Напряжение при – , » :

напряжение - это... Что такое напряжение?

Морфология: (нет) чего? напряже́ния, чему? напряже́нию, (вижу) что? напряже́ние, чем? напряже́нием, о чём? о напряже́нии; мн. что? напряже́ния, (нет) чего? напряже́ний, чему? напряже́ниям, (вижу) что? напряже́ния, чем? напряже́ниями, о чём? о напряже́ниях

1. Напряжением мышц, связок и т. д., физическим напряжением вы называете такое состояние вашего тела или органов, когда вы не можете их расслабить, привести в спокойное состояние.

При овладении навыками письма ребёнок испытывает сильное физическое напряжение, производя огромные затраты мышечной энергии. | Лекарство нужно принимать при напряжении кишечника.

2. Напряжением вы называете такое состояние, когда вы внутренне сосредотачиваете свои физические и умственные возможности для какой-либо цели.

Эта профессия требует напряжения всех сил и воображения. | Игра на бирже требует полной сосредоточенности и напряжения мозгов.

3. Когда вы говорите о напряжении в отношениях между людьми, странами, народом и властью и т. д., вы имеете в виду неспокойную, недружелюбную атмосферу, которая может грозит ссорой, конфликтом.

Нарастает напряжение политических отношений между двумя странами. | В стране чувствуется спад социального напряжения. | Мне горько, что они вынуждены жить в состоянии напряжения.

4. В физике напряжением в электрической сети называют разность потенциалов между двумя её точками.

Ток высокого напряжения. | При покупке импортной бытовой техники обязательно справьтесь о напряжении.

5. Если что-либо держит вас в напряжении, значит, вы испытываете из-за этого такие эмоции, как, например, страх, беспокойство и т. д.

Фильм держит в напряжении, заставляет мыслить.

dic.academic.ru

Электрическое напряжение цепи

При описании протекающих в электроцепи процессов в электротехнике применяют такие понятия, как сопротивление, напряжение и ток. Каждому из этих понятий свойственны свои специфические характеристики, и они имеют соответствующее назначение.

Обязательным для протекания зарядов требованием считается наличие цепи (замкнутого контура, обеспечивающего все необходимые условия для их передвижения). При формировании разрыва внутри движущихся частиц их направленное перемещение резко прекращается.

По такому принципу работают все типы выключателей и используемые в электрике защиты. Они осуществляют разделение между собой за счет подвижных контактов токопроводящих частей. Это действие и способствует прерыванию процесса протекания электрического тока после отключения электроприбора.

Понятие электрического напряжения в физике

Электрическим током в физике считается направленное перемещение заряженных частиц, создаваемое электрополем, совершающим при этом определенную работу.

Определение 1

Работа создающего ток электрополя называется работой тока ($A$). Такая работа может на разных участках цепи отличаться, однако при этом она будет пропорциональной проходящему через него заряду.

Физической величиной работы тока на конкретном участке при перемещении по нему заряда 1 Кл считается электрическое напряжение ($U$).

Для определения напряжения на отдельно взятом участке существует следующая формула:

$U =\frac{A}{q}$, где:

  • $A$ - работа тока,
  • $q$ - прошедший по участку заряд.

Возникновение тока в электрической цепи

Замечание 1

Электрическую цепь характеризует комплекс устройств, обеспечивающих путь для протекающего электрического тока и соединенных определенным образом. В качестве элементов электроцепи служат: нагрузка, проводники и источник тока. В составе электрической цепи могут быть и другие элементы, как, например, устройства защиты и коммутации.

Необходимым условием возникновения тока будет соединение двух точек, у одной из которых очень много электронов в отличие от другой. Иными словами, потребуется образование разности потенциалов между указанными точками. С этой целью в цепи используется источник тока. Таким источником могут служить устройства в виде генераторов, батарей, химических элементов и др.

В качестве нагрузки в электроцепи выступает абсолютно любой потребитель электроэнергии. Нагрузка способна оказывать сопротивление электрическому току. От величины такого сопротивления будет зависеть величина тока. Ток течет по проводникам от источника тока к нагрузке. Проводниками, в свою очередь, служат материалы, имеющие наименьшее сопротивление, такие, как золото, серебро, медь.

Типы соединения элементов в электрической цепи

В электротехнике, в зависимости от типа соединения элементов электроцепи, существуют такие виды электрических цепей:

  • последовательная;
  • параллельная электрическая цепь;
  • последовательно-параллельная.

В электрической цепи последовательного типа соединении все элементы соединены друг с другом последовательно. Это означает, что конец первого элемента соединяется с началом второго и т.д.

Для тока такое соединение элементов дает только один путь протекания от источника к нагрузке. Общий ток цепи при этом будет равен току, который проходит через каждый элемент цепи:

$I_{общ} = I_1=I_2=I_3$

При падающем напряжении вдоль всей цепи оно будет равняться приложенному к рассматриваемому участку (AB) напряжению $E$ и сумме падений напряжений на всех участках электроцепи (резисторах). Это выражает следующая формула:

$E=U(A-B)=U_1+U_2+U_3$

Элементы в параллельной электрической цепи соединены так, что начало каждого из них соединяется в одну общую точку, а концы при этом - в другую.

Для тока в этом случае существует несколько путей протекания к нагрузкам от источника. При этом общий ток цепи $I_{общ}$ получен посредством формулы:

$I_{общ}=I_1+I_2+I_3$

Падение напряжения на всех резисторах выражает следующая формула: $E=U_1=U_2=U_3$

Последовательно-параллельная электроцепь представляет комбинацию цепи последовательного и параллельного типа соединения. Другими словами, ее элементы могут включаться, как последовательным, так и параллельным образом.

Электрическое напряжение в цепях постоянного, переменного и трехфазного тока

Определение 2

Напряжением в цепи постоянного тока на участке между точками A и B считается совершаемая электрическим полем работа в момент переноса пробного положительного заряда из первой точки во вторую.

При описании цепей переменного тока используют такие виды напряжений: мгновенное, амплитудное, среднее, среднеквадратичное.

Мгновенное напряжение представляет разность потенциалов двух точек, которая была измерена в конкретный момент времени. Данный вид напряжения будет зависеть от времени.

Амплитудным считается максимальное по модулю значение мгновенного напряжения, взятое за весь период колебаний:

$U_M=\max(u(t))$

В цепях трехфазного тока существует напряжение фазного и линейного типа. Под фазным понимается среднеквадратичное значение напряжения на каждой отдельной фазе нагрузки. Линейным считается напряжение между подводящими фазными проводами. Если нагрузка соединяется в треугольник, фазное и линейное напряжение будут равны.

spravochnick.ru

15.Напряжения. Виды напряжения, виды деформации. Правила знаков. Примеры расчета плоского напряженного состояния.

Напряжением называется интенсивность действия внутренних сил в точке тела, то есть, напряжение — это внутреннее усилие, приходящееся на единицу площади. По своей природе напряжение — это поверхностная нагрузка, возникающая на внутренних поверхностях соприкасания частей тела.

 Деформацией называется изменение размеров и формы тела под действием приложенных сил.

Напряжением называется отношение действующего усилия к площади поперечного сечения тела или образца σ = P/F.     В зависимости от направления действия силы нормальные напряжения подразделяют на растягивающие и сжимающие. Различают временные и остаточные напряжения.     Временные напряжения возникают под действием внешней нагрузки и исчезают после ее снятия, остаточные - остаются в теле после прекращения действия нагрузки.

Если после прекращения действия внешних сил изменения формы, структуры и свойств тела полностью устраняются, то такая деформация называется упругой.

При возрастании напряжений выше предела упругости деформация становится необратимой. При снятии нагрузки устраняется лишь упругая составляющая деформации, оставшаяся часть называется 

пластической деформацией.

Норм напряжение:

Составляющая напряжений, направленных по нормали к площадке ее действия.

Касат напряжение:

Составляющая напряжений, лежащих в плоскости сечения.

Правила знаков:

Нормальные напряжения σ принимаются положительными (т.е. σ>0), если они растягивают выделенный элемент бруса.

Касательные напряжения τ принимаются положительными (т.е. τ>0), если они стремятся повернуть рассматриваемый элемент бруса по ходу часовой стрелки.

При растяжении-сжатии

Внутренняя продольная сила N, которая стремится растянуть рассматриваемую частьбруса, считается положительной. Сжимающая продольная сила имеет отрицательный знак.

При кручении

Внутренний скручивающий момент T считается положительным, если он стремится повернуть рассматриваемую часть бруса против хода часовой стрелки, при взгляде на него со стороны внешней нормали.

При изгибе

Внутренняя поперечная сила Q считается положительной, в случае, когда она стремится повернуть рассматриваемую часть бруса по ходу часовой стрелки.

Внутренний изгибающий момент M положителен, когда он стремится сжать верхние волокна бруса.

Деформация при растяжении-сжатии Δl считается положительной, если длина стержняпри этом увеличивается.

При плоском поперечном изгибе

Вертикальное перемещение сечения бруса принимается положительным, если оно направлено вверх от начального положения.

Правило знаков при составлении уравнений статики

- для проекций сил на оси системы координат

Проекции внешних сил на оси системы координат принимаются положительными, если их направление совпадает с положительным направлением соответствующей оси.

- для моментов

Сосредоточенные моменты и моменты сил в уравнениях статики записываются с положительным знаком, если они стремятся повернуть рассматриваемую систему против хода часовой стрелки.

Правило знаков при составлении уравнений статики для неподвижных систем

При составлении уравнений равновесия статичных (неподвижных) систем (например, приопределении опорных реакций

), последние два правила упрощаются до вида:

Проекции сил и моменты, имеющие одинаковое направление принимаются положительными, а соответственно проекции сил и моменты обратного направления – отрицательными.

ПЛОСКОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ

Если все векторы напряжений параллельны одной и той же плоскости, напряженное состояние называется плоским (рис. 1). Иначе: напряженное состояние является плоским, если одно из трех главных напряжений равно нулю.

Рисунок 1.

Плоское напряженное состояние реализуется в пластине, нагруженной по ее контуру силами, равнодействующие которых расположены в ее срединной плоскости (срединная плоскость - плоскость, делящая пополам толщину пластины).

Направления напряжений на рис. 1 приняты за положительные. Угол α положителен, если он откладывается от оси х к оси у. На площадке с нормалью n:

 

 (1)

при .

Нормальное напряжение σn

 положительно, если оно растягивающее. Положительное напряжение показано на рис. 1. Правило знаков дляпо формуле (1) то же самое, что для напряженийпо формуле (1).

Данное здесь правило знаков относится к наклонным площадкам. В статье «Объёмное напряженное состояние» сформулировано правило знаков для компонентов напряжений в точке, т. е. для напряжений на площадках, перпендикулярных осям координат. Это правило знаков принято в теории упругости.

Главные напряжения на площадках, перпендикулярных плоскости напряжений:

(2)

(Поскольку здесь рассматриваются только два главных напряжения, они обозначены через σ1 и σ2, хотя может оказаться, что σ2<0, т. е. σ2 не будет средним из трех главных напряжений). Угол α1 составляемый нормалью к первой главной площадке с осью х, находится из равенства:

(3)

Наибольшее  и  наименьшее  касательные напряжения

(4)

Эти напряжения действуют на площадках, расположенных под углом 45° к первой и второй главным площадкам.

Если главные напряжения σ1 и σ2 имеют одинаковый знак, то наибольшее касательное напряжение действует на площадке, расположенной под углом 45° к плоскости напряжений (плоскости ху). В этом случае:

В стенке балки (здесь имеется в виду обычная балка, а не балка-стенка)  при ее изгибе силами реализуется частный случай плоского напряженного состояния. В стенках балки одно из нормальных напряжений σравно нулю. В этом случае напряжения получатся по формулам (1), (2) и (4), если в этих формулах положить σy=0. Положение первой главной площадки определяется формулой (3).

РАСТЯЖЕНИЕ ПО ДВУМ НАПРАВЛЕНИЯМ (рис 2):

Рисунок 2.

При σ1>0 и σ2<0 

При σ1>0 и σ2>0 

При σ1<0 и σ2<0 

ЧИСТЫЙ СДВИГ (рис. 3)

studfile.net

Конспект "Сила тока. Напряжение" - УчительPRO

«Сила тока. Напряжение»



Сила тока

Характеристикой тока в цепи служит величина, называемая силой тока (I).  Сила тока – физическая величина, характеризующая скорость прохождения заряда через проводник и равная отношению заряда q, прошедшeгo через пoперeчное сечение проводника за промежуток времени t, к этому промежутку времени: I = q/t. Единица измерения силы тока – 1 ампер (1 А).

Определение единицы силы тока основано на магнитном действии тока, в частности на взаимодействии параллельных проводников, по которым идёт электрический ток. Такие проводники притягиваются, если ток по ним идёт в одном направлении, и отталкиваются, если направление тока в них противоположное.

За единицу силы тока принимают такую силу тока, при которой отрезки параллельных проводников длиной 1 м, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой 2*10-7Н. Эта единица и называется ампером (1 А).

Зная формулу силы тока, можно получить единицу электрического заряда: 1 Кл = 1А * 1с.

Амперметр

Прибор, с помощью которого измеряют силу тока в цепи, называется амперметром. Его работа основана на магнитном действии тока. Основные части амперметра магнит и катушка. При прохождении по катушке электрического тока она в результате взаимодействия с магнитом, поворачивается и поворачивает соединённую с ней стрелку. Чем больше сила тока, проходящего через катушку, тем сильнее она взаимодействует с магнитом, тем больше угол поворота стрелки. Амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить, и потому он имеет малое внутреннее сопротивление, которое практически не влияет на сопротивление цепи и на силу тока в цепи.

У клемм амперметра стоят знаки «+» и «—», при включении амперметра в цепь клемма со знаком «+» присоединяется к положительному пoлюсу источника тока, а клемма со знаком «—» к отрицательному пoлюсу истoчникa тока.

Напряжение

Источник тока создаёт электрическое поле, которое приводит в движение электрические заряды. Характеристикой источника тока служит величина, называемая напряжением. Чем оно больше, тем сильнее созданное им поле. Напряжение характеризует работу, которую совершает электрическое поле по перемещению электрического заряда.

Напряжение (U) — это физическая величина, равную отношению работы (А) электрического поля по перемещению электрического заряда к заряду (q): U = A/q.

Возможно другое определение понятия напряжения. Если числитель и знаменатель в формуле напряжения умножить на время движения заряда (t), то получим: U = At/qt. В числителе этой дроби стоит мощность тока (Р), а в знаменателе — сила тока (I). Получается формула: U = Р/I, т.е. напряжение — это физическая величина, равная отношению мощности электрического тока к силе тока в цепи.

Единица напряжения: [U] = 1 Дж/1 Кл = 1 В (один вольт).

Вольтметр

Напряжение измеряют вольтметром. Он имеет такое же устройство, что и амперметр и такой же принцип действия, но он подключается параллельно тому участку цепи, напряжение на котором хотят. Внутреннее сопротивление вольтметра достаточно большое, соответственно проходящий через него ток мал по сравнению с током в цепи.

У клемм вольтметра стоят знаки «+» и «—», при включении вольтметра в цепь клeмма со знаком «+» присоединяется к положительному полюсу источника тока, а клеммa со знаком «—» к отрицательному полюсу источника тока.



Формулы и определения.

1. Все проводники, используемые в электрических цепях, имеют условные обозначения для изображения на схемах и могут образовывать последовательные, параллельные и смешанные соединения.

2. Мощность тока – физическая величинa, хаpактеpизующая скорость превращения электрической энергии в другие её виды. Единица для измерения – 1 ватт (1 Вт). Измерительный прибор – ваттметр.

3. Сила тока – физическaя вeличина, характеpизующaя скоpость прохождения заряда через проводник и равная отношению заряда, пpoшедшего через попеpeчное сечение проводника, ко времени перемещения. Единица – 1 ампер (1 А). Измерительный прибор – амперметр (подключают последовательно).

4. Электрическое напряжение – физическaя вeличина, характеризующая электрическое поле, создающее ток, и равная отношению мощности тока к его силе. Единица – 1 вольт (1 В). Измерительный прибор – вольтметр (подключают параллельно)

5. Работа тока – физичeская величинa, хаpактеpизующая количество электроэнергии, превратившейся в другие виды энергии. Единица – 1 джоуль (1 Дж). Измерительный прибор – электрический счётчик, использующий единицу 1 киловатт-час (1 кВт·ч).

 


Конспект урока «Сила тока. Напряжение».

Следующая тема: «Электрическое сопротивление».

 

uchitel.pro

Электрическое напряжение - это... Что такое Электрическое напряжение?

У этого термина существуют и другие значения, см. Напряжение.

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда.

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение между двумя точками совпадает с разностью потенциалов между ними.

Альтернативное определение —

— интеграл от проекции поля эффективной напряжённости поля (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Единицей измерения напряжения в системе СИ является вольт.

Напряжение в цепях постоянного тока

Напряжение в цепи постоянного тока определяется так же, как и в электростатике.

Напряжение в цепях переменного тока

Для описания цепей переменного тока применяются следующие понятия:

Мгновенное напряжение

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Оно является функцией времени:

Амплитудное значение напряжения

Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

Для сети переменного синусоидального напряжения со среднеквадратичным значением 220 В амплитудное равно приблизительно 311,127 В.

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения

Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:

Для чистой синусоиды среднее значение напряжения равно нулю.

Среднеквадратичное значение напряжения

Среднеквадратичное значение (устаревшее наименование: действующее, эффективное) наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение:

Для синусоидального напряжения справедливо равенство:

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно эта величина, и все вольтметры проградуированы исходя из её определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

Средневыпрямленное значение напряжения

Средневыпрямленное значение есть среднее значение модуля напряжения:

Для синусоидального напряжения справедливо равенство:

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.

Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

Стандарты

Объект Тип напряжения Значение (на вводе потребителя) Значение (на выходе источника)
Электрокардиограмма Импульсное 1-2 мВ -
Телевизионная антенна Переменное высокочастотное 1-100 мВ -
Батарейка AA («пальчиковая») Постоянное 1,5 В -
Литиевая батарейка Постоянное 3 В - 1,8 В (в исполнении пальчиковой батарейки , на примере Varta Professional Lithium, AA) -
Управляющие сигналы компьютерных компонентов Импульсное 3,5 В, 5 В -
Батарейка типа 6F22 («Крона») Постоянное 9 В -
Силовое питание компьютерных компонентов Постоянное 12 В -
Электрооборудование автомобиля Постоянное 12/24 В -
Блок питания ноутбука и жидкокристаллических мониторов Постоянное 19 В -
Сеть «безопасного» пониженного напряжения для работы в опасных условиях Переменное 36-42 В -
Напряжение наиболее стабильного горения свечи Яблочкова Постоянное 55 В -
Напряжение в телефонной линии (при опущенной трубке) Постоянное 60 В -
Напряжение в электросети Японии Переменное трёхфазное 100/172 В -
Напряжение в домашних электросетях США Переменное трёхфазное 120 В / 240 В (сплит-фаза) -
Напряжение в электросети России Переменное трёхфазное 220/380 В 230/400 В
Разряд электрического ската Постоянное до 200—250 В -
Контактная сеть трамвая и троллейбуса Постоянное 550 В 600 В
Разряд электрического угря Постоянное до 650 В -
Контактная сеть метрополитена Постоянное 750 В 825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) Постоянное 3 кВ 3,3 кВ
Распределительная воздушная линия электропередачи небольшой мощности Переменное трёхфазное 6-20 кВ 6,6-22 кВ
Генераторы электростанций, мощные электродвигатели Переменное трёхфазное 10-35 кВ -
Анод кинескопа Постоянное 7-30 кВ -
Статическое электричество Постоянное 1-100 кВ -
Свеча зажигания автомобиля Импульсное 10-25 кВ -
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) Переменное 25 кВ 27,5 кВ
Пробой воздуха на расстоянии 1 см 10-20 кВ -
Катушка Румкорфа Импульсное до 50 кВ -
Пробой трансформаторного масла на расстоянии 1 см 100-200 кВ -
Воздушная линия электропередачи большой мощности Переменное трёхфазное 35 кВ, 110 кВ, 220 кВ, 330 кВ 38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машина Постоянное 50-500 кВ -
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные) Переменное трёхфазное 500 кВ, 750 кВ, 1150 кВ 545 кВ, 800 кВ, 1250 кВ
Трансформатор Тесла Импульсное высокочастотное до нескольких МВ -
Генератор Ван де Граафа Постоянное до 7 МВ -
Грозовое облако Постоянное От 2 до 10 ГВ -

См. также

Ссылки

biograf.academic.ru

НАПРЯЖЕНИЕ - это... Что такое НАПРЯЖЕНИЕ?

  • Напряжение — Напряжение: В Викисловаре есть статья «напряжение» Электрическое напряжение между точками A и B  отношение работы электрического поля при переносе пробного заряда из точки A в B к величине этого пробного заряда. Номинальное напряжение… …   Википедия

  • напряжение — См …   Словарь синонимов

  • НАПРЯЖЕНИЕ — НАПРЯЖЕНИЕ, напряжения, ср. 1. только ед. Действие по гл. напрячь напрягать. Напряжение мышц. Напряжение внимания. 2. только ед. Состояние подъема, повышенных усилий в осуществлении чего нибудь, сосредоточение всех сил, внимания на чем нибудь. С… …   Толковый словарь Ушакова

  • Напряжение — – характеристика силового воздействия на элемент, определяемого как доля усилия на единицу площади поверхности. [Полякова, Т.Ю.  Автодорожные мосты: учебный англо русский и русско английский терминологический словарь минимум / Т.Ю. Полякова …   Энциклопедия терминов, определений и пояснений строительных материалов

  • НАПРЯЖЕНИЕ — механическое, мера внутренних сил, возникающих в деформируемом теле под влиянием внешнего воздействия. Напряжение определяется с помощью косвенных экспериментов (оптических и тензометрических) по создаваемой им деформации …   Современная энциклопедия

  • НАПРЯЖЕНИЕ — НАПРЯЖЕНИЕ, измерение РАЗНОСТИ ПОТЕНЦИАЛОВ между двумя точками цепи. Разность потенциалов составляет 1 вольт, если ЭЛЕКТРИЧЕСКИЙ ЗАРЯД в 1 кулон, протекая между двумя точками, производит работу в 1 джоуль. Напряжение также вычисляется умножением… …   Научно-технический энциклопедический словарь

  • Напряжение s — Напряжение, определяемое отношением осевого растягивающего усилия Р к начальной площади поперечного сечения рабочей части образца F0 Источник: ГОСТ 1497 84: Металлы. Методы испытаний на растяжение оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • Напряжение — механическое, мера внутренних сил, возникающих в деформируемом теле под влиянием внешнего воздействия. Напряжение определяется с помощью косвенных экспериментов (оптических и тензометрических) по создаваемой им деформации.   …   Иллюстрированный энциклопедический словарь

  • НАПРЯЖЕНИЕ — механическое внутренние силы, возникающие в деформируемом теле под влиянием внешних воздействий …   Большой Энциклопедический словарь

  • НАПРЯЖЕНИЕ — электрическое то же, что разность потенциалов между 2 точками электрической цепи; на участке цепи, не содержащей электродвижущую силу, равно произведению силы тока на сопротивление участка …   Большой Энциклопедический словарь

  • Напряжение — ситуация в управлении, характеризуемая повышенной психической или физиологической напряженностью …   Словарь терминов антикризисного управления

  • psychology_dictionary.academic.ru

    Электрическое напряжение - это... Что такое Электрическое напряжение?

    У этого термина существуют и другие значения, см. Напряжение.

    Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда.

    При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение между двумя точками совпадает с разностью потенциалов между ними.

    Альтернативное определение —

    — интеграл от проекции поля эффективной напряжённости поля (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

    Единицей измерения напряжения в системе СИ является вольт.

    Напряжение в цепях постоянного тока

    Напряжение в цепи постоянного тока определяется так же, как и в электростатике.

    Напряжение в цепях переменного тока

    Для описания цепей переменного тока применяются следующие понятия:

    Мгновенное напряжение

    Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Оно является функцией времени:

    Амплитудное значение напряжения

    Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

    Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

    Для сети переменного синусоидального напряжения со среднеквадратичным значением 220 В амплитудное равно приблизительно 311,127 В.

    Амплитудное напряжение можно измерить с помощью осциллографа.

    Среднее значение напряжения

    Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:

    Для чистой синусоиды среднее значение напряжения равно нулю.

    Среднеквадратичное значение напряжения

    Среднеквадратичное значение (устаревшее наименование: действующее, эффективное) наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение:

    Для синусоидального напряжения справедливо равенство:

    В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно эта величина, и все вольтметры проградуированы исходя из её определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

    Средневыпрямленное значение напряжения

    Средневыпрямленное значение есть среднее значение модуля напряжения:

    Для синусоидального напряжения справедливо равенство:

    На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.

    Напряжение в цепях трёхфазного тока

    В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в раз больше фазного.

    На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

    Стандарты

    Объект Тип напряжения Значение (на вводе потребителя) Значение (на выходе источника)
    Электрокардиограмма Импульсное 1-2 мВ -
    Телевизионная антенна Переменное высокочастотное 1-100 мВ -
    Батарейка AA («пальчиковая») Постоянное 1,5 В -
    Литиевая батарейка Постоянное 3 В - 1,8 В (в исполнении пальчиковой батарейки , на примере Varta Professional Lithium, AA) -
    Управляющие сигналы компьютерных компонентов Импульсное 3,5 В, 5 В -
    Батарейка типа 6F22 («Крона») Постоянное 9 В -
    Силовое питание компьютерных компонентов Постоянное 12 В -
    Электрооборудование автомобиля Постоянное 12/24 В -
    Блок питания ноутбука и жидкокристаллических мониторов Постоянное 19 В -
    Сеть «безопасного» пониженного напряжения для работы в опасных условиях Переменное 36-42 В -
    Напряжение наиболее стабильного горения свечи Яблочкова Постоянное 55 В -
    Напряжение в телефонной линии (при опущенной трубке) Постоянное 60 В -
    Напряжение в электросети Японии Переменное трёхфазное 100/172 В -
    Напряжение в домашних электросетях США Переменное трёхфазное 120 В / 240 В (сплит-фаза) -
    Напряжение в электросети России Переменное трёхфазное 220/380 В 230/400 В
    Разряд электрического ската Постоянное до 200—250 В -
    Контактная сеть трамвая и троллейбуса Постоянное 550 В 600 В
    Разряд электрического угря Постоянное до 650 В -
    Контактная сеть метрополитена Постоянное 750 В 825 В
    Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) Постоянное 3 кВ 3,3 кВ
    Распределительная воздушная линия электропередачи небольшой мощности Переменное трёхфазное 6-20 кВ 6,6-22 кВ
    Генераторы электростанций, мощные электродвигатели Переменное трёхфазное 10-35 кВ -
    Анод кинескопа Постоянное 7-30 кВ -
    Статическое электричество Постоянное 1-100 кВ -
    Свеча зажигания автомобиля Импульсное 10-25 кВ -
    Контактная сеть электрифицированной железной дороги (Россия, переменный ток) Переменное 25 кВ 27,5 кВ
    Пробой воздуха на расстоянии 1 см 10-20 кВ -
    Катушка Румкорфа Импульсное до 50 кВ -
    Пробой трансформаторного масла на расстоянии 1 см 100-200 кВ -
    Воздушная линия электропередачи большой мощности Переменное трёхфазное 35 кВ, 110 кВ, 220 кВ, 330 кВ 38 кВ, 120 кВ, 240 кВ, 360 кВ
    Электрофорная машина Постоянное 50-500 кВ -
    Воздушная линия электропередачи сверхвысокого напряжения (межсистемные) Переменное трёхфазное 500 кВ, 750 кВ, 1150 кВ 545 кВ, 800 кВ, 1250 кВ
    Трансформатор Тесла Импульсное высокочастотное до нескольких МВ -
    Генератор Ван де Граафа Постоянное до 7 МВ -
    Грозовое облако Постоянное От 2 до 10 ГВ -

    См. также

    Ссылки

    med.academic.ru

    Оставить комментарий

    avatar
      Подписаться  
    Уведомление о