Закон ома для замкнутой цепи – Закон Ома — Википедия

Закон Ома для замкнутой цепи

На рисунке 2 показана простейшая замкнутая цепь, состоящая из реального источника э.д.с. Е, имеющего внутреннее сопротивлениеRвти нагрузочного резистора с сопротивлениемR(сопротивление соединительных проводов включено в сопротивлениеRрезистора).

Закон Ома для замкнутой цепиформулируется следующим образом:сила тока (ток, величина тока) прямо пропорциональна электродвижущей силе (э.д.с.) источника и записывается в виде:

(4)

где – коэффициент пропорциональности.

П

(4а)

ерепишем равенство (4) в виде

и введем обозначение U=IR– напряжение на выходных зажимах источника э.д.с. (генератора), которое одновременно является падением напряжения, создаваемым токомIна внешнем сопротивленииRнагрузочного резистора.

П

(5)

одставив это обозначение в правую часть равенства (4а), можно получить следующую зависимость:

,

которая представляет собой аналитическое выражение внешней характеристики источника э.д.с. Эту зависимость можно сокращенно записать в видеU = F(I) при E = const, Rвт = const. Внешней характеристикой принято называть графическую зависимость U = F(I), показанную на рисунке 3.

Сплошной линией показана внешняя характеристика реального источника э.д.с., в котором с ростом тока I увеличивается падение напряжения на внутреннем сопротивлении IRвт, в результате чего с ростом тока выходное напряжение источника U уменьшается. Пунктирной линией на рисунке 3 показана внешняя характеристика идеального источника э.д.с., у которого отсутствует внутреннее сопротивление (Rвт = 0), а, следовательно, и внутреннее падение напряжения (IRвт = 0). В результате равенство (5) принимает вид

(5а)

,

и характеристика представляет собой горизонтальную линию. Такой идеальный источник называют источником (генератором) бесконечной мощности, поскольку он гарантирует постоянство напряжения при сколь угодно больших токах нагрузки.

Закон Ома для участка цепи, содержащего источник э.Д.С. (обобщенный закон Ома)

На рисунках 4а и 4б показаны одинаковые участки, содержащие последовательно включенные резистор R и источник э.д.с. Е, по которым протекает ток I одного и того же направления. Что касается источников, то э.д.с. в схеме на рисунке 4а совпадает с направлением тока, а на рисунке 4б – действует встречно с током.

Рис. 4

К

(6)

ак известно,под напряжением Uна участке цепипонимают разность электрических потенциаловφмежду крайними точками этого участка (аисна рисунке 4). Ток всегда течет от более высокого потенциала к более низкому потенциалу. Поскольку ток в обоих случаях (рис. 4а и 4б) направлен от точкиак точкес, то напряжение

Выразим более высокий потенциал точки ачерез потенциал точкис. При перемещении (рис. 4а) от точкиск точкеb(встречно к направлению э.д.с. Е) потенциал точкиbоказывается ниже потенциала точкисна величину э.д.с. Е, то есть. Применительно к схеме на рисунке 4б потенциал точкиbбудет выше на величину э.д.с. Е, то есть. Поскольку потенциал точкиавыше потенциала точкиbна величину падения напряженияIRна резисторе с сопротивлениемR, то.

Таким образом, для рисунка 4а: , а для рисунка 4б:.

Соответственно напряжение между границами аисучастка:

;

.

Решив равенства (6а) и (6б) относительно тока, получим обобщенный закон Ома (закон Ома для участка цепи, содержащего источник э.д.с.):

;

.

В общем случае

(7)

В частном случае, когда э.д.с. отсутствует (Е = 0) уравнение (7) превращается в закон Ома для участка цепи, не содержащего э.д.с. (1).

studfile.net

согласованный, рабочий, холостого хода, короткого замыкания.

Закон Ома справедлив для всех значений.

Закон Ома для участка цепи:

— для мгновенных значений

— для действующих значений

— для максимальных значений

— для размаха

Закон Ома для замкнутой цепи:

— для мгновенных значений

— для действующих значений

— для максимальных значений

— для размаха

,

где — напряжение на зажимах источника,

— внутренне падение напряжение источника.

Напряжение на зажимах источника меньше ЭДС на величину внутреннего падения напряжения.

Чтобы измерить ЭДС источника, надо на его зажимы включить вольтметр, а внешнюю цепь разомкнуть:

— мощность источника

— мощность нагрузки

— мощность потерь внутри источника

уравнение баланса мощностей

КПД источника:

Режимы работы источника:

  1. Режим холостого хода(ХХ):

Чтобы получить режим холостого хода, надо цепь разомкнуть.

  1. Короткое замыкание(КЗ):

— максимум тока

Чтобы получить режим КЗ, нужно цепь перемкнуть проводом:

  1. Согласованный режим— сопротивление нагрузки равно внутреннему сопротивлению источника:

  1. Рабочий (реальный) режим

Вопрос 13. Последовательное и параллельное соединения резисторов. Входное сопротивление и свойства цепей данных соединений. Последовательное соединение источников ЭДС.

Последовательное соединение резисторов

Последовательным называется такое соединение, когда элементы соединяются один вслед за другим, без разветвлений:

Свойства последовательного соединения:

  1. Ток на всех участках цепи одинаковый

  1. Общее напряжение равно сумме напряжений на отдельных участках

  1. Сопротивление по отношению к входным зажимам называется входным.

Входное сопротивление равно сумме сопротивлений участков

  1. Напряжение участков прямо пропорционально сопротивлению

Если последовательно соединяются несколько источников напряжения, то общая ЭДС равна сумме ЭДС отдельных источников, а общее внутреннее сопротивление — сумме внутренних сопротивлений источников:

Параллельное соединение

Параллельным называется такое соединение, когда все начала элементов соединяются в одну общую точку, а все концы во вторую общую точку, и к этим точкам подводится напряжение:

Свойства параллельного соединения:

  1. Общее напряжение равно напряжению всех участков

  1. Ток до и после разветвления (общий ток) равен сумме токов в каждой ветви

  1. Величина, обратная входному сопротивлению, равна сумме величин, обратных сопротивлениям каждой ветви в отдельности

При параллельном соединении резисторов общее сопротивление меньше меньшего.

  1. Токи ветвей обратно пропорциональны их сопротивлениям

Если параллельно соединяются два резистора, то:

Если известен общий ток, то при параллельном соединении двух резисторов токи ветвей можно найти по формулам:

Вопрос 14. Смешанное соединение резисторов. Расчёт входного сопротивления, токов, напряжений и мощностей.

Задача

Дано:

Рассчитайте все токи и направьте их

В задачах такого типа используются свойства последовательного и параллельного соединения, законы Ома, формулы нахождения мощностей:

— закон Ома для участка цепи

— закон Ома для замкнутой цепи

— мощность источника

— мощность нагрузки

— мощность потерь внутри источника

Находим входное сопротивление:

Находим общий ток (который идёт через источник):

studfile.net

Закон Ома. Формула Закона Ома

Нужна помощь в написании работы?

Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.

Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.

Георг Симон Ом

Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.

Формула закона Ома записывается в следующем виде:

где

I – сила тока в проводнике, единица измерения силы тока - ампер [А];

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

R – электрическое сопротивление проводника, единица измерения электрического сопротивления - ом [Ом].

Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза

И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.

Рассмотрим простейший случай применения закона Ома. Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:

Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.

Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.

Где и когда можно применять закон Ома?

Нужна помощь в написании работы?

Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).

Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.

Значение Закона Ома

Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении.

Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.

Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.

Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:

Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

Нужна помощь в написании работы?

zakon-oma.ru

Закон Ома для полной цепи: определение для замкнутого участка

Одним из принципов электротехники является закон Ома для полной цепи. Используя установленную учёным закономерность, можно вычислить сопротивление электрической цепи или источника тока, рассчитать электродвижущую силу (ЭДС). Практическое же применение полученным при расчёте данным велико. Это подбор шунтирующих и предохранительных элементов, вычисление необходимой мощности используемых деталей, согласование электронных узлов.

История открытия

Зависимость между током, напряжением и сопротивлением в электрической цепи была установлена опытным путём в 1827 году. Занимаясь исследованиями электричества, Георг Симон Ом проводил ряд экспериментов над проводниками, изучая их проводимость, и в частности, подключая последовательно к источнику энергии тонкие проводники, выполненные из различных материалов. Изменяя их длину, он получал определённую силу тока. Им было установлено, что на результаты экспериментов влияет источник электрической энергии, сопротивление которого оказывалось выше, чем у используемых в опытах проводников.

По совету своего наставника Поггендорфа Ом собрал термоэлектрическую батарею, отказавшись от использования химических элементов, применив вместо них открытую Зеебеком термопару медь-висмут. Для измерения параметров цепи им использовались крутильные весы, с магнитной стрелкой сконструированные Кулоном.

На основании своих исследований физик-экспериментатор пришёл к выводу, что отклонение стрелки зависит от определённой силы, названной силой тока. Когда стрелка отклонялась, Ом закручивал весы таким образом, чтобы она возвращалась в своё начальное положение. Угол, на который закручивалась нить, он считал пропорциональной силе тока. Изменяя условия, Ом вывел математическую зависимость, составив уравнение. Выглядело оно следующим образом: Х = а/b + x, где за Х принималась сила, отклоняющая магнитную стрелку, за а — длина исследуемого образца, а b+x обозначали интенсивность и считались постоянной величиной.

В 1862 году в журнале «Физика и химия» публикуется статья Ома под названием «Определение закона, по которому металлы проводят контактное электричество». Результаты его исследований не производят впечатления на других ученых, и его выводы остаются незамеченными. Ом продолжает эксперименты, выясняя, что электричество можно рассмотреть наподобие теплового потока. Подобно разнице температур, благодаря которой совершается тепловое движение, некой величиной можно описать движение электрического заряда. Так он вводит понятие ЭДС.

Открытие Ома было принято учёным миром уже после его смерти. Существенный вклад в это внесли русские учёные Ленц и Якоби. В 1842 году Лондонское Королевское общество наградило физика золотой медалью, а закон, открытый им, был назван его именем.

Понятие тока и напряжения

Закономерность учёного устанавливает зависимость между собой трёх электрических величин: тока, напряжения и сопротивления. Поэтому для того чтобы разобраться в сути закона Ома для полной электрической цепи, необходимо понимать, что же из себя они представляют.

В любом теле существуют свободные элементарные частички, обладающие определённым количеством энергии — зарядом. Если тело находится в спокойном состоянии, то есть на него не оказывается никакого воздействия, то происходит их хаотичное перемещение. Если же к телу приложено электрическое поле, то их перемещение становится упорядоченным, и они начинают передвигаться в одну сторону.

Такое направленное движение называют электрическим током. Мерой его служит сила тока, скалярная величина, определяемая отношением количества зарядов прошедших через поперечное сечение проводника за единицу времени: I = dq/dt. За единицу измерения силы тока принят ампер.

Если направление перемещения зарядов остаётся неизменным, то движение тока считается постоянным, а если изменяется — переменным. Возникновение тока возможно только в замкнутой цепи. Для того чтобы заряд переместился, приложенное поле должно выполнить работу. То есть затратить какую-то энергию для перемещения заряда с одной точки в другую. Если принять, что в начальном положении частичка обладает нулевым зарядом, то тогда переместившись, она уже будет иметь другое его значение. Разность между этими величинами называется разностью потенциалов или напряжением.

Для поддержания силы тока в полной цепи необходим источник, постоянно воздействующий на свободные заряды и поддерживающий разности потенциалов на различных участках цепи. Величина силы, которая действует на цепь, называется ЭДС. Физически она представляет собой отношение работы, затрачиваемой на передвижение заряда от одного своего полюса к другому, к значению заряда: E = A/q. Измеряется ЭДС, так же как и напряжение, в вольтах.

При перемещении заряд из-за особенностей строения кристаллической решётки вещества, он сталкивается с различными дефектами и примесями. В результате этого происходит частичное рассеивание его потенциала, а скорость движения замедляется. Потеря энергии характеризуется электрической величиной-сопротивлением. Другими словами, сопротивление — это величина, препятствующая прохождению тока.

Импеданс цепи

Немецкий физик, проводя эксперименты, смог обнаружить зависимость между током и напряжением. Их связь определялась через постоянную величину, которая после была названа сопротивлением. Так, формула закона Ома для полной цепи может быть записана в виде выражения:

I = E/Z, где:

  • I — сила тока цепи;
  • E — электродвижущая сила, приложенная к цепи;
  • Z — постоянная величина (полное сопротивление).

Полное сопротивление (импеданс) электрической цепи важный параметр, определяющий силу тока и полезную мощность. Состоит она из нескольких составляющих: внутреннего сопротивления источника тока и сопротивления элементов, из которых состоит схема.

Поэтому в отличие от участка цепи, где берётся во внимание только сопротивление проводников, закон для всей цепи учитывает и электрическое сопротивление источника тока. В то же время характер происхождения сопротивления может носить как активную составляющую, так и реактивную, учитывающуюся для переменного тока.

Активная составляющая

Такое сопротивление называется активным, так как оно забирает на себя часть мощности, поступающей от источника питания. Эта забираемая энергия, проходя через проводник, превращается в тепло. При этом можно обнаружить, что если проводник подключить к переменному источнику сигнала, то его сопротивление будет немного больше. Связано это с тем, что индуцируемая ЭДС в материале в любой его точке неодинаковая. Ближе к центру она будет больше, чем у поверхности. То есть при переменном сигнале как бы происходит уменьшение полезного сечения проводника.

Сопротивление зависит от физических параметров материала. Математически это может быть описано выражением: R = p*L/S, где L — длина проводника, S — поперечное сечение, p — удельное сопротивление (табличное значение). Активное сопротивление слабо зависит от частоты сигнала, но при его увеличении возрастает.

Отличительной чертой элемента, обладающего активным сопротивлением, будет совпадение по фазе, протекающего через него тока и напряжения. Поэтому вычисляться оно по формуле: R = U/I.

Реактивное сопротивление

Индуктивное сопротивление связано с ЭДС самоиндукции. При протекании через элемент, обладающий индуктивностью, переменного тока, возникает магнитное поле, создающее ЭДС. Эта сила противодействует внешнему полю и препятствует его распространению. Затрачиваемая энергия увеличивает мощность магнитного поля. Как только ток уменьшается, значение магнитного поля начинает тоже снижаться, индуцируя ток самоиндукции. Его направление совпадает с убывающим током. В результате энергия, отобранная магнитным полем, начинает отдаваться обратно в цепь. То есть фактически, в отличие от активного сопротивления, потерь энергии не возникает.

Величина индуктивного сопротивления находится по формуле X L = 2 p * f * L, где: f — частота сигнала, L — значение индуктивности. Напряжение, приложенное к индуктивности и ток, поступающий от источника энергии, сдвинуты относительно друг друга по фазе на 900, при этом ток отстаёт от напряжения.

Ёмкостное же сопротивление обусловлено возникновением электродвижущей силы. При прохождении через ёмкость энергия, поступающая от источника питания должна преодолеть ёмкостное сопротивление, затрачивая часть мощности для её заряда. Но как только подаваемый сигнал изменит знак, весь накопленный заряд ёмкостью начнёт возвращаться в цепь, увеличивая энергию электрического поля.

Другими словами, ёмкость становится источником ЭДС. Ёмкостное сопротивление описывается выражением: X c = 1/ (2 p * f * C), где: C — величина ёмкости. При таком роде сопротивления ток будет опережать напряжение по фазе на 900.

Таким образом, реактивное сопротивление зависит от частоты сигнала. Общий же импеданс определяется не как сумма всех сопротивлений, а по формуле Z = (R2+ X l2+ X c2)½.

Суть закона

Общепринятая формулировка закона Ома гласит, что сила тока в полной цепи прямо пропорциональна электродвижущей силе источника, делённой на общее сопротивление всех элементов замкнутой цепи. Классическая формула закона Ома для цепи постоянного тока выглядит следующим образом:

I = E /(r+R), где:

  • R — сопротивление внешней части цепи, Ом;
  • r — внутренний импеданс источника энергии.

В замкнутой схеме ток течёт от источника энергии, протекает через различные элементы, последовательно или параллельно подключённые к нему, и возвращается обратно. Изучая открытие Ома можно сформулировать основной физический принцип, на котором строится электротехника. Заключается он в том, что чем больше ЭДС, тем большей энергией будут обладать носители заряда, а значит и их скорость перемещения будет больше. При увеличении сопротивления в цепи скорость движения, а значит, и энергия носителей заряда уменьшается, соответственно снижается и ток.

Величина ЭДС зависит от характеристик источника энергии, а сопротивление от физических параметров материала и температуры. Значение активного сопротивления не может быть изменено увеличением направленного движения частиц или напряжения, но при этом реактивная составляющая зависит от частоты сигнала.

Поэтому закон Ома для полного участка цепи переменного тока и учитывает индуктивную и ёмкостную составляющую, причём как источника питания, так и самой цепи. Описывается математически он формулой: I = Um /Z, где:

  • Um — ЭДС источника питания;
  • Z — импеданс всей замкнутой цепи: Z = (R2+(wL — 1/wC)2)½.

То есть для переменного тока закон будет описываться выражением вида:

I = Um/ (R2+(wL -1/wC)2)½.

Однако следует понимать, что в формуле используются амплитудные значения величин, а не мгновенные.

Дифференциальное уравнение

Так как сопротивление зависит не только от физических свойств материала, но и от его геометрических параметров, часто последнее при использовании закона Ома исключается из формулы. Открытие учёного, учитывающее только электропроводящие свойства, записывают в так называемой дифференциальной форме.

Такая формула имеет вид: J = σ*E, где:

  • J — плотность, характеризующая силу электричества протекающего через единицу площади;
  • σ — удельная проводимость, величина обратная удельному сопротивлению;
  • E — напряжённость поля, определяется в определённой точке как отношение силы действующей на неподвижный заряд к его величине.

Составляющие уравнения представляются в виде функции координат и времени. Удельная проводимость выражается в виде единичной матрицы. Поэтому закон можно представить формулой:

Таким образом, закон Ома для замкнутой цепи практически ничем не отличается от его формулировки для неполной схемы, лишь только дополнительно учитывает внутреннее сопротивление источника ЭДС. При этом его формулировка не изменяется.

rusenergetics.ru

Законы Ома для замкнутой цепи

Цель: углубить и систематизировать знания учащихся по теме «Законы Ома для замкнутой цепи».

Задачи:

  • Обучающая: раскрыть значимость законов Ома для замкнутой цепи.
  • Развивающая: развивать у учащихся логическое мышление, сообразительность, наблюдательность и применить знания при решении задач.
  • Воспитательная: создать условия для формирования познавательного интереса к изучаемому предмету.

Тип учебного занятия: комбинированный урок.

Оборудование: компьютер, мультимедиапроектор, набор электроприборов для сборки цепи.

Раздаточный материал:

Домашнее задание: параграфы 104, 108.

Основные этапы учебного занятия:

  1. Организационный момент (2 мин).
  2. Постановка проблемы (5 мин).
  3. Актуализация опорных знаний, умений, навыков (20 мин).
  4. Закрепление (15 мин.)
  5. Подведение итогов учебного занятия (3 мин).

ХОД УРОКА

I. Организационный момент

Задача этапа: создать у учащихся рабочий настрой учебного занятия и обеспечить деловую обстановку в группе.

(Приложение 3, слайд 1)

Учитель: Мы продолжаем изучать раздел физики «Законы постоянного тока». Тема урока: Законы Ома для замкнутой цепи. Сегодня мы закрепим и углубим полученные знания. Сложно представить жизнь без электричества в 21 веке. Электрический ток освещает квартиры, работают электроприборы: Т/В, холодильник, микроволновая печь и т д.

II. Постановка проблемы

(Приложение 3, слайд 2)

Учитель. Подведем краткий итог того, что нам уже известно. Так что такое электрический ток?

Учащиеся. Упорядоченное движение заряженных частиц.

Учитель. Можем ли мы с вами увидеть, как движутся заряженные частицы в проводнике? Конечно, нет, но по каким действиям мы определяем наличие тока в цепи?

Учащиеся.

1. Нагревание проводника
2. Химическое действие
3. Магнитное действие
4. Механическое действие

(Приложение 3, слайд 3)

Учитель. Для расчета действия электрического тока используют законы Ома.

III. Актуализация опорных знаний, умений и навыков

(Приложение 3, слайд 4)

Учитель: Вспомним основные физические величины, единицы измерения, формулы, приборы для измерения напряжения и силы тока.

Учитель. Начертим схему электрической цепи, укажем условные знаки, которыми обозначаются приборы на схемах. Объясним, что источник тока, электроприемники и ключ, соединены между собой проводами, составляют электрическую цепь.

Учащиеся. Собирают электрическую цепь, необходимые для этого приборы на каждом ученическом столе.

Блок-модуль №1, лежит на каждом ученическом столе (Приложение 1)

Учитель. Запишем формулу закона Ома для участка цепи и объясним ее физический смысл. Назавем основную электрическую характеристику проводника – сопротивление. Введем единицу измерения сопротивления. Рассмотрим о зависимости сопротивления от материала и его геометрических размеров. Отметим, что удельное сопротивление проводника зависит от рода вещества и его состояния.

Учитель. Напомним, что такое электродвижущая сила. При этом обратим внимание учащихся на то, что ЭДС источника равна работе по перемещению единичного положительного заряда вдоль всей замкнутой цепи.

Учащиеся. Собирают электрическую цепь, состоящую из источника тока, внешнего участка с переменным сопротивлением, амперметра и вольтметра.

Учитель. Пронаблюдаем, что при увеличении сопротивления внешнего участка напряжение на зажимах замкнутого источника растет, а при уменьшении сопротивления внешнего источника напряжение падает.

Учитель. Демонстрация опыта: «Зависимость силы тока от ЭДС источника и полного сопротивления цепи».

Учитель. Запишем формулу полного закона Ома.

(Блок-модуль №2, Приложение 2, лежит на каждом ученическом столе. Дается формулировка закона и объясняется физический смысл. Покажем учащимся, что ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи.)

Учащиеся. Проверяют по собранной электрической цепи? что ЭДС источника равна напряжению на его клеммах при разомкнутой внешней цепи.

Разбирается качественная задача: перегорел провод в сети, можно ли его заменить проводом, у которого длина в два раза меньше?

Учащиеся. Если уменьшается длина проволоки, уменьшается сопротивление, следовательно по закону Ома увеличивается сила тока в цепи (свой ответ подтверждают по собранной цепи, то есть измеряют силу тока с первоначальным проводом, а затем с коротким).

Вывод: нельзя заменить на проволоку, которая в два раза меньше.

(Приложение 3, слайд 5)

Делается вывод о значении и применении законов Ома для замкнутой цепи.

Учитель раздает учащимся Модуль №1 (Приложение 1), Модуль №2. (Приложение 2)

IV. Закрепление

Учитель. Решаем задачи разного уровня по карточкам с использованием блок-модуля. (Приложение 4)

Оценка «3»

1. Найти силу тока на лампочке, если напряжение в сети 220 В, а сопротивление 11 Ом.
2. Найти напряжение в сети, сила тока потребителя равна 0,1 А, а сопротивление 120 Ом.
3. Чему равно сопротивление нити накаливания при силе тока 10 А и напряжении 110 В.
4. Найти ЭДС источника тока, при совершении работы тока 600 Дж в течение 60 секунд.
5. Чему равна сила тока при коротком замыкании в сети, если сопротивление на источнике тока равно 0, 02 Ом, а ЭДС равна 42 В.
6. Найти внутреннее сопротивление на источнике тока  при коротком замыкании, если ЭДС равна 24В, а сила тока равна 80 А.

Оценка «4»

7. При подключении лапочки к батарее элементов с ЭДС 48 В, вольтметр показал напряжение на лампочке 12 В, а амперметр показал 10 м А. Чему равно сопротивление на источнике тока?
8. Найти силу тока медного проводника длиной 1200 см, площадью сечения 0,04 м2, при напряжении 220В.
9. Найти работу сторонних сил, если ЭДС источника  42 В, сила тока в цепи 200мкА, время работы тока 2 минуты.

Оценка «5»

10. Найти внешнее сопротивление и ЭДС источника, если при силе тока 200мА, мощность во внешней сети равна 6кВт, а сопротивление на источнике 0,01 Ом.
11. При замыкании источника тока на сопротивление 4,5 Ом сила в цепи 0,2 А, а при замыкании то гоже источника тока на сопротивление 10 Ом сила тока в цепи равна 0,1А. Определить Э.Д.С. источника тока?
12. Две лампочки соединены параллельно, напряжение на первой лампочки 24 В, сила тока на первой лампочки равна 0,4 А, на второй лампочки 0,8 А. Найти сопротивление на каждой лампочки и общее сопротивление, а также напряжение на второй лампочке, общее напряжение и общую силу тока. Рассчитать мощность всей потребляемой цепи.

V. Подведение итогов учебного занятия

Учитель: Делает вывод по теме: Законы Ома для замкнутой цепи являются основными законами раздела физики «Законы постоянного тока», так как с помощью их мы делаем расчеты, объясняем явления, законы природы.

VI. Задание на дом: прочитать параграфы 104; 108 и дорешать задачи.

Учитель выставляет оценки за урок с учетом результатов решенных задач разного уровня, а также с учетом результатов практической работы.

Литература:

  1. Абросимов Б.Ф. Физика. Способы и методы решения задач. М: Экзамен, 2005.
  2. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика. 10 класс: учеб. для образоват. учреждений. М.: Дрофа, 2007.
  3. Омельченко В.П., Антоненко Г.В. Физика. Ростов н/Д: Феникс, 2005.
  4. Ромашкевич А.И. Физика. Электродинамика. М: Дрофа, 2004.
  5. Шоган В.В. Модульный подход в обучении. Ростов н/Д: Феникс, 1998.

urok.1sept.ru

Закон Ома для неоднородного участка цепи

На практике видно, что для поддержания стабильного тока в замкнутой цепи необходимы силы принципиально иной природы, нежели кулоновские, тогда наблюдается случай, когда на участке цепи на свободные электрические заряды одновременно действуют как силы электрического поля, так и сторонние силы (любые неконсервативные силы, действующие на заряд, за исключением сил электрического сопротивления (кулоновских сил)). Такой участок называется неоднородным участком цепи. На рисунке ниже приведен пример такого участка.

Напряженность поля в любой точке цепи равна векторной сумме поля кулоновских сил и поля сторонних сил:

Сформулируем закон Ома для неоднородного участка цепи - Сила тока прямо пропорциональна напряжению на этом участке и обратно пропорциональна его полному сопротивлению:

– формула закона Ома для неоднородного участка цепи.

Где

  • I – сила тока,
  • U12 – напряжение на участке,
  • R – полное сопротивление цепи.

Работа на неоднородном участке цепи

Нужна помощь в написании работы?

Разность потенциалов характеризует работу силы электрического поля по переносу единичного положительного заряда (q) из точки 1 в точку 2:

- где φ1 и φ 2 – потенциалы на концах участка.

ЭДС характеризует работу сторонних сил по переносу единичного положительного заряда точки 1 в точку 2: - где ε12 – ЭДС, действующая на данном участке, численно равна работе по перемещению единичного положительного заряда вдоль контура.

Напряжение на участке цепи представляет собой суммарную работу сил ЭП и сторонних сил:

Тогда закон Ома примет вид:

ЭДС может быть как положительной, так и отрицательной. Это зависит от полярности включения ЭДС в участок. Если внутри источника тока обход совершается от отрицательного полюса к положительному, то ЭДС положительная (см. рисунок). Сторонние силы при этом совершают положительную работу. Если же обход совершается от положительного полюса к отрицательному, то ЭДС отрицательная. Проще говоря, если ЭДС способствует движению положительных зарядов, то ε>0, иначе ε

Решение задач по закону ому для неоднородного участка цепи

Определить ток, идущий по изображенному на рисунке участку АВ. ЭДС источника 20 В, внутреннее сопротивление 1 Ом, потенциалы точек А и В соответственно 15 В и 5 В, сопротивление проводов 3 Ом.

Дано:Решение:
  • ε = 20 В
  • r = 1 Ом
  • φ1 = 15 В
  • φ2 = 5 В
  • R = 3 Ом
  • Запишем закон Ома для неоднородного участка цепи -
  • Считая, что точка А начало участка, а точка В – конец, возьмем ЭДС со знаком «минус» и, подставив исходные данные, получим
  • Знак «минус» говорит о том, что ток идет от точки В к точке А, от точки с меньшим потенциалом к точке с большим, что обычно для источников тока.
  • Ответ: –2,5 А

Два элемента соединены «навстречу» друг другу, как показано на рисунке. Определить разность потенциалов между точками А и В, если ε1 = 1,4 В, r1 = 0,4 Ом, ε2 = 1,8 В, r2 = 0,6 Ом.

Дано:Решение:
  • ε1 = 1,4 В
  • r1 = 0,4 Ом
  • ε2 = 1,8 В
  • r2 = 0,6 Ом
  • Запишем закон Ома для неоднородного участка цепи -
  • Разобьём схему на два участка: АЕ2В и ВЕ1А. Тогда получим - для первого участка цепи, - для второго участка.
  • Ток на участках один и тот же, то есть можем приравнять правые части уравнений.
  • Знак «минус» показывает, что потенциал точки В выше, чем потенциал точки А.
  • Ответ: -1,56 В.

Решим любые задачи

zakon-oma.ru

формулы и определения / Блог

Немецкий физик Георг Симон Ом (1787—1854) открыл основной закон электрической цепи.

 

Закон Ома для участка цепи:

Определение: Cила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

  1. I — сила тока (в системе СИ измеряется — Ампер)
    • Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
    • Формула: I=\frac{U}{R}
  2. U — напряжение (в системе СИ измеряется — Вольт)
  3. R — электрическое сопротивление (в системе СИ измеряется — Ом).
    • Электрическое сопротивление R это отношение напряжения на концах проводника к силе тока, текущего по проводнику.
    • Формула R=\frac{U}{I}

 

    Определение единицы сопротивления — Ом

    1 Ом представляет собой электрическое сопротивление участка проводника, по которому при напряжении 1(Вольт) протекает ток 1 (Ампер).

     

    Закон Ома для полной цепи

    Определение: Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника

     

    Формула I=\frac{\varepsilon}{R+r}

    • \varepsilon — ЭДС источника напряжения, В;
    • I — сила тока в цепи, А;
    • R — сопротивление всех внешних элементов цепи, Ом;
    • r — внутреннее сопротивление источника напряжения, Ом.

     

    Как запомнить формулы закона Ома

    Треугольник Ома поможет запомнить закон. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления.

    .

     

    • U — электрическое напряжение;
    • I — сила тока;
    • P — электрическая мощность;
    • R — электрическое сопротивление

     

    Смотри также:

     

    Для закрепления своих знаний решай задания и варианты ЕГЭ по физике с ответами и пояснениями.

    bingoschool.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о