Схема или – , , , -, — » :

Логические элементы — Википедия

Логические элементы — устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого — «1» и низкого — «0» уровней в двоичной логике, последовательность «0», «1» и «2» в троичной логике, последовательностями «0», «1», «2», «3», «4», «5», «6», «7», «8» и «9» в десятичной логике). Физически логические элементы могут быть выполнены механическими, электромеханическими (на электромагнитных реле), электронными (в частности, на диодах или транзисторах), пневматическими, гидравлическими, оптическими и другими.

С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам: вначале — на электронных лампах, позже — на транзисторах. После доказательства в 1946 году теоремы Джона фон Неймана об экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.

Логические элементы выполняют логическую функцию (операцию) над входными сигналами (операндами, данными).

Всего возможно x(xn)∗m{\displaystyle x^{\left(x^{n}\right)*m}} логических функций и соответствующих им логических элементов, где x{\displaystyle x} — основание системы счисления, n{\displaystyle n} — число входов (аргументов), m{\displaystyle m} — число выходов; таким образом, количество теоретически возможных логических элементов бесконечно. Поэтому в данной статье рассматриваются только простейшие и важнейшие логические элементы.

Всего возможны 2(22)∗1=24=16{\displaystyle 2^{\left(2^{2}\right)*1}=2^{4}=16} двухвходовых двоичных логических элементов и 2(23)∗1=28=256{\displaystyle 2^{\left(2^{3}\right)*1}=2^{8}=256} трёхвходовых двоичных логических элементов (Булева функция). Аналогично, для троичной логики возможны 19 683 двухвходовых и 7 625 597 484 987 трёхвходовых логических элементов.

Логические операции (булева функция) своё теоретическое обоснование получили в алгебре логики.

Логические операции с одним операндом называются унарными, с двумя — бинарными, с тремя — тернарными (триарными, тринарными) и т. д.

Унарные операции[править | править код]

Из 2(21)=22=4{\displaystyle 2^{\left(2^{1}\right)}=2^{2}=4} возможных унарных операций с унарным выходом интерес для реализации представляют операции отрицания (инверсии) и повторения, причём, операция отрицания имеет бо́льшую значимость, чем операция повторения, так как повторитель может быть собран из двух инверторов, а инвертор из повторителей не собрать.

Отрицание (инверсия). Операция «НЕ»[править | править код]
  • Инвертор (элемент «НЕ»)
Здесь и далее приведены гра­фи­чес­кие обозначения логических элементов по стандартам IEC (слева) и ANSI (справа).
A{\displaystyle A} ¬A{\displaystyle \neg A}
0 1
1 0

Мнемоническое правило для отрицания звучит так — на выходе будет:

Повторение[править | править код]
A{\displaystyle A} A{\displaystyle A} (буферизованное)
0 0
1 1

Бинарные операции[править | править код]

Преобразование информации требует выполнения операций с группами знаков, простейшей из которых является группа из двух знаков. Оперирование с большими группами всегда можно разбить на последовательные операции с двумя знаками. Из 2(22)=24=16{\displaystyle 2^{\left(2^{2}\right)}=2^{4}=16} возможных бинарных логических операций с двумя знаками с унарным выходом интерес для реализации представляют 10 операций, приведённых ниже.

Конъюнкция (логическое умножение). Операция «И»[править | править код]
  • Элемент «И»
A{\displaystyle A} B{\displaystyle B} A∧B{\displaystyle A\land B}
0 0 0
0 1 0
1 0 0
1 1 1

Логический элемент, реализующий функцию конъюнкции, называется схемой совпадения. Мнемоническое правило для конъюнкции с любым количеством входов звучит так — на выходе будет:

  • «1» тогда и только тогда, когда на всех входах действуют «1»,
  • «0» тогда и только тогда, когда хотя бы на одном входе действует «0».

Словесно эту операцию можно выразить следующим выражением: «Истина на выходе может быть только при истине на входе 1 И истине на входе 2».

Дизъюнкция (логическое сложение). Операция «ИЛИ»[править | править код]
  • Элемент «ИЛИ»
A{\displaystyle A} B{\displaystyle B} A∨B{\displaystyle A\lor B}
0 0 0
0 1 1
1 0 1
1 1 1

Мнемоническое правило для дизъюнкции с любым количеством входов звучит так — на выходе будет:

  • «1» тогда и только тогда, когда хотя бы на одном входе действует «1»,
  • «0» тогда и только тогда, когда на всех входах действуют «0».
Инверсия функции конъюнкции. Операция «И-НЕ» (штрих Шеффера)[править | править код]
  • Элемент «И-НЕ»
A{\displaystyle A} B{\displaystyle B} A|B{\displaystyle A|B}
0 0 1
0 1 1
1 0 1
1 1 0

Мнемоническое правило для И-НЕ с любым количеством входов звучит так — на выходе будет:

  • «1» тогда и только тогда, когда хотя бы на одном входе действует «0»,
  • «0» тогда и только тогда, когда на всех входах действуют «1».
Инверсия функции дизъюнкции. Операция «ИЛИ-НЕ» (стрелка Пирса)[править | править код]
  • Элемент «ИЛИ-НЕ»
A{\displaystyle A} B{\displaystyle B} A↓B{\displaystyle A\downarrow B}
0 0 1
0 1 0
1 0 0
1 1 0

Мнемоническое правило для ИЛИ-НЕ с любым количеством входов звучит так — на выходе будет:

  • «1» тогда и только тогда, когда на всех входах действуют «0»,
  • «0» тогда и только тогда, когда хотя бы на одном входе действует «1».
Эквивалентность (равнозначность). Операция «исключающее ИЛИ-НЕ»[править | править код]
  • Элемент «исключающее ИЛИ-НЕ»
A{\displaystyle A} B{\displaystyle B} A↔B{\displaystyle A\leftrightarrow B}
0 0 1
0 1 0
1 0 0
1 1 1

Мнемоническое правило эквивалентности с любым количеством входов звучит так — на выходе будет:

  • «1» тогда и только тогда, когда на входе действует чётное количество «1»,
  • «0» тогда и только тогда, когда на входе действует нечётное количество «1».

Словесная запись: «истина на выходе при истине на входе 1 и входе 2 или при лжи на входе 1 и входе 2».

Сложение (сумма) по модулю 2 (неравнозначность, инверсия равнозначности). Операция «исключающее ИЛИ»[править | править код]
  • Элемент «исключающее ИЛИ»
A{\displaystyle A} B{\displaystyle B} A⊕B{\displaystyle A\oplus B}
0 0 0
0 1 1
1 0 1
1 1 0

Мнемоническое правило для суммы по модулю 2 с любым количеством входов звучит так — на выходе будет:

  • «1» тогда и только тогда, когда на входе действует нечётное количество «1»,
  • «0» тогда и только тогда, когда на входе действует чётное количество «1».

Словесное описание: «истина на выходе — при истине только на входе 1, либо при истине только на входе 2».

Импликация от A к B (прямая импликация, инверсия декремента, A<=B)[править | править код]
A{\displaystyle A} B{\displaystyle B} A→B{\displaystyle A\rightarrow B}
0 0 1
0 1 1
1 0 0
1 1 1

Мнемоническое правило для инверсии декремента звучит так — на выходе будет:

  • «0» тогда и только тогда, когда значение на «B» меньше значения на «A»,
  • «1» тогда и только тогда, когда значение на «B» больше либо равно значению на «A».
Импликация от B к A (обратная импликация, инверсия инкремента, A>=B)[править | править код]
A{\displaystyle A} B{\displaystyle B} B→A{\displaystyle B\rightarrow A}
0 0 1
0 1 0
1 0 1
1 1 1

Мнемоническое правило для инверсии инкремента звучит так — на выходе будет:

  • «0» тогда и только тогда, когда значение на «B» больше значения на «A»,
  • «1» тогда и только тогда, когда значение на «B» меньше либо равно значению на «A».
Декремент. Запрет импликации по B. Инверсия импликации от A к B[править | править код]
A{\displaystyle A} B{\displaystyle B} f(A,B){\displaystyle f\left(A,B\right)}
0 0 0
0 1 0
1 0 1
1 1 0

Мнемоническое правило для инверсии импликации от A к B звучит так — на выходе будет:

  • «1» тогда и только тогда, когда значение на «A» больше значения на «B»,
  • «0» тогда и только тогда, когда значение на «A» меньше либо равно значению на «B».
Инкремент. Запрет импликации по A. Инверсия импликации от B к A[править | править код]
A{\displaystyle A} B{\displaystyle B} f(A,B){\displaystyle f\left(A,B\right)}
0 0 0
0 1 1
1 0 0
1 1 0

Мнемоническое правило для инверсии импликации от B к A звучит так — на выходе будет:

  • «1» тогда и только тогда, когда значение на «B» больше значения на «A»,
  • «0» тогда и только тогда, когда значение на «B» меньше либо равно значению на «A».

Примечание 1. Элементы импликаций не имеют промышленных аналогов для функций с количеством входов, не равным 2.
Примечание 2. Элементы импликаций не имеют промышленных аналогов.[источник не указан 37 дней]

Этими простейшими логическими операциями (функциями), и даже некоторыми их подмножествами, можно выразить любые другие логические операции. Такой набор простейших функций называется

функционально полным логическим базисом. Таких базисов 4:

  • И, НЕ (2 элемента)
  • ИЛИ, НЕ (2 элемента)
  • И-НЕ (1 элемент)
  • ИЛИ-НЕ (1 элемент).

Для преобразования логических функций в один из названых базисов необходимо применять законы (правила) де Моргана.

Реализация логических элементов возможна при помощи устройств, использующих самые разнообразные физические принципы:

  • механические,
  • гидравлические,
  • пневматические,
  • электромагнитные,
  • электромеханические,
  • электронные,
  • оптические.

Физические реализации одной и той же логической функции, а также обозначения для истины и лжи, в разных системах электронных и неэлектронных элементов отличаются друг от друга.

Классификация электронных транзисторных физических реализаций логических элементов[править | править код]

Логические элементы подразделяются и по типу использованных в них электронных элементов. Наибольшее применение в настоящее время находят следующие логические элементы:

  • РТЛ (резисторно-транзисторная логика)
  • ДТЛ (диодно-транзисторная логика)
  • ТТЛ (транзисторно-транзисторная логика)
Упрощённая схема двухвходового элемента И-НЕ ТТЛ.

Обычно входной каскад логических элементов ТТЛ представляет собой простейшие компараторы, которые могут быть выполнены различными способами (на многоэмиттерном транзисторе или на диодной сборке). В логических элементах ТТЛ входной каскад, кроме функций компараторов, выполняет и логические функции. Далее следует выходной усилитель с двухтактным (двухключевым) выходом.

В логических элементах КМОП входные каскады также представляют собой простейшие компараторы. Усилителями являются КМОП-транзисторы. Логические функции выполняются комбинациями параллельно и последовательно включенных ключей, которые одновременно являются и выходными ключами.

Транзисторы могут работать в инверсном режиме, но с меньшим коэффициентом усиления. Это свойство используется в ТТЛ многоэмиттерных транзисторах. При подаче на оба входа сигнала высокого уровня (1,1) первый транзистор оказывается включённым в инверсном режиме по схеме эмиттерного повторителя с высоким уровнем на базе, транзистор открывается и подключает базу второго транзистора к высокому уровню, ток идёт через первый транзистор в базу второго транзистора и открывает его. Второй транзистор «открыт», его сопротивление мало и на его коллекторе напряжение соответствует низкому уровню (0). Если хотя бы на одном из входов сигнал низкого уровня (0), то транзистор оказывается включённым по схеме с общим эмиттером, через базу первого транзистора на этот вход идёт ток, что открывает его и он закорачивает базу второго транзистора на землю, напряжение на базе второго транзистора мало́ и он «закрыт», выходное напряжение соответствует высокому уровню. Таким образом, таблица истинности соответствует функции 2И-НЕ.

Для увеличения быстродействия логических элементов в них используются транзисторы Шоттки (транзисторы с диодами Шоттки), отличительной особенностью которых является применение в их конструкции выпрямляющего контакта металл-полупроводник вместо p-n перехода. При работе этих приборов отсутствует инжекция неосновных носителей и явления накопления и рассасывания заряда, что обеспечивает высокое быстродействие. Включение этих диодов параллельно коллекторному переходу блокирует насыщение выходных транзисторов, что увеличивает напряжения логических 0 и 1, но уменьшает потери времени на переключение логического элемента при том же потребляемом токе (или позволяет уменьшить потребляемый ток при сохранении стандартного быстродействия). Так, серия 74хх и серия 74LSxx имеют приблизительно равное быстродействие (в действительности, серия 74LSxx несколько быстрее), но потребляемый от источника питания ток меньше в 4—5 раз (во столько же раз меньше и входной ток логического элемента).

Эта логика, иначе называемая логикой на переключателях тока, построена на базе биполярных транзисторов, объединённых в дифференциальные каскады. Один из входов обычно подключён внутри микросхемы к источнику опорного (образцового) напряжения, примерно посредине между логическими уровнями. Сумма токов через транзисторы дифференциального каскада постоянна, в зависимости от логического уровня на входе изменяется лишь то, через какой из транзисторов течёт этот ток. В отличие от ТТЛ, транзисторы в ЭСЛ работают в активном режиме и не входят в насыщение или инверсный режим. Это приводит к тому, что быстродействие ЭСЛ-элемента при той же технологии (тех же характеристиках транзисторов) гораздо больше, чем ТТЛ-элемента, но больше и потребляемый ток. К тому же, разница между логическими уровнями у ЭСЛ-элемента намного меньше, чем у ТТЛ (меньше вольта), и, для приемлемой помехоустойчивости, приходится использовать отрицательное напряжение питания (а иногда и применять для выходных каскадов второе питание). Зато максимальные частоты переключения триггеров на ЭСЛ более, чем на порядок превышают возможности современных им ТТЛ, например, серия К500 обеспечивала частоты переключения 160—200 МГц, по сравнению с 10—15 МГц современной ей ТТЛ серии К155. В настоящее время и ТТЛ(Ш), и ЭСЛ практически не используются, так как с уменьшением проектных норм КМОП-технология достигла частот переключения в несколько гигагерц.

Инвертор[править | править код]

Одним из основных логических элементов является инвертор. Инвертирующими каскадами являются однотранзисторный каскад с общим эмиттером, однотранзисторный каскад с общим истоком, двухтранзисторный двухтактный выходной каскад на комплементарных парах транзисторов с последовательным включением транзисторов по постоянному току (применяется в ТТЛ и КМОП), двухтранзисторный дифференциальный каскад с параллельным включением транзисторов по постоянному току (применяется в ЭСЛ) и др. Но одного условия инвертирования недостаточно для применения инвертирующего каскада в качестве логического инвертора. Логический инвертор должен иметь смещённую рабочую точку на один из краёв проходной характеристики, что делает каскад неустойчивым в середине диапазона входных величин и устойчивым в крайних положениях (закрыт, открыт). Такой характеристикой обладает компаратор, поэтому логические инверторы строят как компараторы, а не как гармонические усилительные каскады с устойчивой рабочей точкой в середине диапазона входных величин. Таких каскадов, как и контактных групп реле, может быть два вида: нормально закрытые (разомкнутые) и нормально открытые (замкнутые).

Логические элементы входят в состав микросхем, например ТТЛ-элементы — в состав микросхем К155 (SN74), К133; ТТЛШ — 530, 533, К555, ЭСЛ — 100, К500 и т. д.

Комбинационные логические устройства[править | править код]

Комбинационными называются такие логические устройства, выходные сигналы которых однозначно определяются входными сигналами:

Все они выполняют простейшие двоичные, троичные или n-ичные логические функции.

Последовательностные цифровые устройства[править | править код]

Последовательностными называют такие логические устройства, выходные сигналы которых определяются не только сигналами на входах, но и предысторией их работы, то есть состоянием элементов памяти.

ru.wikipedia.org

Схема ИЛИ | Техника и Программы

Логической схемой ИЛИ называется схема с одним выхо­дом и любым числом входов, когда выходной сигнал образует­ся в результате .воздействия входного сигнала иа один или не­сколько входов схемы. На рис. 8.2, а показана типичная схема (вентиль) ИЛИ, выполненная на диодах. На схеме изображе­ны три входа, хотя можно использовать только два входа или же добавить другие входы. Такой вентиль ИЛИ не нуждается в источнике питания, поскольку для обеспечения проводимости диодов подаются входные сигналы соответствующей поляр­ности.

Когда к входу A прикладывается положительное (по отно­шению к земле) напряжение или импульс, диод Д] становится проводящим. Возникающий при этом ток создает на резисторе падение напряжения, представляющее выходной сигнал. Таким образом, при подаче импульса на вход А возникает выходной-импульс. Такой же результат получается при подаче импульса на вход В или С. Если импульсы напряжения; одинаковой высоты приложены к двум или трем входам одновременно, выход­ной сигнал практически не отличается от рассмотренного. Та­ким образом, один и тот же выходной сигнал образуется при воздействии сигнала на вход Л, ИЛИ на вход В, ИЛИ на вход С, ИЛИ на два, ИЛИ на все три входа. Вместо использования положительного сигнала (импульса), соответствующего логиче­ской единице, или логическому высказыванию ИСТИНА, мо­жет использоваться импульс отрицательной полярности. В этом случае диоды, показанные на рис. 8.2, а, должны быть включе­ны в обратном направлении. (Если для представления логиче­ской 1 выбраны положительные сигналы, то сигналы отрица­тельной полярности, а также состояние отсутствия сигнала представляются 0. Аналогично этому использование логической 1 для отрицательных сигналов означает соответствие 0 положи­тельных сигналов, а также состояния отсутствия сигнала.)

Рис. 8.2. Схемы ИЛИ и их условные обозначения.

На рис. 8.2,6 показана схема ИЛИ, реализованная на тран­зисторах, включенных с объединенным эмиттером. Для увеличе­ния числа входов можно использовать три или более транзисто­ра. На оба коллектора подается положительное напряжение, создающее обратное смещение коллекторных переходов. При отсутствии входных сигналов транзисторы практически заперты и выходной сигнал отсутствует. Однако, когда к входу А при­кладывается импульс положительной полярности, транзистор Т1 отпирается. Возникает ток эмиттера, который протекает через резистор в цепи эмиттера и создает на этом резисторе падение напряжения, являющееся выходным сигналом. Аналогично им­пульс положительной полярности на входе В также приводит к появлению выходного сигнала, поскольку в этом случае от­пирается транзистор Т2. Как и в случае схемы, показанной на рис. 8.2, а, при одновременном воздействии сигналов на оба входа также возникает выходной сигнал, что соответствует ло­гической функции ИЛИ.

На рис. 8.2,в — д показаны условные обозначения схемы ИЛИ с различным числом входов (2, 3 и 5) [В отечественной научно-технической литературе используются другие обозначения схемы ИЛИ. — Прим. ред.]. Булева алгебра, упомянутая в разд. 8.1, является разделом математики; она описывает поведение переключающих логических схем и в сим­волическом виде выражает соотношения между состояниями таких схем. В булевой алгебре знак + используется для обозна­чения функции ИЛИ — логического сложения. Поэтому выра­жение А + В в действительности обозначает А ИЛИ В, а вовсе не указывает на арифметическое сложение. Можно производить логическое сложение нескольких величин, например А + В + + С + D [Чтобы отличать логическую схему от арифметической, используется спе­циальный символ логического сложения V- Тогда приведенное здесь выраже­ние будет выглядеть следующим образом: A\/B\/C\/D. Прим. ред.].

Как отмечалось выше, логическим состояниям ИСТИНА (И) и ЛОЖЬ (Л) соответствуют два значения логической величины. Логическая сумма двух логических величин может принимать значения, указанные в табл. 8.1 — 8.3.

Таблица 8.1

0 + 0 = 0

A + 0 = 1

0 + B = 1

A + B = 1

Таблица 8.2

Л + Л = Л

И + Л = И

Л + И = Л

И + И = И

Таблица 8.3

0 + 0 = 0

1 + 0 = 1

0 + 1 =1

1 + 1 = 1

При большем числе логических слагаемых возможны соот­ношения:

0+0 + 0 = 0; 0 + 1+0=1 и т. д.

nauchebe.net

Базовые логические элементы.

И, ИЛИ, НЕ и их комбинации

В Булевой алгебре, на которой базируется вся цифровая техника, электронные элементы должны выполнять ряд определённых действий. Это так называемый логический базис. Вот три основных действия:

  • ИЛИ – логическое сложение (дизъюнкция) – OR;

  • И – логическое умножение (конъюнкция) – AND;

  • НЕ – логическое отрицание (инверсия) – NOT.

Примем за основу позитивную логику, где высокий уровень будет "1", а низкий уровень примем за "0". Чтобы можно было более наглядно рассмотреть выполнение логических операций, существуют таблицы истинности для каждой логической функции. Сразу нетрудно понять, что выполнение логических функций «и» и «или» подразумевают количество входных сигналов не менее двух, но их может быть и больше.

Логический элемент И.

На рисунке представлена таблица истинности элемента "И" с двумя входами. Хорошо видно, что логическая единица появляется на выходе элемента только при наличии единицы на первом входе и на втором. В трёх остальных случаях на выходе будут нули.

Вход X1 Вход X2 Выход Y
0 0 0
1 0 0
0 1 0
1 1 1

На принципиальных схемах логический элемент "И" обозначают так.

На зарубежных схемах обозначение элемента "И" имеет другое начертание. Его кратко называют AND.

Логический элемент ИЛИ.

Элемент "ИЛИ" с двумя входами работает несколько по-другому.  Достаточно логической единицы на первом входе или на втором как на выходе будет логическая единица. Две единицы так же дадут единицу на выходе.

Вход X1 Вход X2 Выход Y
0 0 0
1 0 1
0 1 1
1 1 1

На схемах элемент "ИЛИ" изображают так.

На зарубежных схемах его изображают чуть по-другому и называют элементом OR.

Логический элемент НЕ.

Элемент, выполняющий функцию инверсии «НЕ» имеет один вход и один выход. Он меняет уровень сигнала на противоположный. Низкий потенциал на входе даёт высокий потенциал на выходе и наоборот.

Вход X Выход Y
0 1
1 0

Вот таким образом его показывают на схемах.

В зарубежной документации элемент "НЕ" изображают следующим образом. Сокращённо называют его NOT.

Все эти элементы в интегральных микросхемах могут объединяться в различных сочетаниях. Это элементы: И–НЕ, ИЛИ–НЕ, и более сложные конфигурации. Пришло время поговорить и о них.

Логический элемент 2И-НЕ.

Рассмотрим несколько реальных логических элементов на примере серии транзисторно-транзисторной логики (ТТЛ) К155 с малой степенью интеграции. На рисунке когда-то очень популярная микросхема К155ЛА3, которая содержит четыре независимых элемента 2И – НЕ. Кстати, с помощью её можно собрать простейший маячок на микросхеме.

Цифра всегда обозначает число входов логического элемента. В данном случае это двухвходовой элемент «И» выходной сигнал которого инвертируется. Инвертируется, это значит "0" превращается в "1", а "1" превращается в "0". Обратим внимание на кружочек на выходах – это символ инверсии. В той же серии существуют элементы 3И–НЕ, 4И–НЕ, что означает элементы «И» с различным числом входов (3, 4 и т.д.).

Как вы уже поняли, один элемент 2И-НЕ изображается вот так.

По сути это упрощённое изображение двух объёдинённых элементов: элемента 2И и элемента НЕ на выходе.

Зарубежное обозначение элемента И-НЕ (в данном случае 2И-НЕ). Называется NAND.

Таблица истинности для элемента 2И-НЕ.

Вход X1 Вход X2 Выход Y
0 0 1
1 0 1
0 1 1
1 1 0

В таблице истинности элемента 2И – НЕ мы видим, что благодаря инвертору получается картина противоположная элементу «И». В отличие от трёх нулей и одной единицы мы имеем три единицы и ноль. Элемент «И – НЕ» часто называют элементом Шеффера.

Логический элемент 2ИЛИ-НЕ.

Логический элемент 2ИЛИ – НЕ представлен в серии К155 микросхемой 155ЛЕ1. Она содержит в одном корпусе четыре независимых элемента. Таблица истинности так же отличается от схемы "ИЛИ" применением инвертирования выходного сигнала.

Таблица истинности для логического элемента 2ИЛИ-НЕ.

Вход X1 Вход X2 Выход Y
0 0 1
1 0 0
0 1 0
1 1 0

Изображение на схеме.

На зарубежный лад изображается так. Называют как NOR.

Мы имеем только один высокий потенциал на выходе, обусловленный подачей на оба входа одновременно низкого потенциала. Здесь, как и на любых других принципиальных схемах, кружочек на выходе подразумевает инвертирование сигнала. Так как  схемы И – НЕ и ИЛИ – НЕ встречаются очень часто, то для каждой функции имеется своё условное обозначение. Функция И – НЕ обозначается значком "&", а функция ИЛИ – НЕ значком "1".

Для отдельного инвертора таблица истинности уже приведена выше. Можно добавить, что количество инверторов в одном корпусе может достигать шести.

Логический элемент "исключающее ИЛИ".

К числу базовых логических элементов принято относить элемент реализующий функцию «исключающее ИЛИ». Иначе эта функция называется «неравнозначность».

Высокий потенциал на выходе возникает только в том случае, если входные сигналы не равны. То есть на одном из входов должна быть единица, а на другом ноль. Если на выходе логического элемента имеется инвертор, то функция выполняется противоположная – «равнозначность». Высокий потенциал на выходе будет появляться при одинаковых сигналах на обоих входах.

Таблица истинности.

Вход X1 Вход X2 Выход Y
0 0 0
1 0 1
0 1 1
1 1 0

Эти логические элементы находят своё применение в сумматорах. «Исключающее  ИЛИ» изображается на схемах знаком равенства перед единицей "=1".

На зарубежный манер "исключающее ИЛИ" называют XOR и на схемах рисуют вот так.

Кроме вышеперечисленных логических элементов, которые выполняют базовые логические функции очень часто, используются элементы, объединённые в различных сочетаниях. Вот, например, К555ЛР4. Она называется очень серьёзно 2-4И-2ИЛИ-НЕ.

Её таблица истинности не приводится, так как микросхема не является базовым логическим элементом. Такие микросхемы выполняют специальные функции и бывают намного сложнее, чем приведённый пример. Так же в логический базис входят и простые элементы "И" и "ИЛИ". Но они используются гораздо реже. Может возникнуть вопрос, почему эта логика называется транзисторно-транзисторной.

Если посмотреть в справочной литературе схему, допустим, элемента 2И – НЕ из микросхемы К155ЛА3, то там можно увидеть несколько транзисторов и резисторов. На самом деле ни резисторов, ни диодов в этих микросхемах нет. На кристалл кремния через трафарет напыляются только транзисторы, а функции резисторов и диодов выполняют эмиттерные переходы транзисторов. Кроме того в ТТЛ логике широко используются многоэмиттерные транзисторы. Например, на входе элемента 4И стоит четырёхэмиттерный транзистор.

Главная &raquo Цифровая электроника &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Основные логические элементы и схемы их построения

Логические основы работы компьютера

Знания из области математической логики можно использовать для конструирования электронных устройств. Нам известно, что 0 и 1 в логике не просто цифры, а обозначение состояний какого-то предмета нашего мира, условно называемых “ложь” и “истина”. Таким предметом, имеющим два фиксированных состояния, может быть электрический ток.

Логические элементы имеют один или несколько входов и один выход, через которые проходят электрические сигналы, обозначаемые условно 0, если “отсутствует” электрический сигнал, и 1, если “имеется” электрический сигнал.

Базовые логические элементы реализуют три основные логические операции: «И», «ИЛИ», «НЕ».

 

Логический элемент «НЕ» (инвертор)

Простейшим логическим элементом является инвертор, выполняющий функцию отрицания. Если на вход поступает сигнал, соответствующий 1, то на выходе будет 0. И наоборот.

У этого элемента один вход и один выход. На функциональных схемах он обозначается:

Говорят также, что элемент «НЕ» инвертирует значение входной двоичной переменной.

 

 

Проверь соответствие логического элемента “НЕ” логическому элементу “НЕ”. Воспользуйся тренажером Логические элементы.xlsx

 

Логический элемент «И» (конъюнктор)

Логический элемент «И» (конъюнктор) выдает на выходе значение логического произведения входных сигналов.

Он имеет один выход и не менее двух входов. На функциональных схемах он обозначается:

Сигнал на выходе конъюнктора появляется тогда и только тогда, когда поданы сигналы на все входы. На элементарном уровне конъюнкцию можно представить себе в виде последовательно соединенных выключателей. Известным примером последовательного соединения проводников является елочная гирлянда: она горит, когда все лампочки исправны. Если же хотя бы одна из лампочек перегорела, то гирлянда не работает.

 Проверь соответствие логического элемента “И” логическому элементу “И”.  Воспользуйся тренажером Логические элементы.xlsx

 

Логический элемент «ИЛИ» (дизъюнктор)

Логический элемент «ИЛИ» (дизъюнктор) выдает на выходе значение логической суммы входных сигналов. Он имеет один выход и не менее двух входов. На функциональных схемах он обозначается:

Сигнал на выходе дизъюнктора не появляется тогда и только тогда, когда на все входы не поданы сигналы.

 

 

На элементарном уровне дизъюнкцию можно представить себе в виде параллельно соединенных выключателей.

Примером параллельного соединения проводников является многорожковая люстра: она не работает только в том случае, если перегорели все лампочки сразу.

Проверь соответствие логического элемента “ИЛИ” логическому элементу “ИЛИ”.  Воспользуйся тренажером Логические элементы.xlsx

 

Пример 1.
Составьте логическую схему для логического выражения: F=A \/ B /\ A.

1.                  Две переменные – А и В.

2.                  Две логические операции: 1-/\, 2-\/.

3.                  Строим схему:

 

 

 

 

Пример 2.
Постройте логическую схему, соответствующую логическому выражению F=А/\В\/ ¬(В\/А). Вычислить значения выражения для А=1,В=0.

1.  Переменных две: А и В; 1 4 3 2

2.  Логических операций три: /\ и две \/; А/\В\/ ¬ (В\/ А).

3.  Схему строим слева направо в соответствии с порядком логических операций:

 

 

 

 

 

 

4.  Вычислим значение выражения: F=1 /\ 0 \/ ¬(0 \/ 1)=0

mir-logiki.ru

Логические элементы

В данной статье расскажем что такое логические элементы, рассмотрим самые простые логические элементы.

Любое цифровое устройство — персональный компьютер, или современная система автоматики состоит из цифровых интегральных микросхем (ИМС), которые выполняют определённые сложные функции. Но для выполнения одной сложной функции необходимо выполнить несколько простейших функций. Например, сложение двух двоичных чисел размером в один байт происходит внутри цифровой микросхемы называемой «процессор» и выполняется в несколько этапов большим количеством логических элементов находящихся внутри процессора. Двоичные числа сначала запоминаются в буферной памяти процессора, потом переписываются в специальные «главные» регистры процессора, после выполняется их сложение, запоминание результата в другом регистре, и лишь после результат сложения выводится через буферную память из процессора на другие устройства компьютера.

Процессор состоит из функциональных узлов: интерфейсов ввода-вывода, ячеек памяти – буферных регистров и «аккумуляторов», сумматоров, регистров сдвига и т.д. Эти функциональные узлы состоят из простейших логических элементов, которые, в свою очередь состоят из полупроводниковых транзисторов, диодов и резисторов. При конструировании простых триггерных и других электронных импульсных схем, сложные процессоры не применить, а использовать транзисторные каскады – «прошлый век». Тут и приходят на помощь – логические элементы.

Логические элементы, это простейшие «кубики», составные части цифровой микросхемы, выполняющие определённые логические функции. При этом, цифровая микросхема может содержать в себе от одного, до нескольких единиц, десятков, …и до нескольких сотен тысяч логических элементов в зависимости от степени интеграции. Для того, чтобы разобраться, что такое логические элементы, мы будем рассматривать самые простейшие из них. А потом, наращивая знания, разберёмся и с более сложными цифровыми элементами.


Начнём с того, что единица цифровой информации это «один бит». Он может принимать два логических состояния – логический ноль «0», когда напряжение равно нулю (низкий уровень), и состояние логической единицы «1», когда напряжение равно напряжению питания микросхемы (высокий уровень).

Поскольку простейший логический элемент это электронное устройство, то это означает, что у него есть входы (входные выводы) и выходы (выходные выводы). И входов и выходов может быть один, а может быть и больше.

Для того, чтобы понять принципы работы простейших логических элементов используется «таблица истинности». Кроме того, для понимания принципов работы логических элементов, входы, в зависимости от их количества обозначают: Х1, Х2, … ХN, а выходы: Y1, Y2, … YN.

Функции, выполняемые простейшими логическими элементами, имеют названия. Как правило, впереди функции ставится цифра, обозначающая количество входов. Простейшие логические элементы всегда имеют лишь один выход.

 

 

Рассмотрим простейшие логические элементы

 

«НЕ» (NOT) – функция отрицания (инверсии сигнала). Потому его чаще называют — «инвертор». Графически, инверсия обозначается пустым кружочком вокруг вывода элемента (микросхемы). Обычно кружок инверсии ставится у выхода, но в более сложных логических элементах, он может стоять и на входе. Графическое обозначение элемента «НЕ» и его таблица истинности представлены на рисунке слева.

У элемента «НЕ» всегда один вход и один выход. По таблице истинности следует, что при наличии на входе элемента логического нуля, на выходе будет логическая единица. И наоборот, при наличии на входе логической единицы, на выходе будет логический ноль. Цифра «1» внутри прямоугольника обозначает функцию «ИЛИ», её принято рисовать и внутри прямоугольника элемента «НЕ», но это ровным счётом ничего абсолютно не значит.

Обозначение D1.1 означает, что D — цифровой логический элемент, 1 (первая) — номер микросхемы в общей схеме, 1 (вторая) — номер элемента в микросхеме. Точно также расшифровываются и другие логические элементы.

Часто, чтобы отличить цифровые микросхемы от аналоговых микросхем, применяют обозначения из двух букв: DD – цифровая микросхема, DA – аналоговая микросхема. В последующем, мы не будем заострять внимание на это обозначение, а вернёмся лишь тогда, когда это будет необходимым.

Самой распространённой микросхемой «транзисторно-транзисторной логики» (ТТЛ), выполняющей функцию «НЕ», является интегральная микросхема (ИМС) К155ЛН1, внутри которой имеется шесть элементов «НЕ». Нумерация выводов этой микросхемы показана справа.


«И» (AND) – функция сложения (если на всех входах единица, то на выходе будет единица, в противном случае, если хотя бы на одном входе ноль, то и на выходе всегда будет ноль). В алгебре-логике элемент «И» называют «конъюнктор». Графическое обозначение элемента «2И» и его таблица истинности представлены слева.

Название элемента «2И» обозначает, что у него два входа, и он выполняет функцию «И». На схеме внутри прямоугольника микросхемы рисуется значок «&», что на английском языке означает «AND» (в переводе на русский — И).

По таблице истинности следует, что на выходе элемента «И» будет логическая единица только в одном случае — когда на обоих входах будет логическая единица. Если хотя бы на одном входе ноль, то и на выходе будет ноль.

Самой распространённой микросхемой «транзисторно-транзисторной логики» (ТТЛ), выполняющей функцию «2И», является интегральная микросхема (ИМС) К155ЛИ1, внутри которой имеется четыре элемента «2И». Нумерация выводов этой микросхемы показана справа.

Для того, чтобы вам было понятнее что такое «2И», «3И», «4И», и т.д., приведу графическое обозначение и таблицу истинности элемента «3И».

По таблице истинности следует, что на выходе элемента «3И» будет логическая единица только в том случае — когда на всех трёх входах будет логическая единица. Если хотя бы на одном входе будет логический ноль, то и на выходе элемента также будет логический ноль. Самой распространённой микросхемой ТТЛ, выполняющей функцию «3И», является микросхема К555ЛИ3, внутри которой имеется три элемента «3И».


«И-НЕ» (NAND) – функция сложения с отрицанием (если на всех входах единица, то на выходе будет ноль, в противном случае на выходе всегда будет единица). Графическое обозначение элемента «2И-НЕ» и его таблица истинности приведены слева.

По таблице истинности следует, что на выходе элемента «2И-НЕ» будет логический ноль только в том случае, если на обоих входах будет логическая единица. Если хотя бы на одном входе ноль, то на выходе будет единица.

Самой распространённой микросхемой ТТЛ, выполняющей функцию «2И-НЕ», является ИМС К155ЛА3, а микросхемами КМОП (комплементарный металлооксидный полупроводник) – ИМС К561ЛА7 и К176ЛА7, внутри которых имеется четыре элемента «2И-НЕ». Нумерация выводов этих микросхем показана справа.

Сравнив таблицы истинности элемента «2И-НЕ» и элемента «2И» можно догадаться об эквивалентности схем:

Добавив к элементу «2И» элемент «НЕ» мы получили элемент «2И-НЕ». Так можно собрать схему, если нам необходим элемент «2И-НЕ», а у нас в распоряжении имеются только элементы «2И» и «НЕ».

И наоборот:

Добавив к элементу «2И-НЕ» элемент «НЕ» мы получили элемент «2И». Так можно собрать схему, если нам необходим элемент «2И», а у нас в распоряжении имеются только элементы «2И-НЕ» и «НЕ».

Аналогичным образом, путём соединения входов элемента «2И-НЕ» мы можем получить элемент «НЕ»:

Обратите внимание, что было введено новое в обозначении элементов – дефис, разделяющий правую и левую часть в названии «2И-НЕ». Этот дефис непременный атрибут при инверсии на выходе (функции «НЕ»).


«ИЛИ» (OR) – функция выбора (если хотя бы на одном из входов – единица, то на выходе – единица, в противном случае на выходе всегда будет ноль). В алгебре-логике, элемент «ИЛИ» называют «дизъюнктор». Графическое обозначение элемента «2ИЛИ» и его таблица истинности приведены слева.

Самой распространённой микросхемой ТТЛ, выполняющей функцию «2ИЛИ», является ИМС К155ЛЛ1, внутри которой имеется четыре элемента «2ИЛИ». Нумерация выводов этой микросхемы показана справа.

Предположим, что нам в схеме необходим элемент, выполняющий функцию «2ИЛИ», но у нас есть в распоряжении только элементы «НЕ» и «2И-НЕ», тогда можно собрать схему, которая будет выполнять функцию «2ИЛИ»:


«ИЛИ-НЕ» (NOR) – функция выбора (если хотя бы на одном из входов – единица, то на выходе – ноль, в противном случае на выходе всегда будет единица). Как вы поняли, элемент «ИЛИ-НЕ» выполняет функцию «ИЛИ», а потом инвертирует его функцией «НЕ».

Графическое обозначение элемента «2ИЛИ-НЕ» и его таблица истинности приведена слева.

Самой распространённой микросхемой ТТЛ, выполняющей функцию «2ИЛИ-НЕ», является ИМС К155ЛЕ1, а микросхемами КМОП – К561ЛЕ5 и К176ЛЕ5, внутри которых имеется четыре элемента «2ИЛИ-НЕ». Нумерация выводов этих микросхем показана справа.

Предположим, что нам в схеме необходим элемент, выполняющий функцию «2ИЛИ-НЕ», но у нас есть в распоряжении только элементы «НЕ» и «2И-НЕ», тогда можно собрать следующую схему, которая будет выполнять функцию «2ИЛИ-НЕ»:

По аналогии с элементом «2И-НЕ», путём соединения входов элемента «2ИЛИ-НЕ» мы можем получить элемент «НЕ»:


«Исключающее ИЛИ» (XOR) — функция неравенства двух входов (если на обоих входах элемента одинаковые сигналы, то на выходе – ноль, в противном случае на выходе всегда будет единица). Операция, которую он выполняет, часто называют «сложение по модулю 2».

Графическое обозначение элемента «Исключающее ИЛИ» и его таблица истинности приведены слева.

Самой распространённой микросхемой ТТЛ, выполняющей функцию «Исключающее ИЛИ», является ИМС К155ЛП5, а микросхемами КМОП – К561ЛП2 и К176ЛП2, внутри которых имеется четыре элемента «Исключающее ИЛИ». Нумерация выводов этих микросхем показана справа.

Предположим, что нам в схеме необходим элемент, выполняющий функцию «Исключающее ИЛИ», но у нас есть в распоряжении только элементы «2И-НЕ», тогда можно собрать следующую схему, которая будет выполнять функцию «Исключающее ИЛИ»:


В цифровой схемотехнике процессоров главная функция — «Суммирование двоичных чисел», поэтому сложный логический элемент – «Сумматор» является неотъемлемой частью арифметико-логического устройства любого, без исключения процессора. Составной частью сумматора является набор логических элементов, выполняющих функцию «Исключающее ИЛИ с переносом остатка». Что это такое? В соответствии с наукой «Информатика», результатом сложения двух двоичных чисел, две единицы одного разряда дают ноль, при этом формируется «единица переноса» в следующий старший разряд, который участвует в операции суммирования в старшем разряде. Для этого в схему добавляется ещё один вывод «переноса» — «Р».

Графическое обозначение элемента «Исключающее ИЛИ с переносом» и его таблица истинности представлена слева.

Такая функция сложения одноразрядных чисел в простых устройствах обычно не используется, и как правило, интегрирована в состав одной микросхемы – сумматора, с минимальным количеством разрядов – четыре, для сложения четырехбитных чисел. По причине слабого спроса, промышленность таких логических элементов не выпускает. Поэтому, в случае необходимости, функцию «Исключающее ИЛИ с переносом» можно собрать по следующей схеме из элементов «2И-НЕ» и «2ИЛИ-НЕ», которая активно применяется как внутри простых сумматоров, так и во всех сложных процессорах (в том числе Pentium, Intel-Core, AMD и других, которые появятся в будущем):


Вышеперечисленные логические элементы выполняют статические функции, а на основе них строятся более сложные статические и динамические элементы (устройства): триггеры, регистры, счётчики, шифраторы, дешифраторы, сумматоры, мультиплексоры.

meanders.ru

РадиоКот :: Логические элементы

РадиоКот >Обучалка >Цифровая техника >Основы цифровой техники >

Логические элементы

Абсолютно все цифровые микросхемы состоят из одних и тех же логических элементов – «кирпичиков» любого цифрового узла. Вот о них мы и поговорим сейчас.

Логический элемент – это такая схемка, у которой несколько входов и один выход. Каждому состоянию сигналов на входах, соответствует определенный сигнал на выходе.

Итак, какие бывают элементы?

Смотрим:


Элемент «И» (AND)

Иначе его называют «конъюнктор».

Для того, чтобы понять как он работает, нужно нарисовать таблицу, в которой будут перечислены состояния на выходе при любой комбинации входных сигналов. Такая таблица называется « таблица истинности ». Таблицы истинности широко применяются в цифровой технике для описания работы логических схем.

Вот так выглядит элемент «И» и его таблица истинности:

Поскольку вам придется общаться как с русской, так и с буржуйской тех. документацией, я буду приводить условные графические обозначения (УГО) элементов и по нашим и по не нашим стандартам.

Смотрим таблицу истинности, и проясняем в мозгу принцип. Понять его не сложно: единица на выходе элемента «И» возникает только тогда, когда на оба входа поданы единицы. Это объясняет название элемента: единицы должны быть И на одном, И на другом входе.

Если посмотреть чуток иначе, то можно сказать так: на выходе элемента «И» будет ноль в том случае, если хотя бы на один из его входов подан ноль. Запоминаем. Идем дальше.


Элемент «ИЛИ» (OR)

По другому, его зовут «дизъюнктор».

Любуемся:

Опять же, название говорит само за себя.

На выходе возникает единица, когда на один ИЛИ на другой ИЛИ на оба сразу входа подана единица. Этот элемент можно назвать также элементом «И» для негативной логики: ноль на его выходе бывает только в том случае, если и на один и на второй вход поданы нули.

Едем дальше. Дальше у нас очень простенький, но очень необходимый элемент.


Элемент «НЕ» (NOT)

Чаще, его называют «инвертор».

Надо чего-нибудь говорить по поводу его работы?

Ну тогда поехали дальше. Следующие два элемента получаются путем установки инвертора на выход элементов «И» и «ИЛИ».


Элемент «И-НЕ» (NAND)

Элемент И-НЕ работает точно так же как «И», только выходной сигнал полностью противоположен. Там где у элемента «И» на выходе должен быть «0», у элемента «И-НЕ» - единица. И наоборот. Э то легко понять по эквивалентной схеме элемента:


Элемент «ИЛИ-НЕ» (NOR)

Та же история – элемент «ИЛИ» с инвертором на выходе.

Следующий товарищ устроен несколько хитрее:


Элемент «Исключающее ИЛИ» (XOR)

Он вот такой:

Операция, которую он выполняет, часто называют «сложение по модулю 2». На самом деле, на этих элементах строятся цифровые сумматоры.

Смотрим таблицу истинности. Когда на выходе единицы? Правильно: когда на входах разные сигналы. На одном – 1, на другом – 0. Вот такой он хитрый.

Эквивалентная схема примерно такая:

Ее запоминать не обязательно.


Собственно, это и есть основные логические элементы. На их основе строятся абсолютно любые цифровые микросхемы. Даже ваш любимый Пентиум 4.

Далее мы позанудствуем о том, как синтезировать цифровую схему, имея ее таблицу истинности. Это совсем несложно, а знать надо, ибо пригодится (еще как пригодится) нам в дальнейшем.

 

Ну и напоследок – несколько микросхем, внутри которых содержатся цифровые элементы. Около выводов элементов обозначены номера соответствующих ног микросхемы. Все микросхемы, перечисленные здесь, имеют 14 ног. Питание подается на ножки 7 (-) и 14 (+). Напряжение питания – смотри в таблице в предыдущем параграфе.

<<--Вспомним пройденное----Поехали дальше-->>


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

5. Логические элементы цифровых устройств

Логические элементы - это электронные устройства, предназначенные для обработки информации представленной в виде двоичных кодов, отобpажаемыx напpяжeниeм (сигналом) выcoкого и низкого уpовня. Логические элементы реализyют логические функции И, ИЛИ, НЕ и их комбинации. Указанные логические операции выполняются с помощью электронных схем, входящих в состав микросхем. Из логических элементов И, ИЛИ, НЕ, можно сконстpуировать цифровое электронное устройство любой сложности.

Логические элементы могут выполнять логические функции в режимах положительной и отрицательной логики. В режиме положительной логики логической единице соответствует высокий уровень напряжения, а логическому нулю - низкий уровень напряжения. В режиме отрицательной логики наоборот логической единице соответствует низкий уровень напряжения, а логическому нулю - высокий.

Если в режиме положительной логики логический элемент, реализует операцию И, то в режиме отрицательной логики выполняет операцию ИЛИ, и наоборот. И если в режиме положительной логики - И-НЕ, то в режиме отрицательной логики - ИЛИ-НЕ.

Условное графическое обозначение логического элемента представляет собой прямоугольник, внутри которого ставится изображение указателя функции. Входы изображают линиями с левой стороны прямоугольника, выходы элемента - с правой стороны. При необходимости разрешается располагать входы сверху, а выходы снизу. У логических элементов И, ИЛИ может быть любое начиная с двух количество входов и один выход. У элемента НЕ один вход и один выход. Если вход обозначен окружностью, то это значит, что функция выполняется для сигнала низкого уровня (отрицательная логика). Если окружностью обозначен выход, то элемент производит логическое отрицание (инверсию) результата операции, указанной внутри прямоугольника.

Все цифровые устройства делятся на комбинационные и на последовательностные. В комбинационных устройствах выходные сигналы в данный момент времени однозначно определяются входными сигналами в тот же момент. Выходные сигналы последовательностного устройства (цифрового автомата) в данный момент времени определяются не только логическими переменными на его входах, но еще зависят и от предыдущего состояния этого устройства. Логические элементы И, ИЛИ, НЕ и их комбинации являются комбинационными устройствами. К последовательностным устройствам относятся триггеры, регистры, счетчики.

Логический элемент И (рис. 1) выполняет операцию логического умножения (конъюнкцию). Такую операцию обозначают символом /\ или значком умножения (·). Если все входные переменные равны 1, то и функция Y=X1·X2 принимает значение логической 1. Если хотя бы одна переменная равна 0, то и выходная функция будет равна 0.

Таблица 1

Y=X1·X2

X1

X2

Y

0

0

0

0

1

0

1

0

0

Рис. 1

1

1

1

Наиболее наглядно логическая функция характеризуется таблицей, называемой таблицей истинности (Табл. 1). Талица истинности содержит всевозможные комбинации входных переменных Х и соответствующие им значения функции Y. Количество комбинаций составляет 2n, где n – число аргументов.

Логичеcкий элeмент ИЛИ (рис. 2) выполняет операцию логического сложения (дизъюнкцию). Обозначают эту операцию символом \/ или знаком сложения (+). Функция Y=X1\/X2 принимает значение логической 1, если хотя бы одна переменная равна 1. (Табл. 2).

Таблица 2

Y=X1\/X2

X1

X2

Y

0

0

0

0

1

1

1

0

1

Рис. 2

1

1

1

Логический элемент НЕ (инвертор) выполняет операцию логического отрицания (инверсию). При логическом отрицании функция Y принимает значение противоположное входной переменной Х (Табл. 3). Эту операцию обозначают .

Таблица 3

Y=

X1

Y

0

1

Рис. 3

1

0

Кроме указанных выше логических элементов, на практике широко используются элементы И-НЕ, ИЛИ-НЕ, Исключающее ИЛИ.

Логичеcкий элемeнт И-НЕ (рис. 4) выполняет операцию логического умнoжения над входными переменными, а затем инвертирует полученный результат и выдаёт его на выход.

Таблица 4

X1

X2

Y

0

0

1

0

1

1

1

0

1

Рис. 4

1

1

0

Логический элемент ИЛИ-НЕ (рис. 5) выполняет операцию логического сложения над входными переменными, а затем инвертирует полученный результат и выдаёт его на выход.

Таблица 5

X1

X2

Y

0

0

1

0

1

0

1

0

0

Рис. 5

1

1

0

Логический элемент Исключающее ИЛИ представлен на рис. 6. Логическая функция Исключающее ИЛИ (функция «неравнозначность» или сумма по модулю два) записывается в виде и принимает значение 1 при X1≠X2, и значение 0 при X1=X2=0 или X1=X2=1 (Табл. 6).

Таблица 6

Y=X1X2

X1

X2

Y

0

0

0

0

1

1

1

0

1

Рис. 6

1

1

0

Любой из выше перечисленных элементов можно заменить устройством, собранным только из базовых двухвходовых элементов ИЛИ-НЕ или И-НЕ. Например: операция НЕ (рис. 7, а) приX1 = X2 = X; операция И (рис. 7, б) .

Рис. 7

Интегральные логические элементы выпускаются в стандартных корпусах с 14 или 16 выводами. Один вывод используется для подключения источника питания, еще один является общим для источников сигналов и питания. Оставшиеся 12 (14) выводов используют как входы и выходы логических элементов. В одном корпусе может находится несколько самостоятельных логических элементов. На рисунке 8 показаны условные графические обозначения и цоколевка (нумерация выводов) некоторых микросхем.

К155ЛЕ1 К155ЛА3 К155ЛП5

Рис. 8

Базовый элемент транзисторно-транзисторной логики (ТТЛ). На рисунке 9 показана схема логического элемента И-НЕ ТТЛ с простым однотранзисторным ключом.

Рис. 9

Простейший логический элемент ТTЛ строится на базе многоэмиттерного транзистор VT1. Пpинцип дейcтвия такого транзистора тот же, что и у обычного биполяpного транзистора. Oтличие заключается в том, что инжекция носителей заряда в базу осуществляется через несколько самостoятельных эмиттерных р-n-переходов. При поступлении на входы логической единицы U1вх, запираются все эмиттерные переxоды VT1. Ток, текущий через резистор Rб, замкнется через открытые р-n-переходы: коллектoрный VT1 и эмиттерный VT2. Этoт ток откpоет транзиcтор VT2, и напряжение на его выходе станет близким к нулю, т. е. Y=U0вых. Если хотя бы на один вход (или на все входы) VT1 будет подан сигнал логического нуля U0вх, то ток, текyщий по Rб, замкнeтся через откpытый эмиттерный переход VT1. Пpи этoм входной ток VT2 будет близoк к нулю, и выходной транзистоp окажется запеpтым, т. е. Y=U1вых. Таким образом, рассмотренная схема осуществляет логическую операцию И-НЕ.

Контрольные вопросы.

  1. Что называется логическим элементом?

  2. Чем различаются положительная и отрицательная логики?

  3. Что называется таблицей истинности?

  4. Каким символом обозначают логическое умножение?

  5. Как на схемах изображают логический элемент И?

  6. При каких входных переменных на выходе логического элемента И формируется логическая 1?

  7. Каким символом обозначают логическое сложение?

  8. Как на схемах изображают логический элемент ИЛИ?

  9. При каких входных переменных на выходе логического элемента ИЛИ формируется логическая 1?

  10. Как на схемах изображают логический элемент НЕ?

  11. Как на схемах изображают логический элемент И-НЕ?

  12. При каких входных переменных на выходе логического элемента И-НЕ формируется логическая 1?

  13. Как на схемах изображают логический элемент ИЛИ-НЕ?

  14. При каких входных переменных на выходе логического элемента ИЛИ-НЕ формируется логическая 1?

  15. Как на схемах изображают логический элемент Исключающее ИЛИ?

  16. При каких входных переменных на выходе логического элемента Исключающее ИЛИ формируется логическая 1?

  17. Как из элемента ИЛИ-НЕ получить элемент НЕ?

  18. Как из элемента И-НЕ получить элемент НЕ?

  19. Опишите принцип действия базового элемента ТТЛ.

studfile.net

Оставить комментарий

avatar
  Подписаться  
Уведомление о