Схема цветомузыка – Цветомузыка. Что может быть проще?

Цветомузыка схема | Практическая электроника

Что такое цветомузыка

Что такое цветомузыка и с чем ее едят, думаю, знают все. Некоторые ее еще называют светомузыкой, что в принципе тоже верно. Для меня цветомузыка – это разноцветное мелькание огоньков под такт музыки, а светомузыка – это просто мерцание какой-либо лампочки накаливания либо стробоскопа.

В нашей статье мы будем собирать простую схему на три разноцветных светодиода. Имейте ввиду, что схема не  будет работать, если просто подать музыку с вашего мобильного телефона или плеера. Сигнал должен быть мощный. Думаю, автомагнитола и компьютерные колонки с усилителем вполне справятся с этой задачей.

Схема и сборка

В данной  схеме начинающим  электронщикам труднее всего разобраться c транзистором  КТ805АМ.

Здесь есть небольшой нюанс. Мы взяли такой транзистор, в надежде на то, что будем вместо одно светодиода питать сразу светодиодную ленту.

Если же будете собирать на двух-трех светодиодах в ряде, то можно обойтись маломощным транзистором, типа КТ315

Не буду описывать характеристики транзистора КТ805АМ. Все это вы найдете в интернете и в даташите. Для нас самое главное узнать его цоколевку. Вбиваем в поисковик КТ805АМ  и рядом с ним вбиваем волшебное слово “даташит”. То есть ищем в поисковике “КТ805АМ даташит”. Листаем даташит и находим что-то типа этого рисунка:

Здесь мы видим подписанные выводы, то есть крайний слева  – эмиттер, посередине  –  коллектор, и крайний справа – база. Какой-то кривой рисуночек в даташите. Пусть будет так:

На маке тной плате собранная схема будет выглядеть примерно вот так:

Так как цветомузыка не реагирует на слабенький звуковой сигнал, придется его усиливать с помощью вот такого китайского усилителя, купленного на распродаже в Алиэкспрессе:

Спереди крутилки  тембра, баса, громкости и вход для плеера.

Взади – выходы на динамики и сабвуфер. Ну и вход питания самого усилителя.

Вся схема в сборе

А вот и видео ее работы  под Benny Benassi:

В реале это выглядит еще круче. Короче говоря,  бесконечно можно смотреть на 4 вещи: как бежит ручей, как горит огонь, как  за тебя кто-то другой выполняет работу…и как моргают цветные светодиоды под такт музыки)))

Описание работы схемы

Заметьте, не все светодиоды моргают в такт музыки. Вот желтый, например, начинает загораться только тогда, когда в песне появляются басы или, по-научному, низкие частоты. В чем же дело? А дело в том, что схема по сути состоит из трех  фильтров. Один фильтр пропускает низкие частоты, другой фильтр пропускает только средние частоты, третий – высокие частоты. Каждый фильтр я пометил в красной области

Сигнал, который смог пройти через фильтр, попадает на базу биполярного транзистора и открывает его, через коллектор-эмиттер течет ток и светодиод зажигается.

Ах да, еще… Запомните.  Выводы, обозначенные таким значком

соединяются одним проводом и цепляются на минус питания.

В действительности все это будет выглядеть вот так:

В чем же минус схемы? Приходится  подбирать громкость музыки, чтобы была хорошая чувствительность зажигания светодиодов.

Схема цветомузыки с лампами накаливания

Смотрится шикарно!

Подробнее  про нее можно глянуть на нашем форуме в это м разделе.

www.ruselectronic.com

Светодиодная цветомузыка своими руками


Порой так хочется создать у себя дома яркое световое шоу, позвать друзей, включить громче музыку и окунуться в атмосферу дискотеки. С музыкой и друзьями проблем обычно не возникает, а вот организовать цветомузыку бывает достаточно проблематично. Даже самые простые световые эффекты стоят, порой, приличных денег, к тому же продаются далеко не во всех магазинах. Как же быть, если желание насладиться мигающими в такт музыке огоньками не угасает? Выход есть – собрать цветомузыку самому.

Схема цветомузыки



Схема проста как валенок, содержит всего три транзистора и горстку резисторов с конденсаторами. Она содержит в себе три фильтра для низких, средних и высоких частот, поэтому такую цветомузыку можно назвать трёхканальной. Красный светодиод загорается, когда в звуковом сигнале преобладают низкие частоты, синий светодиод реагирует на средние частоты, а зелёный – на высокие. Подстроечные резисторы R4 - R6 регулируют чувствительность каждого из каналов, с их помощью задаётся необходимая яркость свечения. Транзисторы VT1 – VT3 коммутируют светодиоды, здесь можно применить любые n-p-n транзисторы малой мощности, например, BC547, BC337, КТ3102. Вместо отдельных светодиодов для увеличения яркости можно использовать отрезки светодиодной ленты, в этом случае транзисторы стоит поставить большей мощности, например, BD139, 2N4923, КТ961. На вход схемы можно подавать звуковой сигнал, например, с плеера, телефона или компьютера. Однако, может оказаться так, что уровня звукового сигнала не хватит для открывания транзисторов этой схемы и светодиоды будут светится тускло. Чтобы этого не произошло, сигнал нужно усилить, например, с помощью простенького усилителя на одном транзисторе, схема которого показана ниже.

Схема усилителя



Транзистор можно использовать любой маломощный, хорошо себя зарекомендовал в этой схеме отечественный КТ3102. С помощью подстроечного резистора R1 можно регулировать уровень сигнала, подаваемого на схему цветомузыки. Питается усилитель от тех же 9 – 12 вольт. На его вход можно подавать даже слабый сигнал с телефона, ведь он будет усилен до нужного уровня.

Сборка простой цветомузыки


После разбора схем можно приступить непосредственно к сборке конструкции. Обе схемы можно собрать на одной плате, как я и сделал. Печатная плата имеет размеры 35х55 мм и выполняется методом ЛУТ. Несколько фотографий процесса:



Скачать плату:

После того, как лишняя медь стравлена, отверстия просверлены, дорожки залужены можно начинать впаивать детали. Первыми впаиваются небольшие детали – резисторы, после них конденсаторы, транзисторы. В последнюю очередь на плату устанавливаются массивные подстроечные резисторы. Для подключения проводов питания и звукового сигнала можно использовать клеммники, тогда соединять провода будет куда удобнее. После того, как все детали запаяны обязательно нужно отмыть плату от флюса, прозвонить соседние дорожки на замыкание.


Первое включение и настройка


Подавать напряжение на плату стоит, включив в разрыв одного из проводов питания амперметр. При отсутствии сигнала на входе схема потребляет примерно 1-2 мА. Все подстроечные резисторы нужно повернуть в среднее положение, после этого можно подавать на вход схемы звуковой сигнал. Для этого стоит воспользоваться разветвителем, который включается в гнездо телефона или плеера. При этом сигнал одновременно будет поступать и на колонки, и на плату цветомузыки. С помощью R1 нужно добиться того, чтобы яркость свечения светодиодов была достаточной. Затем с помощью резисторов R4 - R6 регулируется каждый канал отдельно, чтобы яркость свечения всех светодиодов была одинаковой. После того, как схема настроена, вместо отдельных светодиодов можно подключать яркие светодиодные ленты, включить погромче музыку и наслаждаться проделанной работой. Удачной сборки!


Смотрите видео


Работа такой цветомузыки наглядно показана на видео:

sdelaysam-svoimirukami.ru

Простая цветомузыка на светодиодах | Мастер-класс своими руками

Очень простая трехканальная RGB цветомузыка на светодиодах не содержит дефицитных или дорогих компонентов. Все элементы вполне можно найти у любого, даже у самого юного радиолюбителя.
Принцип работы цветомузыки – классический, ставший по истине самым популярным. Основывается он на разделении звукового диапазона на три участка: высокие частоты, средние частоты и низкие частоты. Так как цветомузыка трехканальная, то каждый канал отслеживает свою границу частот и как её уровень достигнет порогового значения – зажигает светодиод. В результате, при проигрывании музыкальных композиций, рождается красивый световой эффект, при мигании светодиодов различных цветов.

Схема простой цветомузыки



Три транзистора – три канала. Каждый транзистор выполнят роль порогового компаратора и как уровень превысит 0,6 Вольта – транзистор открывается. Нагрузкой транзистора служит светодиод. Для каждого канала свой цвет.
Перед каждым транзистором идет RC цепочка, играющая роль фильтра. Визуально схема состоит из трех независимых частей: верхняя часть – это канал высоких частот. Средняя часть - канал средних частот. Ну и самый нижний по схеме канал – это канал низких частот.
Питается схема от 9 Вольт. На вход подается сигнал с наушников или с колонок. Если чувствительности будет не хватать, то нужно будет собрать усилительный каскад на одном транзисторе. А если чувствительность будет высока, то на вход можно поставить переменный резистор и им регулировать входной уровень.
Транзисторы можно взять любые, не обязательно КТ805, тут можно даже поставить маломощные типа ТК315, если нагрузкой будет только один светодиод. А вообще, лучше использовать составной транзистор типа КТ829.

Светодиоды сверх яркие, брал тут – АлиЭкспресс.

Там же можно взять и все остальные компоненты схемы.

Сборка цветомузыки


Собрать цветомузыку можно навесным монтажом или на монтажной плате как это сделал я.
Настройка не нужна, собрали, и если все детали годные – все работает и мигает без проблем.

А можно подключить RGB светодиодную ленту на вход?


Конечно можно, для этого всю схему подключаем не 9 В, а к 12. Гасящий резистор при этом на 150 Ом из схемы выкидываем. Общий провод ленты подключаем к плюсу 12 В, а каналы RGB раскидываем по транзисторам. И, если, длинна вашей светодиодной ленты превышает один метр, то тогда потребуется установить транзисторы на радиаторы, чтобы они от перегрева не вышли из строя.

Цветомузыка в работе


Сморится довольно красиво. К сожалению, через картинки этого не передашь, так что смотрите видео.



Смотрите видео работы и сборки


sdelaysam-svoimirukami.ru

Цветомузыка. — DRIVE2

Всем привет.

Решил выложить эту запись в блог, может кому интересно будет.

Вот сделал цветомузыку в авто для одного человека. 4 цвета + фоновый канал. Собрал всё в корпусе на самодельной плате вот по этой схеме:

Также есть вариант для RGB ленты:

Схема для RGB

Схему нашёл на YouTube у пользователя: TomAs409998. Он её переделал под светодиоды.

Собирал на транзисторах КТ805. Поставил предусилитель на TDA2003, чтоб яркость моргания не зависела от громкости музыки от которой идёт сигнал. Брать сигнал можно как от динамика, так и от выхода на колонки (допустим от компьютера).

В качестве источника света использовал светодиодную ленту по 0,5 м каждого цвета и 0,2 м белой:

Видео работы цветомузыки:

Вот это блок цветомузыки для RGB ленты:

Блок для RGB ленты

Видео работы цветомузыки для RGB ленты:

А это первая моя цветомузыка со стерео эффектом:

Могу сделать под заказ.

www.drive2.ru

ЦВЕТОМУЗЫКА ИЗ СВЕТОДИОДОВ

Всем привет. Может кому надо, выкладываю сборник различных LED цветомузык. Все схемы лично проверены так что можете смело приступать к самостоятельному изготовлению этих девайсов. Все ЦМУ с батареечным низковольтным питанием, сейчас многие из молодёжи ходят по улице с активными колонками, от флешки музыку слушают, для разнообразия можно и такую мигалку к ним приделать.

Сборник схем LED ЦМУ

Схема с питанием от 5В USB

Цветомузыка на диапазон питания 6-8 вольт

Цветомузыка на 9-12 вольт

Это график фильтров, что тут используются

Ещё один вариант схемы ЦМУ для диодных лент

Здесь нижний вариант выходной схемы, немного чувствительнее, можно его применить

Вот ещё два вида мигалок что я паял. Это двухканальная ЦМУ от микрофона

А это просто акустическая мигалка

Двух канальная ЦМУ с подачей сигнала через шнур

И ещё интересная схема, типа бегушка и может работать как бегущая мигалка под музыку

Забыл про канал фона, может нужен будет кому

В следующих сборниках будут схемы светодиодных индикаторов уровня и бегущих огней. Автор: senya70

   Форум по LED

   Обсудить статью ЦВЕТОМУЗЫКА ИЗ СВЕТОДИОДОВ


radioskot.ru

Схема. Цветомузыка. Приставка. - Сайт радиолюбителей и радиомастеров. Схемы и сервис мануалы.

      
      Данная схема цветомузыки представляет собой типичную аналоговую цветомузыкальную приставку, вроде тех что пользовались большой популярностью в 80-90-х годах, и на мой взгляд, незаслуженно забыты сегодня.
      Входной сигнал через раздельный трансформатор поступает на восемь активных фильтров, разделяющих сигнал на восемь частотных каналов. Наличие трансформатора обеспечивает гальваническую развязку приставки с работающей с ней аудиоаппаратурой. На выходах фильтров включены выпрямители, вырабатывающие постоянное напряжение, пропорциональное величине сигнала в полосе работы данного фильтра. Это напряжение поступает на затвор тиристора и достигнув необходимой величины открывает его.

      Теперь подробнее. Сигнал с выхода УНЧ поступает в схему цветомузыки через разделительный трансформатор Т1. В качестве данного трансформатора используется дроссель на Ш-образном сердечнике с двумя обмотками. Обмотки одинаковые, небольшого сопротивления (по 200-300 витков). Аналогичные дроссели используются во многих источниках питания бытовой теле, видео, аудиотехники, а так же компьютерной. Дроссель готовый, но при необходимости его можно намотать и самому.

      Так как обмотки Т1 низкоомные подключать вход СМУ нужно к выходу УМЗЧ, то есть, параллельно или вместо акустической системы, либо к телефонному выходу для подключения наушников (если при этом не происходит автоматического отключения основных акустических систем). Если же необходимо подавать сигнал исключительно с линейного выхода аппаратуры нужно сделать дополнительный УМЗЧ для работы с светомузыкальной приставкой, например, на основе популярной микросхемы К174УН14 или любой другой УМЗЧ.

      Без трансформатора подавать сигнал на вход схемы цветмузыки нельзя потому что лампами управляют тиристоры, и вся схема цветомузыки оказывается под потенциалом электросети, что может привести как поражению током через аудиоаппаратуру, так и к повреждению аудиоаппаратуры.
      Подстроечный резистор R1 служит для общей регулировки уровня сигнала. Плюс, перед каждым полосовым фильтром есть свой дополнительный регулятор (резисторы R2-R9), регулирующий уровень сигнала в своем частотном канале. С помощью этих резисторов можно корректировать чувствительность каналов в зависимости от желания, практически можно сказать что ими регулируется «цветовой тембр», если можно так выразиться.
      Все активные фильтры построены по одинаковым схемам полосовых фильтров. Они выделяют полосы с центральными частотами, подписанными на схеме. Средняя частота полосы каждого фильтра зависит от емкостей двух конденсаторов, которые должны быть одинаковыми. В остальном все номиналы деталей фильтров совпадают.

      Фильтры выполнены на операционных усилителях, а они, как известно, требуют двухполярного питания. К сожалению, в выбранной схеме источника питания организовать двухполярное питание хотя и возможно, но все же проблематично. Поэтому решено было питать ОУ от однополярного источника напряжением 12V, а для того чтобы обеспечить их нормальную работу подать на положительный вход половину напряжения питания, полученную с помощью делителя напряжения R40-R41.
      Таким образом, в схеме цветомузыки есть восемь операционных усилителей, а именно две микросхемы LM324, содержащих по четыре операционного усилителя.

      После ОУ сигналы выделенных полос поступают на диодные детекторы , каждый на двух диодах, включенных по схеме с удвоением напряжения. На выходных конденсаторах (С4, С8, С12, С15, С19, С23, С27, С31) этих детекторов выделяется постоянное напряжение, поступающее на управляющий электрод тиристоров. Изначально предполагалось параллельно каждому из этих конденсаторов включить по одному резистору сопротивлением 10-50 кОм, но при налаживании выяснилось что при использовании тиристоров MCR106-8 в этом нет никакой необходимости. И резисторы эти были убраны из схемы цветомузыки. Поэтому на схеме нет резисторов с позиционными обозначениями R13, R17, R20, R24, R28, R32, R35 и R39. Если же вы будете использовать другие тиристоры, которые возможно «не захотят» закрываться, эти резисторы придется вернуть на место (одни были подключены параллельно конденсаторам С4, С8, С12, С15, С19, С23, С27, С31), и подобрать экспериментально их сопротивления.

      При использовании тиристоров MCR106-8 максимальная мощность нагрузки каждого канала может достигать 900W. При мощности до 200W радиатор не требуется, а при более высокой мощности он нужен, так как тиристоры будут перегреваться.
      Выходные каскады можно сделать и по другим схемам, например, на оптосимисторах. В этом случае напряжения с конденсаторов С4, С8, С12, С15, С19, С23, С27, С31 нужно подавать на базы дополнительных транзисторных ключей, в коллекторных цепях которых будут включены светодиоды оптосимисторов (через необходимые токоограничительные резисторы). Кстати, если в этом случае питать «электронику» от источника напряжением 12V, выполненного на трансформаторе, то в этом случае, так же, нет никакой необходимости во входном трансформаторе, а сигнал можно будет подавать с линейного выхода аппаратуры непосредственно на R1.

      Источник питания ОУ выполнен по бестрансформаторной схеме на диодах VD17-VD18, конденсаторах С32 и СЗЗ, а так же стабилитроне VD19 (стабилитрон на напряжение 12V и мощность 1W).
      Все кроме тиристоров собрано на одной печатной плате из одностороннего фольгированного стеклотекстолита. На плате есть одна перемычка.
      На основе этой же схемы цветомузыки можно сделать цветомузыкальное устройство, работающее от 12-вольтового источника (например, автомобильной бортовой сети), а экран сделать из разноцветных сверхярких светодиодов. На следующем рисунке приводится четырехканальный вариант схемы цветомузыки. Конечно можно сделать и восемь каналов, но по цвету в свободной продаже есть только четыре типа светодиодов, – красные, желтые, зеленые и синие, так что имеет смысл ограничиться четырьмя каналами. Так как каналов меньше, соответственно изменены частоты и широты полос.

      Входной сигнал подается без разделительного трансформатора, так как схема цветомузыки низковольтная и может питаться от того источника, что и источник сигнала. Выходные каскады выполнены по схеме усиленных транзисторных ключей. В каждом канале работает по девять сверхярких светодиодов.
      В схеме цветомузыки можно использовать сверхяркие светодиоды любые, но на прямое напряжение не более 3,5V, при большем номинальном напряжении падения они могут не гореть при питании от источника 12V.
      Для каждого канала – отдельный цвет светодиодов.
      Если окажется что яркость свечения светодиодов разных цветов сильно различается, это можно компенсировать подбором сопротивлений резисторов R29-R40.

Post Views: 1 072

radioelectronika.ru

Цветомузыка для начинающих

Практически у каждого начинающего радиолюбителя, да и не только, возникало желание собрать цветомузыкальную приставку или бегущий огонь, чтобы разнообразить прослушивание музыки в вечернее время или в праздничные дни. В этой статье речь пойдет о простой цветомузыкальной приставке, собранной на светодиодах , которую под силу собрать даже начинающему радиолюбителю.

1. Принцип действия цветомузыкальных приставок.

Работа цветомузыкальных приставок (ЦМП , ЦМУ или СДУ ) основана на частотном разделении спектра звукового сигнала с последующей передачей его по отдельным каналам низких , средних и высоких частот, где каждый из каналов управляет своим источником света, яркость которого определяется колебаниями звукового сигнала. Конечным результатом работы приставки является получение цветовой гаммы, соответствующей воспроизводимому музыкальному произведению.

Для получения полной гаммы цветов и максимального количества цветовых оттенков в цветомузыкальных приставках используются, как минимум, три цвета:

Разделение частотного спектра звукового сигнала происходит с помощью LC- и RC-фильтров , где каждый фильтр настроен на свою сравнительно узкую полосу частот и пропускает через себя только колебания этого участка звукового диапазона:

1 . Фильтр низких частот (ФНЧ) пропускает колебания частотой до 300 Гц и цвет его источника света выбирают красным;
2 . Фильтр средних частот (ФСЧ) пропускает 250 – 2500 Гц и цвет его источника света выбирают зеленым или желтым;
3 . Фильтр высших частот (ФВЧ) пропускает от 2500 Гц и выше, и цвет его источника света выбирают синим.


Каких-либо принципиальных правил для выбора полосы пропускания или цвета свечения ламп не существует, поэтому каждый радиолюбитель может применять цвета исходя из особенностей своего восприятия цвета, а также по своему усмотрению изменять число каналов и ширину полосы частот.

2. Принципиальная схема цветомузыкальной приставки.

На рисунке ниже предоставлена схема простой четырехканальной цветомузыкальной приставки, собранной на светодиодах. Приставка состоит из усилителя входного сигнала, четырех каналов и блока питания, обеспечивающего питание приставки от сети переменного тока.

Сигнал звуковой частоты подается на контакты ПК , ЛК и Общий разъема Х1 , и через резисторы R1 и R2 попадает на переменный резистор R3 , являющийся регулятором уровня входного сигнала. От среднего вывода переменного резистора R3 звуковой сигнал через конденсатор С1 и резистор R4 поступает на вход предварительного усилителя, собранного на транзисторах VT1 и VT2 . Применение усилителя позволило использовать приставку практически с любым источником звукового сигнала.

С выхода усилителя звуковой сигнал подается на верхние выводы подстроечных резисторов R7 ,R10 , R14 , R18 , являющиеся нагрузкой усилителя и выполняющие функцию регулировки (подстройки) входного сигнала отдельно по каждому каналу, а также устанавливают нужную яркость светодиодов канала. От средних выводов подстроечных резисторов звуковой сигнал поступает на входы четырех каналов, каждый из которых работает в своей полосе звукового диапазона. Схематично все каналы выполнены одинаково и различаются

megashopopt.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о