Для повышения качества принимаемой информации разработаны и успешно используются другие, более совершенные способы передачи радиосигнала, которые также базируются на использовании настроенных резонансных систем.

Частотная модуляция или FM-радио решает многие из проблем радиопередачи с амплитудно-модулированным передающим сигналом, однако это достигается ценой существенного усложнения системы передачи. В FM-радио системные звуки в электронном тракте превращаются в небольшие изменения несущей частоты. Часть оборудования, которое выполняет это преобразование, называется "модулятор" и используется с передатчиком.

Соответственно, к приемнику должен быть добавлен демодулятор для преобразования сигнала обратно в форму, которая может быть воспроизведена через громкоговоритель.

Другие примеры использования резонанса напряжения

Резонанс напряжений как основополагающий принцип заложен также в схемотехнике многочисленных фильтров, широко применяемых в электротехнике для устранения вредных и ненужных сигналов, сглаживания пульсаций и генерирования синусоидальных сигналов.

fb.ru

Резонанс напряжений и резонанс токов

В физике резонансом называется явление, при котором в колебательном контуре частота свободных колебаний совпадает с частотой вынужденных колебаний. В электричестве аналогом колебательного контура служит цепь, состоящая из сопротивления, ёмкости и индуктивности. В зависимости от того как они соединены различают резонанс напряжений и резонанс токов.

Резонанс напряжений

Резонанс напряжений возникает в последовательной RLC-цепи.

 

Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=wр, а следовательно и индуктивного и емкостного сопротивлений xL=xC. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке UL и на конденсаторе UC будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.

При резонансе напряжения UC и UL могут быть намного больше, чем напряжение источника, что опасно для цепи.

 

С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.

 

Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту 

Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.

Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.

Резонанс токов

Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.

 

Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=wр, следовательно проводимости BL=BC. То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.

Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.

 

Выразим резонансную частоту 

Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.

Явление резонанса может носить как положительный, так и отрицательный характер. Например, любой радиоприемник имеет в своей основе колебательный контур, который с помощью изменения индуктивности или емкости настраивают на нужную радиоволну. С другой стороны, явление резонанса может привести к скачкам напряжения или тока в цепи, что в свою очередь приводит к аварии.

  • Просмотров: 43295
  • electroandi.ru

    Закон Ома для цепи переменного тока. Мощность в цепи переменного тока. Резонанс в электрической цепи.

    Закон Ома для полной цепи переменного тока.

    Если в цепи переменного тока имеются нагрузки разных типов, то закон Ома выполняется только для максимальных (амплитудных) и действующих значений тока и напряжения.

    В этом случае: 

     - полное сопротивление переменному току.

    Учитывая, что отношение напряжения к силе тока – это сопротивление, и подставляя конкретные выражения для соответствующих сопротивлений, получим: .

    Сдвиг фаз в цепи переменного тока определяется характером нагрузки:

       или .

     

    Мощность в цепи переменного тока.

    Активной мощностью переменного тока называется средняя за период мощность необратимых преобразований в цепи переменного тока (преобразование энергии электрического тока во внутреннюю энергию): 

    или, переходя к действующим значениям, .

    Величина  наз. коэффициентом мощности. При малом коэффициенте мощности потребляется лишь малая часть мощности, вырабатываемой генератором. Остальная часть мощности периодически перекачивается от генератора к потребителю и обратно и рассеивается в линиях электропередач.

    коэффициент мощности

    Резонанс в электрической цепи.

    Резонанс в электрической цепи — явление резкого возраста­ния амплитуды вынужденных колебаний тока при приближении частоты внешнего напряжения (эдс) и собственной частоты колебательного кон­тура.

     

    Из выражения для полного сопротивления переменному току 

    видим, что сопротивление будет минимальным (сила тока при заданном напряжении – максимальной) при условии  или .

     

    Следовательно,  - т.е. частота изменения внешнего напряжения равна собственной частоте колебаний в контуре.

    Амплитуды колебаний напряжения на индуктивности и емкости будут равны

     

    и 

    - т.е. они равны по величине и противоположны по фазе (напряжение на индуктивности опережает по фазе напряжение на емкости на p).

     

    Следовательно, .

     

    Полное падение напряжения в контуре равно падению напряжения на активном сопротивлении. Амплитуда установившихся колебаний тока будет опреде­ляться уравнением .  В этом и состоит смысл явления резонанса.

     

    При этом если величина ,

     то напряжения на емкостной и индуктивной нагрузках могут оказаться много больше внешнего напряжения (эдс генератора)!

    На рисунке представлена зависимость тока в колеба­тельном контуре от частоты при значениях R, где R1<R2<R3.

    В параллельном контуре при малых активных сопротивлениях R1 и R2 токи в параллельных ветвях противоположны по фазе. Тогда, согласно правилу Кирхгофа .

    В случае резонанса . Резкое уменьшение амплитуды силы тока во внешней цепи, питающей параллельно соединенные емкостное и индуктивное сопротивления при приближении частоты внешнего напряжения к собственной частоте колебательного контура наз. резонансом токов.

     

    Применение: одно из основных применений резонанса в электрической цепи – настройка радио и телевизионных приемников  на частоту передающей станции. Необходимо учитывать резонансные явления, когда в цепи, не рассчитанной на работу в условиях резонанса, возникают чрезмерно большие токи или напряжения (расплавление проводов, пробой изоляции и т.д.).

     

    www.eduspb.com

    Резонанс токов: применение, принцип резонса тока, расчет контура

    Знание физики и теории этой науки напрямую связано с ведением домашнего хозяйства, ремонтом, строительство и машиностроением. Предлагаем рассмотреть, что такое резонанс токов и напряжений в последовательном контуре RLC, какое основное условие его образования, а также расчет.

    Что такое резонанс?

    Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.

    Соединение двух ветвей при резонансе

    Признаки резонанса:

    1. Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
    2. Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.

    Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:

    1. Последовательный;
    2. Параллельный.

    Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь. Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение. Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.

    Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость. Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту. Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.

    Применение

    Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор. Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн. Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.

    Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.

    Принцип резонанса токов

    Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:

    Схема для питания конденсатора

    Переключатель будет отвечать за направление колебаний.

    Схема: переключатель резонансной схемы

    Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.

    Схема: ток в резонансной схеме равен нулю

    Направленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.

    Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.

    Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.

    В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0. Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны. Если сопротивление достаточно высокой, ток не будет колебаться вообще.

    Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.

    Расчет резонансного контура

    Нужно отметить, что это явление требует весьма тщательного расчета, особенно, если используется параллельное соединение. Для того чтобы в технике не возникали помехи, нужно использовать различные формулы. Они же Вам пригодятся для решения любой задачи по физике из соответствующего раздела.

    Очень важно знать, значение мощности в цепи. Средняя мощность, рассеиваемая в резонансном контуре, может быть выражена в терминах среднеквадратичного напряжения и тока следующим образом:

    R ср= I2конт * R = (V2конт / Z2) * R.

    При этом, помните, что коэффициент мощности при резонансе равен cos φ = 1

    Сама же формула резонанса имеет следующий вид:

    ω0 = 1 / √L*C

    Нулевой импеданс в резонансе определяется при помощи такой формулы:

    Fрез = 1 / 2π √L*C

    Резонансная частота колебаний может быть аппроксимирована следующим образом:

    F = 1/2 р (LC) 0.5

    Где: F = частота

    L = индуктивность

    C = емкость

    Как правило, схема не будет колебаться, если сопротивление (R) не является достаточно низким, чтобы удовлетворять следующим требованиям:

    R = 2 (L / C) 0.5

    Для получения точных данных, нужно стараться не округлять полученные значения вследствие расчетов. Многие физики рекомендуют использовать метод, под названием векторная диаграмма активных токов. При правильном расчете и настройке приборов, у Вас получится хорошая экономия переменного тока.

    www.asutpp.ru

    Резонанс в электрической цепи: причины резонанса

    В том случае, когда электрическая цепь содержит элементы с емкостными, а также с индуктивными свойствами может возникнуть режим резонанса. Кроме того, резонанс в электрической цепи появляется в случае совпадения по фазе тока и напряжения. Реактивное сопротивление и проводимость на входе имеют нулевое значение. Полностью отсутствует сдвиг фаз, и цепь становится активной.

    Причины резонанса

    Резонанс напряжений появляется в случае последовательного соединения участков, содержащих сопротивления индуктивного и емкостного характера, а также резисторы. Такая простая цепь очень часто носит название последовательного или параллельного контура.

    В резонансном контуре вовсе не обязательно присутствие резистивного сопротивления. Тем не менее, его необходимо учитывать при определении сопротивления проводников. Таким образом, резонансный режим полностью зависит от параметров и свойств электрической цепи. На него никак не влияют внешние источники электрической энергии.

    Для того, чтобы определить условия, при которых возникает режим резонанса, необходимо проверить электрическую цепь с целью определения ее проводимости или комплексного сопротивления. Кроме того, её мнимая часть должна быть выделена и приравнена к нулю.

    Характеристики резонанса

    Все параметры, входящие в цепь, и присутствующие в полученном уравнении, так или иначе, влияют на показатели, характеризующие резонансные явления. В зависимости от параметров, входящих в состав уравнения, решение может иметь несколько различных вариантов. При этом, все решения будут соответствовать собственному варианту и в дальнейшем обретать физический смысл.

    В различных видах электро цепей, явление резонанса рассматривается, как правило, при анализе в случае нескольких вариантов. В этих же случаях может проводиться синтез цепи, в котором заранее заданы резонансные параметры.

    Электрические цепи которые имеют большое количество связей и реактивных элементов, представляют собой серьезную проблему при проведении анализа. Их никогда не используют при синтезе с заранее заданными свойствами, поскольку далеко не всегда возможно получение желаемого результата. Поэтому, в практической деятельности производится исследование двухполюсных приборов самых простых конструкций и на основании полученных данных проводится создание более сложных цепей с заранее заданными параметрами.

    Таким образом, резонанс электрической цепи представляет собой достаточно сложное явление, благодаря использованию в ней определенных элементов. Учет этого явления позволяет наиболее полно определить параметры и прочие характеристики.

    Резонансы токов и напряжений

    electric-220.ru

    Явление резонанса и электрических цепей

    САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

    РЕФЕРАТ

    На тему:

    Электрические цепи переменного тока Явление резонанса.

    Выполнил:

    Антропов А. И.

    Проверила:

    Бородина А. В.

    Самара 2009

    Электрические цепи переменного тока. Явление резонанса

    Явление резонанса относится к наиболее важным с практической точки зрения свойствам электрических цепей. Оно заключается в том, что электрическая цепь, имеющая реактивные элементы обладает чисто резистивным сопротивлением .

    Общее условие резонанса для любого двухполюсника можно сформулировать в виде Im[Z ]=0 или Im[Y ]=0, где Z и Y комплексное сопротивление и проводимость двухполюсника. Следовательно, режим резонанса полностью определяется параметрами электрической цепи и не зависит от внешнего воздействия на нее со стороны источников электрической энергии.

    Для определения условий возникновения режима резонанса в электрической цепи нужно:

    · найти ее комплексное сопротивление или проводимость;

    · выделить мнимую часть и приравнять нулю.

    Все параметры электрической цепи, входящие в полученное уравнение, будут в той или иной степени влиять на характеристики явления резонанса.

    Уравнение Im[Z ]=0 может иметь несколько корней решения относительно какого-либо параметра. Это означает возможность возникновения резонанса при всех значениях этого параметра, соответствующих корням решения и имеющих физический смысл.

    В электрических цепях резонанс может рассматриваться в задачах:

    · анализа этого явления при вариации параметров цепи;

    · синтеза цепи с заданными резонансными параметрами.

    Электрические цепи с большим количеством реактивных элементов и связей могут представлять значительную сложность при анализе и почти никогда не используются для синтеза цепей с заданными свойствами, т.к. для них не всегда возможно получить однозначное решение. Поэтому на практике исследуются простейшие двухполюсники и с их помощью создаются сложные цепи с требуемыми параметрами.

    Сдвиг фаз между током и напряжением. Понятие двухполюсника

    Простейшими электрическими цепями, в которых может возникать резонанс, являются последовательное и параллельное соединения резистора, индуктивности и емкости. Соответственно схеме соединения, эти цепи называются последовательным и параллельным резонансным контуром . Наличие резистивного сопротивления в резонансном контуре по определению не является обязательным и оно может отсутствовать как отдельный элемент (резистор). Однако при анализе резистивным сопротивлением следует учитывать по крайней мере сопротивления проводников.

    Последовательный резонансный контур представлен на рис. 1 а). Комплексное сопротивление цепи равно

    Условием резонанса из выражения (1) будет


    Таким образом, резонанс в цепи наступает независимо от значения резистивного сопротивления R когда индуктивное сопротивление xL = wL равно емкостному xC = 1/(wC ) . Как следует из выражения (2), это состояние может быть получено вариацией любого их трех параметров - L , C и w , а также любой их комбинацией. При вариации одного из параметров условие резонанса можно представить в виде

    Все величины, входящие в выражение (3) положительны, поэтому эти условия выполнимы всегда, т.е. резонанс в последовательном контуре можно создать

    · изменением индуктивности L при постоянных значениях C и w ;

    · изменением емкости C при постоянных значениях L и w ;

    · изменением частоты w при постоянных значениях L и C .

    Наибольший интерес для практики представляет вариация частоты. Поэтому рассмотрим процессы в контуре при этом условии.

    При изменении частоты резистивная составляющая комплексного сопротивления цепи Z остается постоянной, а реактивная изменяется. Поэтому конец вектора Z на комплексной плоскости перемещается по прямой параллельной мнимой оси и проходящей через точку R вещественной оси (рис. 1 б)). В режиме резонанса мнимая составляющая Z равна нулю и Z = Z = Z min = R , j = 0 , т.е. полное сопротивление при резонансе соответствует минимальному значению .

    Индуктивное и емкостное сопротивления изменяются в зависимости от частоты так, как показано на рис. 2. При частоте стремящейся к нулю xC ®µ , xL ® 0 , и j® - 90° (рис. 1 б)). При бесконечном увеличении частоты - xL ®µ , xC ® 0 , а j® 90° . Равенство сопротивлений xL и xC наступает в режиме резонанса при частоте w0 .

    Рассмотрим теперь падения напряжения на элементах контура. Пусть резонансный контур питается от источника, обладающего свойствами источника ЭДС, т.е. напряжение на входе контура u = const, и пусть ток в контуре равен i =Im sinwt . Падение напряжения на входе уравновешивается суммой напряжений на элементах

    Переходя от амплитудных значений к действующим, из выражения (4) получим напряжения на отдельных элементах контура

    а при резонансной частоте

    где

    величина, имеющая размерность сопротивления и называемая волновым или характеристическим сопротивлением контура.

    Следовательно, при резонансе

    · напряжение на резисторе равно напряжению на входе контура;

    · напряжения на реактивных элементах одинаковы и пропорциональны волновому сопротивлению контура;

    · соотношение напряжения на входе контура (на резисторе) и напряжений на реактивных элементах определяется соотношением резистивного и волнового сопротивлений.

    Отношение волнового сопротивления к резистивному r /R = Q , называется добротностью контура , а величина обратная D =1/Q - затуханием . Таким образом, добротность числено равна отношению напряжения на реактивном элементе контура к напряжению на резисторе или на входе в режиме резонанса. Добротность может составлять несколько десятков единиц и во столько же раз напряжение на реактивных элементах контура будет превышать входное. Поэтому резонанс в последовательном контуре называется резонансом напряжений .

    Рассмотрим зависимости напряжений и тока в контуре от частоты. Для возможности обобщенного анализа перейдем в выражениях (5) к относительным единицам, разделив их на входное напряжение при резонансе

    U =RI 0


    где i =I /I 0 , uk =Uk /U , v = w /w0 - соответственно ток, напряжение и частота в относительных единицах, в которых в качестве базовых величин приняты ток I 0 , напряжение на входе U и частота w0 в режиме резонанса.

    Абсолютный и относительный ток в контуре равен

    Из выражений (7) и (8) следует, что характер изменения всех величин при изменении частоты зависит только от добротности контура. Графическое представление их при Q =2 приведено на рис. 3 в логарифмическом (а) и линейном (б) масштабах оси абсцисс.

    На рис. 3 кривые A (v), B (v) и C (v) соответствуют напряжению на индуктивности, емкости и резисторе или току в контуре. Кривые A (v)=uL (v) и B (v)=uC (v) имеют максимумы, напряжения в которых определяются выражением

    , (9)

    а относительные частоты максимумов равны

    (10)

    При увеличении добротности Q ®µA max = B max ®Q , а v1 ®1.0 и v2 ®1.0.

    С уменьшением добротности максимумы кривых uL (v ) и uС (v ) смещаются от резонансной частоты, а при Q 2 < 1/2 исчезают, и кривые относительных напряжений становятся монотонными.

    Напряжение на резисторе и ток в контуре имеют при резонансной частоте максимум равный 1,0. Если на оси ординат отложить абсолютные значения тока или напряжения на резисторе, то для различных значений добротности они будут иметь вид, показанный на рис. 4. В целом они дают представление о характере изменения величин, но удобнее делать сопоставление в относительных единицах.

    На рис. 5 представлены кривые рис. 4 в относительных единицах. Здесь видно, что увеличение добротности влияет на скорость изменения тока при изменении частоты.

    Можно показать, что разность относительных частот, соответствующих значениям относительного тока

    , равна затуханию контура D =1/Q =v2 -v1 .

    Перейдем теперь к анализу зависимости фазового сдвига между током и напряжением на входе контура от частоты. Из выражения (1) угол j равен

    mirznanii.com

    Оставить комментарий

    avatar
      Подписаться  
    Уведомление о