Как тестером проверить фазу: Как определить фазу и ноль мультиметром

Как определить фазу и ноль мультиметром

Главное, что вы должны знать: у обычного цифрового мультиметра, нет отдельного режима для определения фазы или нуля, узнать это можно лишь увидев на экране величину напряжения или не увидев его.

По большому счету, принцип определения фазы тестером, схож с работой обычной индикаторной отвертки, где фаза определяется по свечению встроенной лампы, которая загорается только при наличии цепи фаза – сопротивление – лампа - ёмкость (человек).

Ток, с фазы, протекающий через такую индикаторную отвертку, проходит через высокое сопротивление, встроенное в индикатор, затем также через лампу в ней, а потом попадает в ёмкость – в качестве которой выступает человек (для этого мы и касаемся задней стороны индикаторной отвертки при определении) и только при наличии всех участников такой цепи, лампа будет гореть.  


Как найти фазу мультиметром


Чтобы определить фазу с помощью мультиметра, выставляем на нём режим определения напряжения переменного тока, который на корпусе тестера чаще всего обозначен как V~, при этом, всегда выбирайте предел измерения - уставку, выше предполагаемого напряжения сети, обычно это от 500 до 800 Вольт. Щупы подключаются стандартно: черный в разъем “

COM”, красный в разъем «VΩmA».


Режим измерения напряжения на мультиметре для определения фазы


В первую очередь, перед тем как искать фазу мультиметром, необходимо проверить его работоспособность, а именно работу режима вольтметра – определения напряжения переменного тока. Для этого проще всего попробовать определить напряжение в стандартной, бытовой розетке 220в.


Как проверить мультиметром напряжение в розетке 220в


Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом - не касаться руками токопроводящих частей щупов.

Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «VΩmA».

Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.


Измерение напряжения мультиметром в розетке 220В


Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.

Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.


как определить мультиметром на каком из трех проводов фаза


Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.

Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.

В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в VΩmA.


Как найти фазу мультиметром


Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.

Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА, а не какой-нибудь другой.

Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.

Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.

В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.

 

Как найти ноль мультиметром


как определить ноль мультиметром


Ноль, чаще всего, находится мультиметром относительно фазного провода, т.е. сперва, способом, описанным выше, вы находите фазу, а затем установив красный щуп на неё, касаетесь других проводников и когда тестер на экране покажет 220В (+/- 10%), тогда вы поймете, что второй провод нулевой рабочий или нулевой защитный (заземление).

Определить же то, является провод нулем или заземлением одним мультиметром, довольно сложно, ведь по сути, эти проводники одно и то же и нередко просто дублируют другу друга. В определенных системах заземления ноль и зазмление даже связаны между собой в электрощите и очень тяжело точно их выявить.

Проще всего, в таком случае, отключить от шины заземления в электрощите вводной провод, тогда, во всей квартире или доме, при проверке напряжения, между фазой и проводами заземления, вы не получите 220В, как при проверке нуля и фазы.

Так же стоит отметить тот факт, что если в электрощите установлена дифференциальная защита - УЗО или автоматический выключатель дифференциального тока, он обязательно сработает, при проверке проводов заземления относительно любого другого проводника, даже нулевого.

Если же вы знаете более надежные и универсальные методы определения фазы и нуля цифровым мультиметром – обязательно пишите об этом в комментариях к статье, кроме того приветствуются любые мнения, опыт, здоровая критика или вопрос.

Так же вступайте в нашу группу ВКонтакте, следите за появлением новых материалов.

Как мультиметром найти фазу без ошибок

Ремонт и монтаж бытовой проводки своими руками требуют умения грамотно определять потенциалы напряжения, отличать фазу ноль и землю внутри домашней электрической схемы.

За многолетнюю практику электрика встретил много ошибок, которые допускают новички. Написал эту статью, чтобы вы их не повторяли. Делюсь опытом, как мультиметром найти фазу безопасно и быстро.

Информацию разбил на несколько частей, сосредоточив первоначальное внимание на особенностях и устройстве измерительного прибора. Бывалым электрикам можно сразу перейти к третьему разделу.

Содержание статьи

Что такое фаза, ноль и земля: краткое объяснение простыми словами

Прежде чем начать разбираться с проводами в квартире следует хорошо представлять, откуда и какими способами появляются в ней потенциалы напряжения, чем отличаются способы заземления.

Современные промышленные генераторы вырабатывают трехфазную систему токов.

Напряжение по проводам или кабелям поступает к потребителю от трансформаторных подстанций.

При этом в квартиру многоэтажного дома обычно заводится 220 вольт, определяемые между потенциалами одной из фаз и общего нуля. На ввод частного дома может поступать и полноценное трехфазное питание.

Более подробно об этом можно прочитать в статье про электрическое напряжение.

Во времена СССР внутри жилых помещений для экономии материалов использовалась двухпроводная схема питания, когда на электрическую розетку квартиры подавалось два потенциала:

  1. одной из трех фаз;
  2. общего нуля, который является заземлением одного вывода обмотки трансформаторной подстанции и обозначается латинскими буквами PEN.

Эта самая простая система заземлений больше не имеет никаких дополнительных контуров.

Современная схема подключения жилых помещений более сложная. В ней отдельно смонтированы потенциалы заземления выходной обмотки трансформаторной подстанции двумя магистралями, разделяющими PEN:

  1. рабочего ноля N, который используется только для протекания токов, обеспечивающих полезную работу бытовых механизмов;
  2. защитного проводника PE, предназначенного для отвода опасных токов утечек при аварийных ситуациях на электрическом оборудовании.

Разновидностями современной системы заземлений, обладающих дополнительным защитным контуром, являются ее модификации: TN-C-S, TT.

Сейчас у жителей частных домов есть возможность сделать защитное заземление своими руками и спастись от случайных аварийных ситуаций.

Тем же людям, кто проживает в старых многоквартирных домах, приходится ждать очереди, когда государство переведет их на более безопасную систему. А новые здания строятся с учетом существующих нормативов ПУЭ.

Таким образом, в современной квартире можно встретить две системы подключения бытовых приборов, выполненных по двухпроводной или трехпроводной схеме.

Для них выпускаются свои два вида электрических розеток, к которым монтируются 2 либо 3 провода.

Какие бывают розетки

Для их подключения разработаны определенные правила монтажа.

Как подключить розетку

Таким образом: потенциалы рабочего ноля N и земли РЕ объединены на заземленной части выходной обмотки трансформаторной подстанции. В старой схеме они подводятся одним проводником PEN, а в новой — двумя раздельными.

Требования ПУЭ к монтажу РЕ проводника очень жесткие, в нем должно обеспечиваться минимально допустимое сопротивление протеканию аварийного тока. Он монтируется без использования коммутационных аппаратов на проводах повышенной надежности.

В рабочий ноль могут включаться контакты автоматических и дифференциальных выключателей, УЗО, коммутационных аппаратов, а рабочие провода подбираются для передачи только обычных нагрузок.

За счет этих двух требований и благодаря удалению бытовой проводки от трансформаторной подстанции на стороне потребителя между РЕ и N создается небольшая разность потенциалов, которую можно замерить обыкновенным вольтметром.

Почему мультиметр необходимо переводить в режим вольтметра при проверке фазы

До массового появления в продаже цифровых приборов нам в электролабораторию друзья и знакомые частенько приносили для ремонта сгоревшие аналоговые тестеры.

Причина их повреждения практически всегда была одна: неправильный выбор режима измерения при подключении прибора к цепям напряжения.

При этом в лучшем случае выгорали цепочки подключения резисторов с кнопками и переключателями, а в худшем — высочувствительная измерительная головка с токопроводящими пружинками. Последние неисправности чаще всего ремонту не поддавались.

Люди просто не понимали, что тестер, как и цифровой мультиметр, производит измерения на основе закона Ома.

Разница только в том, что тестер работает с аналоговыми величинами, а мультиметр — оцифрованными. Но принципы подключения обоих типов приборов одинаковы, сводятся к двум простым правилам:

  1. при измерении напряжения переключатели ставят в то положение, которое вводит калиброванное сопротивление, ограничивающее ток через токоизмерительную головку или датчик;
  2. замер неизвестной величины напряжения всегда необходимо выполнять на режиме максимального значения шкалы прибора.

Неправильное положение переключателей, переводящих прибор в режим омметра или амперметра, чаще всего встречается у новичков по невнимательности и из-за низких навыков.

На моей памяти есть случай, когда два опытных электрика, понадеявшись в спешке друг на друга, спалили дорогой образцовый вольтметр — эталон класса точности 0,2.

Прибором пришлось срочно воспользоваться для выставления уставок зарядного устройства аккумуляторной батареи оперативного тока 220 вольт на подстанции 330 кВ.

Один работник держал прибор в руках горизонтально и подал концы с щупами второму для выполнения замера. Никто из них не обратил внимания, что переключатель стоял на низшем пределе измерения. В результате протекания повышенного тока измерительная головка выгорела полностью.

Этот случай не типичный, но наглядно показывает, что электричество никому и никаких ошибок не прощает. Ток течет туда, где ему оказывается меньшее сопротивление.

Неправильное подключение мультиметра или тестера к цепям напряжения кроме повреждения самого измерительного прибора создает режим короткого замыкания, вредного для бытовых потребителей и проводки.

Поэтому перед установкой измерительных щупов на цепи напряжения необходимо проверять исходное положение переключателей прибора в режим вольтметра.

Сгоревший мультиметр

Вообще-то стоит заметить, что элитные цифровые мультиметры оборудованы встроенной электронной схемой, защищающей прибор от неправильного подключения к цепям напряжения, а у бюджетных моделей она отсутствует.

Ее в народе часто называют «защитой от дурака». Во многих случаях она может спасти прибор и бытовую сеть, но постоянно использовать эти ее возможности все же я не рекомендую: подключайте вольтметр правильно всегда.

Технические приемы в картинках: как мультиметром искать потенциалы напряжения в электропроводке

Сейчас производители выпускают очень большой ассортимент цифровых измерительных приборов. Они имеют различные органы управления, внешний вид, конфигурацию. Поэтому точно показать положение кнопок и переключателей для всех моделей невозможно.

Однако при их выпуске соблюдается определенные стандарты маркировки переключающих устройств и органов индикации. По этому вопросу у меня на сайте есть статья, объясняющая, как пользоваться любым мультиметром новичку.

В ней я нарисовал и показываю обобщенную модель с максимальным расположением кнопок управления и переключателей, где подробно в табличной форме объясняю положение каждого органа. Читайте и пользуйтесь.

Мультиметр цифровой

Для постоянного использования себе выбрал бюджетный карманный мультиметр Mestek MT102 с большим количеством функций и сделал подробный обзор его возможностей отдельной статьей.

Карманный мультиметр

Это прибор буду использовать при демонстрации приемов работы по определению разности потенциалов между проводами и контактами.

Вначале показываю, как им пользоваться для измерения напряжения в розетке. На этом примере мы сразу решаем две задачи:

  1. Определяем техническую исправность самого мультиметра и его концов для подключения.
  2. Контролируем наличие питания 220 вольт в квартире.

Концы для мультиметра — специальные провода с наконечниками для соединения прибора с измеряемой схемой выполнены красным и черным цветом.

Концы для мультиметра

По этой расцветке они всегда должны вставляться в соответствующие гнезда нижнего блока. Причем красный конец обычно подключается справа.

Если на приборе есть дополнительные красные гнезда, то они используются только для измерения больших токов или на пределе милли-, микроампер.

Центральным переключателем я свой Mestek MT102 перевел в режим измерения вольтметра, выбрав положение «V», а кнопкой «SEL» указав режим измерения параметров переменного тока «АС».

Только после этого подключенные к прибору концы установил в розетку для измерения напряжения.

Напряжение в розетке

На дисплее появилось значение 242,8 вольта, что укладывается в норму.

После этого можно сделать вывод, что в розетке имеется напряжение, а Mestek MT102 и его концы исправны и им можно пользоваться дальше. Подготовительные процедуры закончены, но дальнейшую работу начинающему электрику может облегчить знание расцветки жил кабелей.

Правила цветовой маркировки проводов: как их следует учитывать

Расцветка жил значительно упрощает монтаж электрической проводки и поиск в ней неисправностей. Поэтому производители ее наносят на изоляцию, а профессиональные электрики стараются придерживаться правил монтажа.

Цветовая маркировка проводов

Правила цветовой маркировки предполагают обозначение:

  • защитного РЕ проводника желто-зеленым цветом;
  • рабочего ноля синим или голубым;
  • фазы — остальными: белым, оранжевым, коричневым, черным, серым, красным, фиолетовым.

Обратите внимание, что не всегда кабель и провод имеет подобное разнообразие расцветок. Изоляция жил часто может иметь какой-то один оттенок. Да и не все монтажники, а особенно домашние мастера придерживаются этого правила.

Цветовая маркировка призвана облегчить поиск неисправностей и монтажные работы, она является дополнительным способом определения фазы и рабочего ноля. Но полностью полагаться на этот метод нельзя.

Кстати, во время работы не раз приходилось наблюдать, как в спешке устранения неисправностей даже на ответственных вторичных цепях оборудования 330 кВ на подстанции опытным электрикам приходилось заменять и прокладывать провода из тех, какие есть под рукой, не обращая внимание на их расцветку.

Какие безобразия творятся в бытовой домашней сети, допускаемые необученным персоналом, можете представить сами.

Последовательность поиска фазы вольтметром: пошаговая инструкция из 3 типовых случаев

Работа состоит из подготовительной и основной части.

На первоначальном этапе проверяем исправность измерительного прибора и его концов, как я показал выше. Во многих случаях эта короткая процедура экономит дальнейшее рабочее время. Делайте ее привычкой, ибо плохой контакт в гнезде, оборванная жила, севшие батарейки питания, любые другие дефекты доставят много неприятностей.

Вариант №1. Трехпроводная бытовая схема питания

Определение наличия фазного потенциала на проводе буду показывать на примере проводки с жилами однотонной изоляции. На них предполагаем наличие фазы, земли и ноля. Будем их определять.

Далее все делаем за 2 шага.

Шаг №1. Попарный замер напряжения между проводами

Произвольно помечаем все три провода. Например, присваиваем им номера, буквы или располагаем сверху вниз либо слева направо.

При этом помним, что они находятся под напряжением и прикасаться к ним можно только с соблюдением правил безопасности, не создавая контакт тела с токоведущими жилами.

Для наглядности я расположил их вертикально и присвоил номера №1÷3. Затем щупами вольтметра последовательно замеряем разность потенциалов между токоведущими жилами.

Допустим, мы увидели 220 вольт между проводами 1 и 2, а также 2 и 3.

Проверка напряжения мультиметромЗамер напряжения мультиметром

А между жилами №1 и 3 вольтметр показывает доли вольта, близкие к нулю.

Проверка напряжения вольтметром

Шаг №2. Анализ результатов измерения

На основе этих замеров можно сделать вывод, что общий провод №2 для двух случаев измерения 220 вольт является фазным.

Вариант №2. Двухпроводная бытовая сеть

Имеем два провода с фазой и нулем, но не знаем где находится какой потенциал.

Шаг №1. Замер напряжения между проводами

Вначале проверяем разность потенциалов между токоведущими жилами. При исправной цепи мы должны увидеть 220 вольт, как я показал на фотографии розетки выше при проверке исправности прибора.

Шаг №2. Замер напряжения между каждым проводом и контуром земли

Один конец от вольтметра крокодилом подключаем на водопроводный кран, батарею отопления или любую другую заземленную металлическую конструкцию. Вторым щупом поочередно касаемся токоведущих жил.

Как проверить напряжение вольтметром

В одном положении вольтметр покажет что-то близкое к нолю, а в другом — 220 вольт. На этом проводе и будет присутствовать потенциал фазы.

Оба случая проверки напряжения для двух- и трехпроводной схемы хорошо подходят для оценки наличия фазы в соответствующих типах розеток.

Вариант №3. Принцип определения фазы на емкостном токе

Здесь используется та же технология, что и при проверке напряжения обычной индикаторной-отверткой.

Проверка напряжения индикатором

Внутри индикатора стоит высокоомный резистор, ограничивающий ток через тело оператора на землю до безопасной величины: нескольких милли- или микроампер, достаточных для свечения неоновой либо светодиодной лампочки.

Когда человек касается пальцами контакта на торце отвертки, то, если имеется потенциал фазы на противоположном конце лезвия, создается емкостной ток и лампочка горит. В противном случае ее свечения не будет.

Схема протекания емкостного тока выглядит следующим образом.

Как работает индикатор

Заменив индикатор мультиметром в этом методе вполне можно найти фазу, что я и показываю на очередной фотографии.

Поиск фазы мультиметром

Один щуп вольтметра установлен в гнездо розетки, а второго касаюсь пальцами. На табло вы видите показание 73 вольта. При этом я сижу в кресле, находящемся на сухом деревянном полу.

За счет хорошей изоляции тела от контура земли мой Mestek MT102 сильно занижает величину фазного потенциала. Поэтому я делаю второй эксперимент.

Снял с ноги носок и притронулся голой стопой к окрашенному радиатору батареи отопления. Вот что получилось.

Поиск фазы мультиметром

Mestek MT102 показал уже 175 вольт, что ближе к истине.

Этим методом пользоваться можно, но цифрам дисплея верить нельзя: они приблизительные и зависят от качества заземления тела.

На другом контакте розетки вы вольты таким способом замера не увидите.

Как отличить провод нуля от земли в трехпроводной схеме

Когда мы нашли фазу, то на двух оставшихся исправных проводах будут потенциалы рабочего нуля и РЕ проводника. Их нам необходимо различить.

Для этого первоначально используем цветовую маркировку, если она применена правильно. Но обязательно рекомендую выполнить для достоверности электрические замеры.

Надо просто еще раз внимательно измерить величину разности потенциалов между фазой и этими двумя проводами. Землей будет тот провод, где показание мультиметра чуть больше. На нем меньшие потери напряжения из-за высоких требований к монтажу и отсутствию коммутационных аппаратов внутри цепи.

Третий оставшийся провод — рабочий ноль. Для практики можно измерить разность потенциалов между землей и нулем, сравнить ее с отличием замеров между этими проводами с фазой.

Небольшие отклонения будут вызваны:

  • классом точности прибора;
  • качеством подключения концов;
  • отличием арифметических действий от методов векторной алгебры.

3 заключительных совета из личного опыта

Здесь я поделюсь тремя случаями, которые должны помочь вам облегчить жизнь при общении с электричеством, исключить типичные ошибки.

Удлинитель для мультиметра

Работая тестером на различных объектах мне пришлось изготовить простой удлинитель его концов.

Удлинитель для мультиметра

На самодельное пластиковое мотовильце намотал длинный гибкий провод и припаял к нему два штеккера. На фото показаны крокодил и самодельный щуп из спицы велосипеда, закрытый корпусом шариковой ручки. Они легко надеваются и снимаются в зависимости от необходимых задач.

Этот удлинитель занимает мало места, не путается, очень выручает меня при прозвонке удаленных объектов. Он же будет полезен при проверке фазы методом емкостного тока.

«Неисправный телевизор»

Этот случай произошел, когда у нас еще работали черно-белые кинескопные телевизоры.

Соседка с пятого этажа пришла с просьбой: “Помоги, у меня телевизор перестал включаться”. Пришлось брать тестер и инструменты. Первым делом измерил напряжение в розетке: 220 вольт, норма.

Дальше вскрыл заднюю крышку и стал проверять цепи питания подачи напряжения на трансформатор. Все вызвонил, а неисправности не нашел, предохранители и провода целые, кнопки рабочие.

Еще раз проверил розетку: опять 220. Пришлось сильно задуматься. В итоге взял удлинитель, подключил его в другой комнате и запитал телевизор. Он заработал.

Стал разбирать розетку. Алюминиевая лапша 2,5 квадрата. Оба конца исправны, тестер показывает напряжение 220. Включил настольную лампа, а она не горит. Опять возвращаюсь к вольтметру и вижу всего 40 вольт.

Делаю вывод: под нагрузкой где-то пропадает контакт. Лезу в распределительную коробку, осматриваю соединения. Прощупываю провода и замечаю внутри изоляции обломанную жилу: концы подвижны, но соприкасаются.

Когда через них проходит маленький ток от тестера, то контакт надежный, а при увеличении нагрузки от настенной лампы или телевизора он ухудшается и цепь не работает.

Раньше такие неисправности хорошо выявлялись контрольной лампой. Сейчас она запрещена правилами по ряду причин. Однако проверять наличие фазы на проводе под нагрузкой более правильно, чем без нее.

«Электрик по совместительству»

Десяток лет назад встал вопрос о ремонте ванной и туалета. Жене порекомендовали хорошего плиточника по имени Сергей. Он профессионально занимается отделочными работами, имеет опыт, показывает фотографий в своем портфолио.

Цена устроила, договорились. Сергей приступил к работе. По ходу дела он взял на себя весь ремонт, как сейчас говорят, «помещения под ключ», включая сантехнику, электрику, замену дверей.

Во время не удачного демонтажа старой дверной рамы рухнула небольшая часть стены с замурованной проводкой. Одни провода оборвались, а на других повис кусок бетона. (В этом месте был установлен трёхклавишный выключатель и розеточный блок.)

Сергей попытался разобрать образовавшийся клубок и получил сильный удар током. Автоматы отключили короткое замыкание, а неудачный электрик впал в шоковое состояние.

К его счастью в этот момент я пришел с работы и увидел всю эту картину. Сергей сразу заявил, что дальше он с этой неисправностью сам не справится, а от электричества теперь будет держаться подальше.

Пришлось мне браться за прозвонку и монтаж всей проводки. Вам же хочу напомнить, что работы под напряжением относятся к опасным. Их допускается выполнять только обученному персоналу, обладающему:

  1. специальными знаниями;
  2. практическими навыками;
  3. крепким физическим здоровьем.

Если хоть одно из этих требований отсутствует, то беда неминуема. Дабы ее не было — привлекайте профессиональных электриков. Вот и вся информация о том, как мультиметром найти фазу. Можете ее дополнить в комментариях или задать дополнительные вопросы. Я отвечу.

Как определить фазу и ноль мультиметром

Поиск фазы и ноля мультиметром

Очень часто при выполнении в квартире, доме, гараже или на даче ремонтных либо монтажных работ, связанных с электричеством, возникает необходимость отыскать ноль и фазу. Это нужно для правильного подключения розеток, выключателей, осветительных приборов. Большинство людей, даже если они не имеют специального технического образования, представляют себе, что для этого есть специальные индикаторы. Мы рассмотрим вкратце этот метод, а также расскажем вам об ещё одном приборе, без которого не обходится ни один профессиональный электрик. Поговорим о том, как определить фазу и ноль мультиметром.

Понятия ноля и фазы

Перед тем, как определить фазу ноль, хорошо бы вспомнить самую малость физики и разобраться, что это за понятия и зачем их находят в розетке.

Все электросети (и бытовые, и промышленные) подразделяются на два типа – с постоянным и переменным током. Со школы помним, что ток – это передвижение электронов в определённом порядке. При постоянном токе электроны передвигаются в каком-то одном направлении. При переменном токе это направление постоянно меняется.

Разница между постоянным и переменным током

Нас больше интересует переменная сеть, которая состоит из двух частей:

  • Рабочей фазы (как правило, её называют просто «фазой»). На неё подаётся рабочее напряжение.
  • Пустой фазы, именуемой в электричестве «нулём». Она необходима, чтобы создать замкнутую сеть для подключения и работы электрических приборов, служит также для заземления сети.

Когда мы включаем приборы в однофазную сеть, то особой важности нет, где именно пустая или рабочая фаза. А вот когда монтируем в квартире электрическую проводку и подсоединяем её к общей домовой сети, это знать необходимо.

Разница между нолем и фазой на видео:

Простейшие способы

Существует несколько способов, как найти фазу и ноль. Рассмотрим их вкратце.

По цветовому исполнению жил

Наиболее простым, но в то же время и самым ненадёжным способом, является определение фазы и ноля по цветам изоляционных оболочек проводников. Как правило, фазная жила имеет чёрное, коричневое, серое или белое цветовое исполнение, а ноль делают голубым либо синим. Чтобы вы были в курсе, бывают ещё жилы зелёные или жёлто-зелёные, так обозначаются проводники защитного заземления.

В этом случае никаких приборов не нужно, глянули на цвет провода и определили – фаза это или ноль.

Расцветка жил проводов

Но почему этот метод самый ненадёжный? А нет никакой гарантии, что во время монтажа электрики соблюдали цветовую маркировку жил и ничего не перепутали.

Цветовая маркировка проводов на следующем видео:

Индикаторной отвёрткой

Более правдивым методом является применение индикаторной отвёртки. Она состоит из не токопроводящего корпуса и встроенных в него резистора с индикатором, который представляет собой обыкновенную неоновую лампочку.

Например, при подключении выключателя главное не перепутать ноль с фазой, так как этот коммутационный аппарат работает только на разрыв фазы. Проверка индикаторной отвёрткой заключается в следующем:

  1. Отключите общий вводной автомат на квартиру.
  2. Зачистите ножом проверяемые жилы от изоляционного слоя на 1 см. Разведите их между собой на безопасное расстояние, чтобы полностью исключить возможность соприкосновения.
  3. Подайте напряжение, включив вводной автомат.
  4. Жалом отвёртки прикоснитесь к оголённым проводникам. Если при этом загорится индикаторное окошко, значит, провод соответствует фазному. Отсутствие свечения говорит о том, что найденный провод – нулевой.
  5. Нужную жилу наметьте маркером либо кусочком изоленты, после чего снова отключите общий автомат и проведите подсоединение коммутационного аппарата.

Поиск фазного провода индикаторной отверткой

Более сложные и точные проверки выполняются с помощью мультиметра.

Поиск фазы индикаторной отверткой и мультиметром на видео:

Мультиметр. Что это за прибор?

Мультиметр (электрики его ещё называют тестером) представляет собой комбинированный прибор для электрических измерений, который объединил в себе множество функций, основные из которых омметр, амперметр, вольтметр.

Эти приборы бывают разными:

  • аналоговыми;
  • цифровыми;
  • переносными лёгкими для каких-то базовых измерений;
  • сложными стационарными с большим количеством возможностей.

С помощью мультиметра можно не только определить землю, ноль или фазу, но и померить на участке цепи ток, напряжение, сопротивление, проверить электрическую цепь на целостность.

Прибор представляет собой дисплей (или экран) и переключатель, который можно устанавливать в различные позиции (вокруг него находится восемь секторов). В самом верху (в центре) имеется сектор «OFF», когда переключатель установлен в это положение, значит, прибор выключен. Чтобы выполнять замеры напряжения понадобится установить переключатель в сектора «ACV» (для переменного напряжения) и «DCV» (для постоянного напряжения).

Постоянный и переменный ток на шкале мультиметра

В комплект мультиметра входят ещё два измерительных щупа – чёрный и красный. Чёрный щуп подсоединяется в нижнее гнездо с маркировкой «СОМ», такое подключение является постоянным и используется при проведении любых измерений. Красный щуп в зависимости от замеров вставляется в среднее или верхнее гнездо.

Как использовать прибор?

Выше мы рассмотрели, как найти при помощи индикаторной отвёртки фазный провод, а вот различить ноль и землю при помощи такого инструмента не получится. Тогда давайте поучимся, как проверить жилы мультиметром.

Подготовительный этап выглядит точно так же, как и для работы с индикаторной отвёрткой. При отключенном напряжении зачистите концы жил и обязательно их разведите, чтобы не спровоцировать случайного прикосновения и возникновения короткого замыкания. Подайте напряжение, теперь вся дальнейшая работа будет с мультиметром:

  • Выберите на приборе измерительный предел переменного напряжения выше 220 В. Как правило, имеется отметка со значением 750 В на режиме «ACV», установите переключатель на это положение.
  • На приборе имеется три гнезда, куда вставляются измерительные щупы. Найдём среди них тот, который обозначен буквой «V» (то есть для измерения напряжения). Вставьте в него щуп.

Разъемы для проверки напряжения

  • Прикасайтесь щупом к зачищенным жилам и смотрите на экран прибора. Если вы видите небольшое значение напряжения (до 20 В), значит, вы касаетесь фазного провода. В случае, когда на экране нет никаких показаний, вы нашли ноль мультиметром.

Для определения «земли» зачистите небольшой участок на любом металлическом элементе домашних коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).

В этом случае у нас будут задействованы два гнезда «СОМ» и «V», вставьте в них измерительные щупы. Прибор установите в режим «ACV», на значение 200 В.

У нас есть три провода, среди них нужно отыскать фазу, ноль и землю. Одним щупом коснитесь зачищенного места на трубе или батарее, вторым дотроньтесь до проводника. Если на экране высвечивается показание порядка 150-220 В, значит, вы нашли фазный провод. Для нулевого провода при аналогичных замерах показание колеблется в пределах 5-10 В, при прикосновении к «земле» на экране ничего не будет отображаться.

Наметьте каждую жилу маркером или изолентой, а чтобы удостовериться в правильности выполненных измерений, сделайте теперь замеры относительно друг друга.

Метки на проводах

Прикоснитесь двумя щупами к фазному и нулевому проводникам, на экране должна появиться цифра в пределах 220 В. Фаза с землёй дадут немного меньшее показание. А если прикоснуться к нулю и земле, то на экране будет значение от 1 до 10 В.

Несколько правил по использованию мультиметра

Перед тем, как определить фазу и ноль мультиметром, ознакомьтесь с несколькими правилами, которые необходимо соблюдать при работе с прибором:

  • Никогда не пользуйтесь мультиметром во влажной среде.
  • Не применяйте неисправные измерительные щупы.
  • В момент проведения замеров не меняйте измерительные пределы и не переставляйте положение переключателя.
  • Не измеряйте параметры, значение которых выше чем верхний измерительный предел прибора.

Как замерять напряжение мультиметром – на следующем видео:

Обратите внимание на важный нюанс в использовании мультиметра. Поворотный переключатель изначально всегда необходимо устанавливать на максимальное положение, чтобы избежать повреждения электронного прибора. А уже в дальнейшем, если показания оказываются ниже, переключатель переставляется на низкие отметки для получения максимально точных замеров.

Как определить фазу и ноль индикаторной отверткой и мультиметром

При монтаже розеток, выключателей, бытовых потребителей приходится сталкиваться с определением фазы и нуля в электропроводке. Если для электромонтажников с опытом эта задача не является проблемой, то у тех, кто впервые коснулся этого вопроса, возникает много непонятных моментов. Поэтому следует разобраться, как и чем можно выявить фазу и ноль в розетке, каково назначение жил электропроводки и можно ли обойтись без специального оснащения.

Понятия ноля и фазы

Электрическая энергия в жилой дом поступает от трансформаторной подстанции, основное назначение которой — преобразование высокого напряжения чаще всего в 380 В. К домам электроэнергия подземным или воздушным способом подводится на вводной распределительный щит. Затем напряжение подается к щиткам каждого подъезда. В квартиру от него заходит только одна фаза с нулем, т.е. 220 В и защитный проводник (зависит от конструкции электрической проводки).

Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?

Таким образом, проводник, обеспечивающий подачу тока к потребителю, называется фазным. Внутри трансформатора обмотки соединены в звезду с общей точкой (нейтраль), заземленной на подстанции. К нагрузке она подводится отдельным проводом. Ноль, представляющий собой общий проводник, предназначен для обратного протекания тока к источнику электроэнергии. Кроме этого, нулевой провод выравнивает фазное напряжение, т.е. значение между нулем и фазой.

Заземление, которое часто называют просто землей, не подключается к напряжению. Его назначение — защита человека от воздействия электрического тока в момент возникновения неполадок с потребителем, т.е. при пробое на корпус. Это может происходить при повреждении изоляции проводников и касании поврежденного участка корпуса прибора. Но поскольку потребители заземляются, при возникновении опасного напряжения на корпусе заземление притягивает опасный потенциал к безопасному потенциалу земли.

Как определить фазу и ноль индикаторной отверткой

Один из способов выявить, где фаза и ноль в розетке либо в силовом кабеле, — использовать индикаторную отвертку. Инструмент внешне напоминает отвертку, но внутри у него есть специальная начинка со светодиодом. Прежде чем приступить к измерениям, нужно отключить рубильник, через который напряжение подается в помещение. После этого требуется зачистить концы проверяемых проводов, для чего снимают 1,5 см изолирующего материала.

Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?

Во избежание короткого замыкания между проводами после включения автомата их следует направить в разные стороны. Когда все подготовительные мероприятия будут выполнены, необходимо включить автомат для подачи напряжения. Чтобы понять, как найти фазу и ноль, необходимо выполнить следующие действия:

  1. Отвертку зажимают между двумя пальцами — средним и большим, избегая касания оголенной части жала инструмента.
  2. Указательным пальцем касаются металлического наконечника с противоположной стороны отвертки.
  3. Плоским концом индикатора поочередно дотрагиваются до зачищенных проводников.
  4. При касании тестером фазы светодиод загорится. Второй провод будет соответствовать нулевому. При отсутствии индикации изначально проводник будет являться нулевым.

Как определить фазу и ноль мультиметром

Прибор, которым измеряют напряжение, ток и сопротивление, называется мультиметром. Чтобы выявить фазный и нулевой провод с его помощью, сперва нужно настроить устройство, для чего выбирают необходимый предел измерений. В случае с цифровыми приборами устанавливают 600, 750 или 1000 «~V» или «ACV».

Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?

Определение фазы производится следующим образом: один из щупов прибора подключают к контакту розетки или кабеля, а до второго щупа дотрагиваются рукой. При отображении на дисплее значения около 200 В это будет указывать на наличие фазы. Показания могут отличаться, что зависит от отделки пола, обуви и т.п. Если прибор отображает нули либо напряжение в пределах 5-20 В, значит, контакт соответствует нолю.

Как определить фазу и ноль без приборов

Иногда бывают ситуации, когда отвертки для определения фазы либо мультиметра под рукой нет, но нужно выяснить, какой провод чему соответствует. Поэтому следует ориентироваться по цветовой маркировке проводов силового кабеля. В отношении маркировки проводов существует стандарт IEC 60446-2004, которого должны придерживаться производители кабелей, а также электромонтажники, выполняющие подключение той или иной электроарматуры.

Чтобы определить по цвету провода, какому проводнику он соответствует, нужно придерживаться следующей маркировки:

  • синий или голубой — ноль;
  • коричневый — фаза;
  • заземление — зелено-желтый.

Однако фазный провод бывает не только коричневым. Часто встречаются и другие расцветки, например белая или черная, но она будет отличной от земли и нуля. Визуально определить провода можно в распределительной коробке, люстре и других точках запитки.

Есть еще один вариант, как определить, где фаза и ноль при отсутствии приборов. Для этого потребуется лампа накаливания с патроном и двумя небольшими отрезками проводов. После подсоединения проводников к патрону можно начинать работу. Краем одного провода касаются трубы отопительной системы, другим — проверяемых проводников. Если в момент контакта лампа зажигается, то это указывает на наличие фазы. Труба для проведения подобного мероприятия должна быть металлической, поскольку пластиковая не проводит ток.

Нужно учитывать, что этот способ хоть и позволяет выявить фазу и ноль, но является опасным, поскольку велика вероятность получить удар электрическим током. Поэтому более безопасно для рассматриваемых целей использовать неоновые лампочки.

Как определить фазу и ноль мультиметром?

Часто бывает так, что во время монтажа различного электрического оборудования в доме, будь то светильники, розетки или выключатели, либо проверка неисправностей электросети, требуется осуществить поиск какого-то провода. Речь идёт о ноле, фазе, а также заземлении. Попытаемся разобраться, что это за провода, как их различить при помощи такого прибора, как мультиметр, и какие меры предосторожности следует соблюдать, дабы человека не ударило электрическим током.

Определение терминов

Итак, для начала следует разобраться в данных терминах и понять, зачем искать тот или иной провод. Необходимо вспомнить, что все электрические сети делятся на 2 категории:

  • с переменным током;
  • с постоянным током.

Ток представляет собой движение электронов по определённому сценарию. В первом варианте электроны осуществляют перманентное передвижение в некоем определённом направлении. А в случае с переменным, особенностью будет постоянная смена направления движения.

Теперь немного скажем о фазе, нуле и заземлении. Электроэнергия поступает в электросеть от трансформаторной подстанции, главным назначением которой является преобразование большого напряжения в 380 В. А к дому электроэнергия подводится либо по воздуху, либо под землёй через вводной щит распределения. Потом напряжение идёт на щитки, расположенные в каждом подъезде. И уже в квартиры идёт по одной фазе с нулём, то есть 220 вольт и проводник защиты.

Проводник, что обеспечивает подачу электрического тока потребителю, будет иметь название фазного. Внутри трансформаторной обмотки они соединяются между собой в так называемую звезду, что имеет общую нейтраль, которая заземлена на самой подстанции. Она обычно идёт к нагрузке по отдельному кабелю. Ноль, являющийся общим проводником, предназначается для реверсивного движения тока на источник электричества. Он даёт возможность выровнять фазное напряжение – разницу между нулём и фазой.

А заземление, которое в простонародье прозвали землёй, напряжения не имеет. Главной его задачей является защита пользователя от воздействия электротока при появлении неполадок с техникой, то есть при возникновении пробоя.

Это может случиться, если повреждается проводниковая изоляция, и деформированный участок касается приборного корпуса. Но так как потребители заземляются, то при возникновении большого напряжения на корпусе заземление тянет на себя опасный потенциал.

Методы

Теперь, когда стало ясно, что представляют собой ноль, фаза и заземление, необходимо разобраться в методах, при помощи которых они могут быть определены. Наиболее распространёнными и общепринятыми будут 3 метода, с использованием которых можно проверить фазу и ноль:

  • по расцветке самих жил;
  • при помощи отвёртки-индикатора;
  • с использованием мультиметра.

Если говорить о первом методе, то он является простейшим и ненадёжным. Обычно проводники имеют цветную изоляцию оболочек. Фаза отличается серой, коричневой, чёрной либо белой оплёткой. Ноль обычно делается синим либо голубым. Заземление, как правило, имеет зелёный либо зелено-жёлтый цвет. Тут не требуется применять какие-либо приборы или технику – посмотрели на цвет и поняли, что за кабель перед вами.

Но проблема заключается в отсутствии уверенности, что при прокладывании проводки что-то не перепутали, и цветная маркировка соблюдена в рамках существующих норм.

Если говорить об отвёртке-индикаторе, то этот способ будет более надёжным для нахождения фазы и ноля. Она обычно имеет корпус, не проводящий ток, а также встроенный индикаторный резистор, являющийся обычным диодом. Чтобы осуществить проверку ноля с фазой, следует осуществить такие действия.

  • Выключить общий УЗО ввода в квартиру.
  • Осуществить зачистку чем-то острым проверяемых жил от изоляции на 1 сантиметр. Далее, производится их разведение на определённое расстояние, дабы исключить соприкосновение и дальнейшее короткое замыкание.
  • Осуществляем подачу тока, предварительно включив автомат ввода.
  • Отвёрточным жалом необходимо прикоснуться к оголённым проводникам. Если горит индикаторное окно, это будет означать, что перед нами – фазный кабель. Отсутствие света свидетельствует, что проверяемый провод является нулевым.
  • Теперь помечаем маркером необходимую жилу и опять обесточиваем общий автомат, после чего осуществляем подсоединение аппарата коммутации.

Как можно убедиться, в этом нет ничего сложного. А вот более точные и сложные проверки производятся с использованием такого прибора, как мультиметр, или, как его ещё называют, тестер. Он представляет собой комбинированный прибор для проведения различного рода электрических измерений. Мультиметр может заменить большое количество устройств для проведения электронных измерений. В частности, омметр, амперметр, вольтметр.

При помощи тестера можно осуществить определение не только земли, ноля либо фазы, но и осуществить замеры на участке цепи тока, напряжения, сопротивления, и проверить целостность электроцепи. Теперь попытаемся разобраться, как узнать при помощи тестера, где будет фаза, а где — ноль.

Описание процесса

Начнём с фазы. Требуется включить устройство, после чего выставить на нём определение напряжения переменного характера, что на корпусе устройства обычно обозначается значком V~. Также следует выбрать предел измерения выше предполагаемого сетевого напряжения. Часто говорят о 400–700 В. Щупы тогда будут подключаться так: чёрный следует установить в разъём с пометкой COM, а красный – VΩmA. Но прежде чем осуществлять это, следует проверить работоспособность мультиметра в выбранном режиме. Проще попытаться выяснить напряжение в простой розетке. Для этого вставляем щупы в розеточные отверстия. Если устройство рабочее, и таковой будет розетка, то мультиметр покажет вам значение около 220–230 В.

Теперь приступим непосредственно к поиску фазы на примере 2 кабелей, торчащих из потолка и использующихся для включения люстры. Всё будет довольно легко. Требуется сформировать условия для прохождения электричества по прибору и установить этот факт. Создаётся электрическая цепь примерно такая, как с отвёрткой-индикатором.

При выяснении напряжения переменного характера с установленной границей 500 вольт, красным щупом нужно коснуться проверяемого кабеля, а чёрный прижать пальцами или коснуться предмета, что заземлён. Им может стать каркас стены из стали, отопительный радиатор и так далее. Если на проверяемом кабеле будет фаза, тестер высветит на дисплее величину напряжения около 220 В. Она может чуть различаться из-за условий, но будет примерно такой. Если провод не фаза, то появится 0 либо прибор покажет не более пары десятков вольт.

Теперь поговорим о том, как найти ноль. Он обычно находится уже относительно фазы. Сначала ищем её и логически предполагаем, что провод, расположенный рядом, ноль либо земля. Определить, является кабель нулём либо заземлением с помощью рассматриваемого устройства относительно сложно из-за того, что данные проводники почти одинаковы и повторяют друг друга.

Бывает, что ноль и заземление связаны в электрозащите и установить их действительно крайне сложно.

Проще всего будет отключить от заземлительной шины в электрощитке кабель ввода. При осуществлении проверки напряжения между кабелями заземления и фазой нельзя будет получить 220 вольт, как при проверке фазы и нуля. Кроме того, следует сказать, что если в электрощите стоит защита дифференциального типа, то она точно сработает при проверке кабелей заземления относительно иного проводника, даже нулевого.

Если надо установить ноль в розетке, то следует красный щуп поставить в фазовую розеточную дырку, а чёрный поднести к иному контакту, после чего сделать эти же действия с третьим контактом. Обязательно следует запомнить напряжение в обоих случаях. Где оно будет меньше, там будет заземление. А там, где показатель будет чуть выше – там будет нулевой провод. В общем, как можно убедиться, ничего сложного в поиске нуля и фазы мультиметром нет.

Меры безопасности

Следует немного сказать и о некоторых правилах безопасности, которые обязательно следует прочитать, прежде чем начинать определение фазы и нуля при помощи мультиметра:

  • ни в коем случае нельзя использовать мультиметр в помещении с высокой влажностью;
  • нельзя использовать неисправные щупы для измерений;
  • при осуществлении замеров нельзя изменять пределы измерений и переставлять режим переключателя;
  • нельзя менять параметры, значение которых будет выше, чем приборная грань измерений.

Кроме того, поворотный переключатель с самого начала следует установить в максимальное положение, дабы избежать поломки прибора.

О том, как определить фазу и ноль мультиметром, смотрите в следующем видео.

Как определить фазу и нуль

инструменты для определения фазы и нуль

Перед тем, как начать процесс определения фазы и нуля, необходимо сделать ряд приготовлений, поскольку для данных работ потребуются следующие приборы и инструменты:

  • мультиметр;
  • индикаторная отвертка;
  • тестер;
  • пассатижи;
  • нож с заточенным лезвием, чтобы снимать изоляцию с проводников;
  • изоляционная лента;
  • маркер для нанесения разметок;

Также, важно помнить, что перед началом любых электромонтажных работ, необходимо отключить автоматы, поскольку несоблюдение данного правила может представлять угрозу для жизни. Помимо этого, требуется убедиться, что весь используемый инструмент обладает надежно заземленными рукоятями.

В противном случае, его использование является небезопасным и не допускается по технике безопасности.

Визуальный метод определения

провода с обозначениями

Данная методика является самым простым способом, поскольку для его реализации не потребуется никаких дополнительных приборов или оборудования.

Необходимо осмотреть проводку, чаще всего она имеет следующие цветовые разграничения:

  1. Провод желто-зеленого цвета является заземлением.
  2. Нуль имеет синий цвет или любые его оттенки вплоть до светло-голубого.
  3. Фаза имеет черный, коричневый или белый цвет.
  4. Необходимо убедиться в соответствии цветов не только в электрощите, но также и в распределителе.

Визуальный осмотр системы должен осуществляться в соответствии со следующим алгоритмом действий:

  1. Открыть электрощит и осмотреть его содержимое. Поскольку расчетная нагрузка может различаться, то и количество установленных автоматов также может быть разным. Через них может быть осуществлено подключение фазы или фазы с нулем, заземление никогда не подсоединяется к автоматическим выключателям, а имеет соединение с шиной. Необходимо убедиться, что все подключенные провода соответствуют цветовой маркировке.
  2. Если цвет изоляции, проведенной от электрощита к домашней сети, соответствует правилам цветовой маркировки, то все равно потребуется вскрытие распределителей для визуального осмотра скруток. Это необходимо для того, чтобы убедиться, что и в них цветовая маркировка изоляции нуля и заземления не была перепутана и соответствует установленным правилам.
  3. Иногда в распределителях осуществляется подключение фазы к автоматическим выключателям. В большинстве случаев, это реализуется при помощи специального провода с двумя жилами, изоляция которого может отличаться цветом.
  4. Если результаты визуальной проверки показали, что цвета изоляции полностью соответствуют правилам, то остается всего лишь проверить фазный проводник, используя для этого индикаторную отвертку.

Определение индикаторной отверткой

индикаторная отвертка

Одним из наиболее простейших способов определения нуля и фазы является использование для этих целей индикаторной отвертки.

Для осуществления данного процесса необходимо придерживаться следующего алгоритма действий:

  1. Первоначально потребуется отключить автомат, от которого происходит питание линии электросети на месте проверки.
  2. Провести зачистку обоих проверяемых проводников, достаточно снять не более 1-2 см. изоляционного слоя.
  3. После этого оба проводника разводятся друг от друга на безопасное расстояние, поскольку после подачи напряжения их случайное соприкосновение может стать причиной короткого замыкания.
  4. Можно приступать к идентификации фазного проводника. Для этого включается автоматический автомат, который подает напряжение, после этого необходимо будет взять индикаторную отвертку и прикоснуться к металлической области, расположенной возле основания рукояти.
  5. Категорически не допускается прикасаться к любым частям индикаторной отвертки, расположенным ниже рукояти, поскольку это вызовет удар электрическим током.
  6. Прикоснуться инструментом к одному из проверяемых проводов, при этом не нужно убирать палец с металлической области.
  7. Загорание лампочки, входящей в конструкцию отвертки, свидетельствует о том, что проводник является фазным. Соответственно второй провод – это нуль. Если загорание лампочки не произошло, наоборот, проводник был нулем, а второй является фазой.

Определение тестером или мультиметром

индикаторная отвертка

мультиметр

Иным распространенным способом определения фазы и нуля является использование специальных приборов – тестера или мультиметра.

Если был выбран именно этот вариант, то необходимо придерживаться следующей последовательности действий:

  1. Используемому прибору задать настройки предельного измерения переменного тока. На современных моделях этому параметру соответствует режим ~V или ACV. Необходимо указать значение равное 600 В, 750 В, 1000 В или иной параметр в зависимости от особенностей модели, главным требованием является, чтобы он превосходил показатель 250 В.
  2. Щупами прибора необходимо коснуться сразу обоих проводов, для того, чтобы определить уровень напряжения между ними. В стандартных бытовых сетях этот показатель равен 220 В, возможное отклонение не должно превышать 10 % в любую из сторон. Подобное значение свидетельствует о том, что проводник является фазой, у нуля уровень напряжение будет совсем незначительным или равным нулю.
  3. В современных электросетях может потребоваться также идентификация проводника с заземлением, для этого требуется определение уровня сопротивления. В таком случае, прибор переводится в соответствующий режим, который имеет условное обозначение в виде значка звонка или омеги.
  4. Необходимо помнить, что когда прибор переведен в режим для определения уровня сопротивления, категорически запрещено одновременное прикосновение к фазе и заземлению, поскольку произойдет короткое замыкание. Имеется риск получения травм.

Определение по маркировке

маркировка проводов

При описании визуального способа идентификации проводников уточнялось, что в большинстве современных электросетей желто-зеленый цвет соответствует защитному нулю, все оттенки синего цвета обозначают рабочий нуль, а любые иные цвета фазу.

Однако, необходимо учитывать, что проводники могут не соответствовать принятой цветовой гамме в следующих случаях:

  1. Проводка проложена в доме старой постройки, где не была произведена реконструкция домашней электросети в соответствии с современными правилами. Чаще всего в ней используются одноцветные проводники.
  2. Проводка проложена в новостройке, но ее монтаж осуществлялся частными лицами, а не профессиональными электриками.
  3. Провода ведут к более сложным бытовым устройствам, например, различным переключателям или выключателям, конструкция которых изначально подразумевает принципиально иную схему функционирования.
  4. Проводка прокладывалась по стандартам, отличающимся от принятых в Европе, поэтому она имеет совершенно иные цветовые обозначения.

В большинстве остальных случаев, цветовая маркировка проводников производится в соответствии с указанными правилами, которые регламентируются соответствующим стандартом IEC, действующем на территории всей Европы.

В ситуациях, когда отсутствует полная уверенность в полном соответствии цветовой гаммы общепринятому стандарту, рекомендуется воспользоваться одним из практических методов для определения нуля и фазы.

Также, можно посоветовать в последствии использовать специальные цветные насадки, которые позволят в будущем не забыть предназначение проводников и не осуществлять процедуру их определения заново.

Определение с помощью картошки

картошка

Еще одним известным методом определения без специальных приборов является вариант, в котором задействуется обычная сырая картошка. Многие специалисты относятся к таким действиям довольно скептически, но подобное решение все равно является действенным.

Для его осуществления необходимо осуществить следующую последовательность:

  1. Взять одну сырую картофелину и разрезать ее на две части.
  2. Зачистить концы двух проводников и воткнуть их в одну из частей картофелины.
  3. Подождать около 10 минут, после чего вытащить оба провода.
  4. Осмотреть картофелину: в месте, где образовался зеленоватый след, был воткнут фазный проводник.

Другие способы определения

компьютерные кулеры

Существует еще несколько альтернативных методик определения фазы и нуля, они редко используются и зачастую подвергаются критике со стороны квалифицированных специалистов. Связано это по большей части с тем, что подобные способы являются более опасными, поэтому проводить их необходимо с максимальной степенью осторожности.

Один их таких методов определения требует задействования обычного компьютерного кулера, его можно применить на практике в тех случаях, когда известны параметры подаваемого напряжения, но неизвестно назначение проводников:

  1. Для реализации необходимо будет использовать красный и черный проводники, выходящие из вентилятора. Иногда в нем имеется и третий провод, который является датчиком оборотов, но он в процессе определения не пригодится.
  2. Красный проводник кулера является фазным, а черный соответствует нулю.
  3. Стандартные вентиляторы рассчитаны на 12 В, а функционировать начинают от 3В, поэтому они лучше всего подходят для проверки от соответствующих источников питания.
  4. Если напряжение превышает показатель 12 В, то потребуется резко прикоснуться проводниками к выводам кулера и посмотреть на реакцию лопастей. Если они остались без движения, то к красному проводнику был подключен нуль, если начали двигаться, то это была фаза.

Для другого способа определения нужна будет контрольная лампа, а его реализация потребует соблюдения следующего алгоритма действий:

  1. Первоначально надо собрать саму контрольную лампу, простейшее устройство будет выглядеть таким образом: вкрутить лампочку в патрон, в его клеммы закрепить проводники, с их концов снять изоляционный слой.
  2. Дальнейший процесс не представляет никакой сложности: тестируемые проводники поочередно соединяются с контактами лампы, во время процесса необходимо наблюдать за ее реакцией.

Среди более безопасных вариантов определения можно выделить следующие альтернативные методы:

  1. Проверка проводников через УЗО, поскольку известно, что при наличии потребителя, подключенного к электросети, замыкание нуля и земли способствует возникновению утечки электрического тока, что моментально отключает защитное устройство. Это поможет идентифицировать нулевой и заземляющий проводник, третий будет являться фазой.
  2. Взять предохранитель и захватить его плоскогубцами, рукоять инструмента при этом должна быть изолирована, чтобы избежать поражения электрическим током. Замкнуть на нем два проводника и проверить результат: если предохранитель сгорел, то это была фаза и земля; если уцелел, то земля и нуль либо фаза и нуль. Поставив несколько поочередных экспериментов с фиксацией результатов, можно будет точно идентифицировать каждый проводник.

Особенности определения фазы и нуля

определение фазы и нуля

В двухпроводной сети

Идентификация проводников в двухпроводной сети является гораздо более простой, поскольку осуществляется самым простым способом, для этого потребуется:

  1. Определить только фазу, поскольку известно, что второй проводник будет являться нулевым.
  2. Для определения фазы в двухпроводной сети идеально подходит индикаторная отвертка, подробный порядок действий был описан выше.

В трехпроводной сети

Немного сложнее ситуация обстоит с современными видами трехпроводных сетей, поскольку в них имеется еще и заземление.

Для определения назначения проводников необходимо придерживаться следующего алгоритма действий:

  1. Фаза определяется при помощи индикаторной отвертки методом, описанным выше. После этого рекомендуется нанести пометку при помощи маркера, чтобы в дальнейшем не перепутать провод.
  2. Для работы с нулем и землей потребуется задействовать мультиметр. Нулевой проводник также может обладать напряжением, что вызывается перекосом фаз, но его показатели никогда не превышают 30 В. Мультиметр нужно переключить в режим работы для измерения напряжения переменного тока, после чего один щуп подключается к фазе, а второй поочередно к оставшимся проводникам. Нуль будет там, где зафиксируется наименьший параметр напряжения.
  3. Иногда оба проводника обладают одинаковыми показателями напряжения. В таком случае, фазу необходимо изолировать, а мультиметр переключить в режим, предназначенный для определения уровня сопротивления. Также, потребуется подобрать внешний заземленный элемент и прикоснуться к нему один щупом прибора, а вторым по очереди к каждому из проверяемых проводников. В том случае, когда мультиметр покажет сопротивление 4Ом или меньше, подключение совершено к земле, если показатель выше, то это нуль.
  4. Однако, показатели сопротивления не являются точными, если нейтраль была подвержена заземлению еще внутри электрощита. Тогда потребуется обнаружить и отключить заземляющий элемент, который подключен к шине. После этого, взять контрольную лампу и поставить описанный ранее эксперимент по ее подключению. Ее загорание происходит только при подключении нулевого проводника.

Устройство бытовых электрических сетей

мужчина режет проводаПоступление электроэнергии в любые жилые строения происходит через трансформаторные подстанции, которые изменяют поступающее высоковольтное напряжение, и на выходе оно уже имеет показатель равный 380 В.

Бытовые электросети современного образца выглядят и функционируют следующим образом:

  1. Трансформаторная обмотка на подстанции имеет особый вид соединения, который придает ей сходство со звездой. Три вывода подключаются к одной общей точке нуля, а другие три на соответствующие клеммы.
  2. Выводы, подключенные к нулю, соединяются и подключаются к заземлению трансформаторной подстанции.
  3. В этом же месте общий нуль разделяется на рабочий нуль и специальный защитный PE-проводник.
  4. Описанная система получила обозначение TN-S, но в старых домах до сих пор действует схема TN-C, которая отличается в первую очередь отсутствием защитного PE-проводника.
  5. Фаза и нуль, после вывода из трансформатора, протягиваются к жилым домам для подключения к вводному электрощиту. Здесь происходит создание трехфазной системы напряжения с показателями 320/220В.
  6. Далее разводка осуществляется по подъездным электрощитам, куда поступает напряжение с фазы 220В и защитный PE-проводник, если его наличие было предусмотрено.
  7. Нулем в квартирной электросети будет являться проводник, который имеет соединение с землей в схеме трансформаторной подстанции и предназначенный для создания необходимого уровня нагрузки от фазы, которая также имеет подсоединение к трансформаторной обмотке, но с противоположной стороны. Главной функцией защитного нуля является отвод токов повреждений, которые могут возникнуть при аварийной ситуации внутри сети.
  8. Происходит равномерное распределение нагрузки, это осуществляется благодаря наличию этажной разводки, а также подключению квартирных электрощитов к определенным линиям на 220 В внутри центрального распределителя в подъезде.
  9. Система, по которой осуществляется подведение напряжения к жилому дому, с точностью повторяет векторные характеристики трансформаторной подстанции и также обладает формой звезды.
  10. Сумма всех токов в трехфазной разновидности электросети складывается в соответствии с векторной графикой внутри нулевого проводника, после чего она возвращается на трансформаторную обмотку в подстанции.

Если внутри жилого помещения отключить все потребители электроэнергии и отключить их от рабочих розеток, то электрический ток внутри сети перестанет протекать даже при подведенном к электрощиту напряжении.

Описанная система устройства бытовой электросети является наиболее оптимальной из всех существующих на сегодняшний день, но и она не застрахована от возможных неисправностей. В большинстве случаев они связаны с нарушением соединений контактов либо обрывом проводников.

Статья была полезна?

0,00 (оценок: 0)

Как проверить фазу мультиметром - Multimetri.ru

Проще всего фаза определяется индикаторной отвёрткой. Но если её нет или сломана, можно найти фазу с помощью мультиметра. Делается это довольно просто, но нужно быть предельно внимательным.

Готовим мультиметр

В первую очередь осматриваем корпус прибора. Если он разваливается в руках, нужно принять меры — защёлкнуть держатели или завернуть винты. Осматриваем провода. Если изоляция местами слезла, меняем провод. Либо обматываем изолентой. Красиво починить провод может термоусадочная трубка. Щупы тоже подвергаем ревизии. Если на корпусах есть острые сколы — выравниваем, чтобы случайно не пораниться. Если видны токонесущие части — изолируем любыми подручными средствами — изоляционной лентой, клеевым пистолетом, термоусадкой подходящего диаметра. Проверяем работоспособность. Кабель чёрного цвета включаем в гнездо Com, а красного — в гнездо с символами единиц измерения — латинские A и V, греческая большая Омега.

Подготовка щупов мультиметра

После включения прибор должен что-то показать на дисплее. Если не показывает — проверяем элементы питания. Устанавливаем селектор прибора на измерение переменного напряжения, выбираем первое значение выше 220 В. Скорее всего, это будет 500 В. Не касаясь оголённых частей шупов, вставляем их в розетку 220 В. Прибор должен показать значение, близкое к 220 В, хотя бывает всякое. В одном из малых городов автору встретилось напряжение в обычной бытовой сети в 158 В. На самом деле, это повод обратиться к сбытовой организации, но фазу искать не мешает. Итак, если прибор показал напряжение в сети — он исправен. Можно искать фазу.

Читайте также

Как проверить свечи зажигания мультиметром. Почему свеча не работает?

»

Замер напряжения мультиметром

к содержанию ↑

Для чего искать фазу

Казалось бы, чего проще — установить выключатель лампочки. Разрывай любой провод, ставь на него рубильник — и свет будет послушен воле человека. Тем не менее, по действующим Правилам установки электрооборудования — ПУЭ — выключатель должен ставится исключительно в разрыв фазного провода. Это вполне логично — разомкнув цепь мы должны обезопасить себя или другого человека от поражения током, если надо будет поменять патрон или весь светильник, даже лампочку. Разумеется, при замене светильника, в первую очередь монтажник или домашний мастер проверяет наличие фазы. И, если уж поставить выключатель правильно нет возможности, придётся отключать автомат в щитке, чтобы гарантировано обесточить проводники для лампы. Всегда проверяйте наличие фазы в том оборудовании, которое собираетесь ремонтировать или менять.

к содержанию ↑

Как определить фазу мультиметром

Распределительная коробка

Если в розетке, люстре, распределительной коробке три провода, то всё просто. Оставив мультиметр в том же режиме — измерения переменного напряжения с пределом 500 В, попарно касаемся проводов. Ищем пару проводников, напряжение между которыми будет нулевым. Оставшийся провод — фаза. Если же провода два, придётся стать частью электрической цепи. Берём в руку жало чёрного щупа. Он в разъёме Com —это важно. Красным щупом касаемся провода. Если тестер показывает напряжение в районе 220 В — это фаза. Собственную руку можно заменить, например, радиатором отопления — гарантированно заземлёным проводником. Часто от лампы до батареи проводник не дотягивается — поэтому и приходится брать чёрный щуп руками. Это не опаснее, чем пользоваться индикаторной отвёрткой — там монтажник тоже становится частью цепи. Помните — мультиметр должен быть переключен в режим измерения переменного напряжения на предел в 500 В — и никак иначе. Выставление мультиметра в режим замера напряжения переменного тока

Берегите себя, соблюдайте правила безопасности.

Устройство и работа тестера сети

Тестер фазы, линии или электрической сети - как это работает?

Что такое тестер фазы или сети?

Тестер фазы, электрической сети или линии - это основной инструмент, который используется для проверки и идентификации Фаза / под напряжением / под напряжением или Положительный (+) провод / провод в электрической установке, также известный как напряжение или детектор тока.

Тестер фазы или линии также называется Neon Screw Driver или Test Pin .

Полезно знать: Фаза, Линия, Горячий, Активный и Положительный - это те же термины, которые используются для отдельного объекта.

Конструкция тестера фазы или линии

Ниже приведены основные части типичного тестера фазы или линии.

Internal Parts of a Phase Line-Tester Internal Parts of a Phase Line-Tester Внутренние части тестера линии фаз

1). Металлический стержень и горлышко

Это цилиндрический металлический стержень. Плоский конец (горлышко) используется в качестве отвертки или прикосновения к электрическим проводам / проводам для поиска фазных или токоведущих проводов, а другой конец подключается к сопротивлению, неоновой лампе, элементу и металлическому винту с головкой соответственно.Плоский конец цилиндрического металлического стержня также покрыт прозрачным изолированным пластиком для изоляции, кроме горловины.

2). Корпус и изоляция

Все эти компоненты (резистор, неоновая лампа, элемент или металлическая пружина и металлический винт с головкой) покрыты прозрачным изолированным корпусом из пластика. Плоский конец цилиндрического металлического стержня также покрыт прозрачным изолированным пластиком для изоляции, кроме горловины.

3).Резистор

Резистор - это элемент, который препятствует прохождению через него тока. В тестере фазы или линии резистор подключается между цилиндрическим металлическим стержнем и неоновой лампой для предотвращения высокого тока и снижает его до безопасного значения для защиты неоновой лампы. Без резистора большой ток может повредить неоновую лампу. Более того, использование этого инструмента без резистора может быть опасным.

4). Неоновая лампочка

Неоновая лампа подключается между сопротивлением и элементом (металлической пружиной).Используется как лампочка индикатора фазы. Когда через него протекает небольшой ток, неоновая лампочка начинает светиться. Из-за неоновой лампы тестер фазы или линии также называется Neon Screw driver .

5). Элемент (металлическая пружина)

Элемент (металлическая пружина) используется для соединения неоновой лампы и металлического винта с головкой.

6). Металлический винт с головкой и зажим

Металлический винт с головкой под ключ используется для закрепления всех компонентов внутри паза фазового тестера.Кроме того, металлический колпачковый винт соединяется с пружиной (элементом), а пружина (элемент) затем соединяется с неоновой лампой. Кроме того, зажим используется для удержания фазометра в кармане.

How does an Electric Phase or Line Tester work Construction Working of Mains Tester How does an Electric Phase or Line Tester work Construction Working of Mains Tester Конструкция Работа тестера сети

Работа тестера фазы или линии

Когда мы касаемся рта (плоского конца металлического стержня) тестера фазы или линии голым проводом под напряжением / горячим проводом, в то время как один из наших пальцев касается металлический винт с головкой или зажим тестера фазы / линии, тогда цепь замыкается и ток начинает течь по металлическому стержню. Следовательно, неоновая лампочка внутри сетевого тестера светится.

Металлический стержень подключен к резистору, который снижает высокий ток до безопасного значения. Сниженный ток проходит через неоновую лампу, которая подключена к (металлической пружине). Металлическая пружина соединена с металлическим винтом с головкой под ключ, который контактирует с нашими пальцами. Очень слабый ток проходит через наше тело на землю и замыкает цепь. Когда цепь замыкается, начинает течь ток и начинает светиться нить неоновой лампы. Это указывает на то, что провод, которого коснулся рот тестера фазы / линии, является фазой / линией / горячим.

Если мы выполняем то же действие, что упомянуто выше, и неоновая лампа не горит, это означает, что это нейтральный (-) провод / проводник, или в фазном проводе нет сетевого питания, или фазный провод оборван посередине.

Using Phase Tester as Line Indicator Using Phase Tester as Line Indicator Использование фазометра в качестве индикатора линии

Меры предосторожности

  • Никогда не пытайтесь работать от электричества без надлежащего руководства и ухода.
  • Работать на электричестве только в присутствии лиц, имеющих хорошие знания и практические навыки работы с электричеством.
  • Не дотрагивайтесь до открытого провода / проводника, даже тестер показывает отсутствие фазы или горячего питания.
  • Используйте тестер линии только с 100–500 В.
  • Не используйте тестер фазы или линии с высоким напряжением.
  • Не ударяйте по ручке тестера Line, иначе неоновая лампа или элемент могут повредить его.
  • Выполнение собственных электромонтажных работ опасно, а также незаконно в некоторых областях. Прежде чем вносить какие-либо изменения в подключение электропроводки, обратитесь к лицензированному электрику или в энергоснабжающую компанию.
  • Электричество - наш враг, если вы дадите ему шанс убить вас, помните, они никогда не упустят его. Пожалуйста, прочтите все меры предосторожности и инструкции при выполнении этого руководства на практике.
  • Автор не несет ответственности за какие-либо убытки, травмы или повреждения в результате отображения или использования этой информации, или если вы попробуете какую-либо схему в неправильном формате. Поэтому, пожалуйста! Будьте осторожны, потому что все дело в электричестве, а электричество слишком опасно.

Похожие сообщения:

.

1PC SP8030 3-х фазный тестер чередования фаз Цифровой индикатор фаз детектор светодиодный зуммер измеритель последовательности фаз тестер напряжения 200 В 480 В переменного тока | |

1PC SP8030 3-фазный тестер чередования фаз Цифровой индикатор фазы Детектор светодиодный зуммер Измеритель последовательности фаз Тестер напряжения 200-480 В переменного тока

Характеристики:
1. Один блок с двумя функциями: проверка последовательности фаз и индикация обрыва фазы.
2. Безопасный и надежный: зажимы типа «крокодил» позволяют легко подключать клеммы панели управления, гарантируя надежность и безопасность.
3. Широкий тест напряжения: он может проверять трехфазное напряжение от 200 В до 480 В переменного тока, высокую производительность.
4. Простота использования: со светодиодной подсветкой, чтобы показать, открыта фаза или нет, поддерживает индикацию зуммера.
5. Портативный дизайн: маленький и легкий, с сумкой для переноски, удобно брать.

Описание:
Этот тестер трехфазного чередования SP8030 предназначен для проверки последовательности фаз и определения обрыва фазы.

Технические характеристики:
Модель: SP8030
Рабочее напряжение: 200 В ~ 480 В переменного тока, трехфазное
Диапазон рабочих частот: 20 Гц ~ 400 Гц
Предельное время для непрерывного измерения:
Максимум 60 минут при 200 В переменного тока
Максимум 4 минуты при 480 В переменного тока
Чередование фаз Светодиодный индикатор:
Зеленый для правильного чередования фаз, прерывистый звуковой сигнал
Красный для обратного чередования фаз, непрерывный звуковой сигнал
Тестовая ручка и длина кабеля: 80 см
Размер: 80 x 60 x 23 мм
Вес изделия: 136 г

Информация о упаковке:
Размер упаковки : 17.2 x 11 x 5 см / 6,8 x 4,3 x 2 дюйма
Вес упаковки: 239 г / 8,8 унций

Список упаковки:
1 индикатор фазы SP8030
3 зажима типа «крокодил»
1 сумка для переноски
1 руководство пользователя

YB21800-ALL-2-1 YB21800-C-9-1 YB21800-C-10-1 YB21800-C-11-1 YB21800-D-3-1 YB21800-D-6-1 YB21800-D-8-1 YB21800-S-12-1

,

SP8030 3-х фазный тестер чередования фаз Цифровой индикатор фаз детектор светодиодный зуммер измеритель последовательности фаз тестер напряжения 200 В 480 В переменного тока | |

60232

Магазин инструментов Praise House В наличии

SP8030 3-х фазный тестер чередования фаз, цифровой индикатор фаз, детектор, светодиодный зуммер, измеритель последовательности фаз, тестер напряжения 200-480 В переменного тока

Особенности:

1.Один блок с двумя функциями: проверьте последовательность фаз и укажите, открыта фаза или нет.

2.Безопасный и надежный: зажимы типа «крокодил» позволяют легко подключать клеммы панели управления, гарантируя надежность и безопасность.

3.Широкий тест напряжения: он может проверять трехфазное напряжение переменного тока от 200 В до 480 В, высокую производительность.

4. Простота использования: со светодиодной подсветкой, чтобы показать, открыта фаза или нет, поддерживает индикацию зуммера.

5.Портативный дизайн: маленький и легкий, с сумкой для переноски, удобно брать.

Описание:

Этот тестер трехфазного чередования SP8030 предназначен для проверки чередования фаз и определения обрыва фазы.

Технические характеристики:

Модель: SP8030

Рабочее напряжение: 200 В, 480 В переменного тока, трехфазный

Диапазон рабочих частот: 20 Гц 400 Гц

Предельное время для непрерывного измерения:

Максимум 60 минут при 200 В переменного тока

Максимум 4 минуты при 480 В переменного тока

Светодиодный индикатор чередования фаз:

Зеленый: правильная последовательность фаз, прерывистый звуковой сигнал

Красный для обратной последовательности фаз, непрерывный звуковой сигнал

Тестовая ручка и длина кабеля: 80 см

Размер: 80 х 60 х 23 мм

Вес изделия: 136 г

Информация о пакете:

Размер упаковки: 17.2 х 11 х 5 см / 6,8 х 4,3 х 2 дюйма

Вес упаковки: 239 г / 8,8 унций

Список пакетов:

1 x индикатор фазы SP8030

3 зажима для аллигатора

1 х сумка для переноски

1 х Руководство пользователя

60232

Магазин инструментов Praise House В наличии

SP8030 3-х фазный тестер чередования фаз, цифровой индикатор фаз, детектор, светодиодный зуммер, измеритель последовательности фаз, тестер напряжения 200-480 В переменного тока

Особенности:

1.Один блок с двумя функциями: проверьте последовательность фаз и укажите, открыта фаза или нет.

2.Безопасный и надежный: зажимы типа «крокодил» позволяют легко подключать клеммы панели управления, гарантируя надежность и безопасность.

3.Широкий тест напряжения: он может проверять трехфазное напряжение переменного тока от 200 В до 480 В, высокую производительность.

4. Простота использования: со светодиодной подсветкой, чтобы показать, открыта фаза или нет, поддерживает индикацию зуммера.

5.Портативный дизайн: маленький и легкий, с сумкой для переноски, удобно брать.

Описание:

Этот тестер трехфазного чередования SP8030 предназначен для проверки чередования фаз и определения обрыва фазы.

Технические характеристики:

Модель: SP8030

Рабочее напряжение: 200 В, 480 В переменного тока, трехфазный

Диапазон рабочих частот: 20 Гц 400 Гц

Предельное время для непрерывного измерения:

Максимум 60 минут при 200 В переменного тока

Максимум 4 минуты при 480 В переменного тока

Светодиодный индикатор чередования фаз:

Зеленый: правильная последовательность фаз, прерывистый звуковой сигнал

Красный для обратной последовательности фаз, непрерывный звуковой сигнал

Тестовая ручка и длина кабеля: 80 см

Размер: 80 х 60 х 23 мм

Вес изделия: 136 г

Информация о пакете:

Размер упаковки: 17.2 х 11 х 5 см / 6,8 х 4,3 х 2 дюйма

Вес упаковки: 239 г / 8,8 унций

Список пакетов:

1 x индикатор фазы SP8030

3 зажима для аллигатора

1 х сумка для переноски

1 х Руководство пользователя

60232

Магазин инструментов Praise House В наличии

SP8030 3-х фазный тестер чередования фаз, цифровой индикатор фаз, детектор, светодиодный зуммер, измеритель последовательности фаз, тестер напряжения 200-480 В переменного тока

Особенности:

1.Один блок с двумя функциями: проверьте последовательность фаз и укажите, открыта фаза или нет.

2.Безопасный и надежный: зажимы типа «крокодил» позволяют легко подключать клеммы панели управления, гарантируя надежность и безопасность.

3.Широкий тест напряжения: он может проверять трехфазное напряжение переменного тока от 200 В до 480 В, высокую производительность.

4. Простота использования: со светодиодной подсветкой, чтобы показать, открыта фаза или нет, поддерживает индикацию зуммера.

5. портативный дизайн: маленький и легкий, с сумкой для переноски, удобно брать.

Описание:

Этот тестер трехфазного чередования SP8030 предназначен для проверки чередования фаз и определения обрыва фазы.

Технические характеристики:

Модель: SP8030

Рабочее напряжение: 200 В, 480 В переменного тока, трехфазный

Диапазон рабочих частот: 20 Гц 400 Гц

Предельное время для непрерывного измерения:

Максимум 60 минут при 200 В переменного тока

Максимум 4 минуты при 480 В переменного тока

Светодиодный индикатор чередования фаз:

Зеленый: правильная последовательность фаз, прерывистый звуковой сигнал

Красный для обратной последовательности фаз, непрерывный звуковой сигнал

Тестовая ручка и длина кабеля: 80 см

Размер: 80 х 60 х 23 мм

Вес изделия: 136 г

Информация о пакете:

Размер упаковки: 17.2 х 11 х 5 см / 6,8 х 4,3 х 2 дюйма

Вес упаковки: 239 г / 8,8 унций

Список пакетов:

1 x индикатор фазы SP8030

3 зажима для аллигатора

1 х сумка для переноски

1 х Руководство пользователя

,

SP8030 3-х фазный тестер чередования фаз Цифровой индикатор фаз детектор светодиодный зуммер измеритель последовательности фаз тестер напряжения 200 В 480 В переменного тока | |

SP8030 3-х фазный тестер чередования фаз Цифровой индикатор фазовый детектор Светодиодный зуммер Измеритель последовательности фаз Тестер напряжения 200-480 В переменного тока

Характеристики:

1. Один блок с двумя функциями: проверка последовательности фаз и индикация обрыва фазы.

2.Безопасный и надежный: зажимы типа «крокодил» позволяют легко подключать клеммы панели управления, гарантируя надежность и безопасность.

3.Широкий тест напряжения: он может проверять трехфазное напряжение переменного тока от 200 В до 480 В, высокую производительность.

4. Простота использования: со светодиодной подсветкой, чтобы показать, открыта фаза или нет, поддерживает индикацию зуммера.

5. портативный дизайн: маленький и легкий, с сумкой для переноски, удобно брать.

Описание:

Этот тестер трехфазного чередования SP8030 предназначен для проверки чередования фаз и определения обрыва фазы.

Технические характеристики:

Модель: SP8030

Рабочее напряжение: 200 В, 480 В переменного тока, трехфазный

Диапазон рабочих частот: 20 Гц 400 Гц

Предельное время для непрерывного измерения:

Максимум 60 минут при 200 В переменного тока

Максимум 4 минуты при 480 В переменного тока

Светодиодный индикатор чередования фаз:

Зеленый: правильная последовательность фаз, прерывистый звуковой сигнал

Красный для обратной последовательности фаз, непрерывный звуковой сигнал

Тестовая ручка и длина кабеля: 80 см

Размер: 80 х 60 х 23 мм

Вес изделия: 136 г

Информация о пакете:

Размер упаковки: 17.2 х 11 х 5 см / 6,8 х 4,3 х 2 дюйма

Вес упаковки: 239 г / 8,8 унций

Список пакетов:

1 x индикатор фазы SP8030

3 зажима для аллигатора

1 х сумка для переноски

1 х Руководство пользователя

,

Оставить комментарий

avatar
  Подписаться  
Уведомление о