Пороговое напряжение на затворе что это – Максимальная пороговое напряжение затвора? — Toster.ru

ПРОБНИК ПОЛЕВЫХ ТРАНЗИСТОРОВ

   В радиолюбительских конструкциях все чаще встречаются полевые транзисторы (ПТ), особенно в схемах УКВ аппаратуры. Но многие отказываются от их сборки, хотя схемы простые, проверенные временем, так как в них применяются ПТ к которым предъявляются особые требования по описанию схем. В журналах и интернете описано много приборов и испытателей ПТ (5,6), но они сложны, ведь в домашних условиях сложно измерить основные параметры ПТ. Приборы для испытания ПТ очень дороги и покупать их ради подбора двух, трех ПТ нет смысла.

 

Схема испытателя для полевых транзисторов (уменьшенная)

   В домашних условиях возможно измерить, приблизительно, основные параметры ПТ и подобрать их. Для этого необходимо иметь как минимум два прибора, одним из которых измеряют ток, а другим напряжение, и два источника питания. Собрав схему (1, 2) вначале необходимо резистором R1 установить нулевое напряжение на затворе VT1, движок R1 в нижнем положение резистором R2 установить напряжение сток-исток Uси VT1 по справочнику, для проверяемого транзистора, обычно 10-12 вольт. Затем подключают прибор PA2, переведенный в режим измерения тока, в цепь стока и снимают показание, Iс.нач это начальный ток стока, его еще называют током насыщения ПТ при заданном напряжение сток-исток и нулевом напряжение затвор-исток. Затем медленно перемещая движок R1 за показанием PA2 и как только ток упадет практически до нуля (10-20 мкА) измерить напряжение между затвором и истоком, данное напряжение будет напряжением отсечки Uотс..


   Чтобы измерить крутизну характеристики SмА/В ПТ нужно снова устанавливают нулевое напряжение Uзи резистором R1, PA2 покажет Iс.нач. Резистором R1 так же медленно увеличивают напряжение Uзи до одного вольта по PA1, для упрощения расчета, PA2 покажет меньший ток Ic.измер. Если теперь разность двух показаний PA2 разделить на напряжение Uзи получившийся результат будет соответствовать крутизне характеристики: 

   SмА/В=Iс.нач - Iс.измер/Uзи.

   Так проверяются транзисторы с управляющим с p-n переходом и каналом p-типа, для ПТ n-типа нужно поменять полярность включения Uпит на обратное.

   Существуют также полевые транзисторы с изолированным затвором. Существуют две разновидности МДП-транзисторов с индуцированным и со встроенным каналами.

   Транзисторы первого типа можно использовать только в режиме обогащения. Транзисторы второго типа могут работать как в режиме обеднения, так и в режиме обогащения канала. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами или МОП-транзисторами (металл - оксид- полупроводник).


   В МОП-транзисторах с индуцированным каналом проводящий канал между сильнолегированными областями истока и стока и, следовательно, заметный ток стока появляются только при определенной полярности и при определенном значении напряжения на затворе относительно истока (отрицательного при р-канале и положительного при n-канале). Это напряжение называют пороговым (Uпор). Так как появление и рост проводимости индуцированного канала связаны с обогащением его основными носителями заряда, эти транзисторы могут работать только в режиме обогащения.

   В МОП - транзисторах со встроенным каналом

проводящий канал, изготавливается технологическим путем, образуется при напряжении на затворе равном нулю. Током стока можно управлять, изменяя значение и полярность напряжения между затвором и истоком. При некотором положительном напряжении затвор - исток транзистора с р - каналом или отрицательном напряжении транзистора с n -каналом ток в цепи стока прекращается. Это напряжение называют напряжением отсечки (Uотс ). МОП - транзистор со встроенным каналом может работать как в режиме обогащения, так и в режиме обеднения канала основными носителями заряда.

   Работа МОП-транзистора с индуцированным p-каналом. При отсутствии смещения (Uзи = 0; Uси = 0) приповерхностный слой полупроводника обычно обогащен электронами. Это объясняется наличием положительно заряженных ионов в пленке диэлектрика, что является следствием предшествующего окисления кремния и фотолитографической его обработки.

   Напряжение на затворе, при котором индуцируется канал, называют пороговым напряжением Unoр. Так как канал возникает постепенно, по мере увеличения напряжения на затворе, то для исключения неоднозначности в его определении обычно задается определенное значение тока стока, при превышении которого считается, что потенциал затвора достиг порогового напряжения Unop.


   В транзисторах с встроенным каналом ток в цепи стока будет протекать и при нулевом напряжении на затворе. Для прекращения его необходимо к затвору приложить положительное напряжение (при структуре с каналом p-типа), равное или большее напряжения отсечки Uотc.

   При приложении отрицательного напряжения канал расширяется и ток увеличивается. Таким образом, МДП-транзисторы с встроенными каналами работают как в режиме обеднения, так и в режиме обогащения.

   Иногда в структуре полевого МОП транзистора между истоком и стоком присутствует встроенный диод. На работу транзистора диод не влияет, поскольку в схему он включен в обратном направлении. В последних поколениях мощных МОП-транзисторов встроенный диод используется для защиты транзистора.

   Основными параметрами полевых транзисторов считаются;

 1. Начальный ток стока Iс.нач - ток стока при напряжении между затвором и истоком, равном нулю. Измеряют при заданном для транзистора данного типа значении постоянного напряжения Uси.

 2. Остаточный ток стока Iс.ост - ток стока при напряжении между затвором и истоком, превышающем напряжение отсечки.

 3. Ток утечки затвора Iз.ут - ток затвора при заданном напряжении между затвором и остальными выводами, замкнутыми между собой.

 4. Обратный ток перехода затвор - сток Iзс.о - ток, протекающий в цепи затвор - сток при заданном обратном напряжении между затвором и стоком и разомкнутыми остальными выводами.

 5. Обратный ток перехода затвор - исток Iзи.о - ток, протекающий в цепи затвор - исток при заданном обратном напряжении между затвором и истоком и разомкнутыми остальными выводами.

 6. Напряжение отсечки Uотс - напряжение между затвором и истоком транзистора с р-n переходом или изолированным затвором, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения (обычно 10 мкА).

 7. Пороговое напряжение полевого транзистора Uпор - напряжение между затвором и истоком транзистора с изолированным затвором, работающего в режиме обогащения, при котором ток стока достигает заданного низкого значения (обычно 10 мкА).

 8. Крутизна характеристик полевого транзистора S - отношение изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора в схеме с общим истоком.


   Для этих измерений необходимо ввести еще и переключатель полярности напряжения между затвором и истоком. Комутируя этим переключателем полярность подаваемую на затвор проверяемого транзистора измеряют параметры ПТ. Процедура довольно долгая, а как быть если в наличие только один тестер. И в этом случае возможно проверить полевой транзистор, процесс проверки тот же что и описан выше, но только еще более длительный, так как нужно будет сделать очень много переключений и других операций. Такой способ для проверки и подборки ПТ не пригоден при покупке в магазинах и радиорынках.

   Как известно собрать вольтметр постоянного тока намного проще чем миллиамперметр, имея одну и туже головку, а комбинированные приборы есть у каждого радиолюбителя, даже у начинающих. Собрав прибор по схеме приведенной на рисунке, можно значительно облегчить процедуру проверки ПТ во много раз. Данный прибор могут сделать даже начинающие радиолюбители не имеющие опыта работы с ПТ. Прибор питается от 9 вольт от стабилизированного преобразователя напряжения собранной по схеме из журнала Радио (3).

   Принцип измерений параметров ПТ. Установив переключатели SA1-SA3, SB2 в нужное полжения, в зависимости от типа и канала проверяемого ПТ, подключают любой тестер, стрелочный или цифровой (предпочтительней), в гнезда XS1, XS2, переведенном в режим измерения постоянного тока, к гнездам XS3 подключить в соответствие с цоколем ПТ и включают прибор переключателем SA4.

   Все компоненты прибора установлены в подходящий корпус, размер которого зависит от размеров компонентов и примененной головки PA1. На лицевой стороне расположены PA1, SA1-SA3, XS1-XS2, R1, R2 с соответствующими надписями обозначающими функции. Преобразователь установлен в корпусе прибора, из которого выведен разъем для подключения к батарейке GB1.

Детали пробника

   PA1 - микроамперметр типа М4200 с током 300 мкА, со шкалой на 15 В, возможно использовать другие, от его габаритов завесит размер корпуса, при подборе R3, R4 при настройке, R1, R2 - СП4-1, СПО-1 сопротивлением от 4,7 кОм до 47 кОм, R3, R4 - МЛТ-0,25, С2-23 и другие. Переключатели SA1 - 3П12НПМ, 12П3Н ,ПГ2, ПГ3, П2К, SB1 - П2К. Тумблеры SA2 - SA4 - МТ-1, П1Т-1-1 и другие.

   Трансформатор ТР1 в преобразователе выполнен в ферритовом броневом магнитопроводе внешним диаметром 30 и высотой 18 мм. Обмотка I содержит 17 витков провода ПЭЛ 1,0, обмотка II - 2х40 витков провода ПЭЛ 0,23. Возможно использовать другой сердечник с соответствующим перерасчетом.

   Транзисторы VT1 - КТ315, КТ3102, VT2, VT3 - КТ801А, КТ801Б, VT4 - КТ805Б и другие, диоды VD1, VD2 - КД522, КД521, VD4-VD7 - КД105, КД208, КД209 или диодный мост КЦ407, микросхема DD1 - К555ЛН1, К155ЛН1.

   В качестве XS3 используется кроватка для микросхем установленная на печатной плате и распаянная под тип ПТ (расположение выводов) для того чтобы не загибать выводы ПТ или другой разъем распаянный соответствующим образом. Монтаж объемный. На дно (задняя крышка) установлена плата преобразователя.

Настройка испытателя полевых транзисторов

   Налаживание прибора практически не требуется. Правильно собранный преобразователь, из исправных деталей, начинает работать сразу, выходное напряжение 15 В устанавливают подстроечным резистором R4 контролируя напряжение вольтметром.

   Затем движки резисторов R1, R2 устанавливают в нижнее по схеме положение, что соответствует нулевым напряжениям. Переключатель SA3 переводят в положение 1,5 В, а SA2 в положение Uзи. Подключив контрольный вольтметр к движку R1 перемещают его контролируя показание PA1 по контрольному вольтметру и если оно отличается подбирают сопротивление резистора R3. После подбора резистора R3 переключают SA3 в положение 15 В и далее перемещают движок R3 контролируя напряжение и если оно также не соответствует подбирают R4. Таким образом настраивают внутренний вольтметр прибора. После всех настроек закрывают заднюю крышку, прибор готов к работе.


   Как показывает практика, для радиолюбителя важны следующие положения:

   1. Проверить исправность ПТ. Для этого обычно достаточно убедиться, что параметры его стабильны, не «плывут» и находятся в пределах справочных данных.

   2. Выбрать по определенным характеристикам из имеющихся у радиолюбителя всего нескольких экземпляров ПТ те, что больше подходят для применения в собираемой схеме. Обычно здесь работает качественный принцип «больше - меньше».

   Например, нужен полевой транзистор с большей S или меньшим напряжением отсечки. И из нескольких экземпляров выбирают тот, у которого лучше (больше или меньше) выбранный показател. Таким образом, высокая точность измеряемых параметров на практике часто не столь важна, как можно было бы думать.
Тем не менее, предлагаемый прибор позволяет с достаточно высокой точностью проверить работоспособность и важнейшие характеристики ПТ.

Работа с прибором

   Перед включением прибора переключателем SA1 устанавливают тип канала, SB2 устанавливают в обогащенный режим, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ, цифровой тестер с автоматическим изменением предела предпочтителен так как не нужно будет переключать пределы при измерениях. Переводят SA2 в положение Uси, а SA3 в положение 15 В. 

   Вставляют полевой транзистор в разъем XS3 в соответствие с цоколем проверяемого ПТ. Включив прибор резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Переводят SA2 в положение Uзи, а SA3 в 1,5 В. Нажимают кнопку SB1 "Измер." при этом тестер PA2 покажет какое то значение, например 0,8 мА на пределе 1 мА, это значение указывает начальный ток стока Iс.нач. Записывают это значение для данного ПТ. Затем медленно перемещают движок R1 "Uзи" контролируя при этом напряжение на затворе по PA1, напряжение Uзи увеличивают до тех пор пока ток стока Iс измеряемый тестером PA2 не уменьшится до минимального заданного как правило 10-20 мкА, переключая PA2 на пределы ниже. Как только ток уменьшится до заданного значения, снимают показание с PA1 (например 0,9 В), это напряжение является напряжением отсечки ПТ Uотс., его так же записывают.

   Для измерения крутизну характеристики SмА/В устанавливают тестер PA2 на тот предел который был установлен первоначально для данного транзистора и уменьшают Uзи до нуля, PA2 покажет Iс.нач. Резистором R1 медленно увеличивают Uзи до 1 В по PA1, PA2 покажет меньший ток Iс.измер. Если теперь вычесть из Iс.нач Iс.измер это и будет соответствовать численному значению крутизны характеристики SмА/В ПТ. Цифровой тестер с автоматическим изменением пределов предпочтительнее.

   Таким образом можно будет подобрать ПТ с близкими параметрами из одной партии с одинаковыми или разными буквенными индексами, ведь разные индексы указывают лишь на разброс параметров ПТ, так КП303А имеют Uотс. - 0,3-3,0 В, SмА/В - 1-4, а КП303В Uотс. - 1,0 - 4,0 В, SмА/В - 2-4, но некоторые ПТ с разными индексами могут иметь одинаковые значения при заданом напряжение сток-исток Uси. что не мало важно при подборке ПТ.

   Измерение параметров полевых транзисторов МОП-типа с встроенным каналом, режим обеднения. Переключателем SA1 устанавливают тип канала, SB2 устанавливают в режим обеднения, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ. Переводят SA2 в положение Uси, а SA3 в положение 15 В. Вставляют ПТ в разъем XS3 в соответствие с цоколем проверяемого ПТ. У двузатворных или с подложкой ПТ второй затвор, подложку подключают к контакту корпус "К" разъема XS3. Резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Затем переводят SA2 в положение Uзи, а SA3 в положение 1,5 В. PA2 переводят в режим измерения минимального тока. Включив прибор нажимают кнопку SB1, микроамперметр PA2 покажет какой-то ток это и будет начальный ток стока Iс.нач.

   При увеличение напряжения Uзи ток стока Iс будет уменьшатся и при определенном значение станет минимальным около 10 мкА, снятое показания с РА2 будет напряжением отсечки Uотс.

   Для проверки транзистора в режиме обогащения переключатель SB2 переводят в положение "Обогащения" и увеличивают напряжение на затворе Uзи при этом ток стока Iс будет увеличиваться.

   Как было сказано выше, МОП-транзисторы с индуцированным каналом могут работать только в режиме обогащения. Измерение параметров полевых транзисторов МОП-типа с индуцированным каналом. Переключателем SA1 устанавливают тип канала, SB2 устанавливают в режим обогащения, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ. Переводят SA2 в положение Uси, а SA3 в положение 15 В. Вставляют ПТ в разъем XS3 в соответствие с цоколем проверяемого ПТ. 

   У двузатворных или с подложкой ПТ второй затвор, подложку подключают к контакту корпус "К" разъема XS3. Резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Затем переводят SA2 в положение Uзи, а SA3 в положение 1,5 В. PA2 переводят в режим измерения минимального тока. Включив прибор нажимают кнопку SB1. При Uзи = 0 ток стока Iс = 0.

   Увеличивая напряжение Uзи следят за изменением тока стока Iс и при некотором напряжение Uзи ток стока начнет увеличиваться это будет пороговым напряжением Uпор. При дальнейшем его увеличение будет увеличиваться ток стока Iс.

   Данным прибором можно измерять параметры Iс.нач, Uотс., S ма/В ПТ средней и большой мощности, подав необходимое напряжение на внешний разъем XP1, по справочникам для данного ПТ, с добавлением необходимых пределов измерений внутренним вольтметром PA1, добавив необходимое число резисторов на переключатель SA3. Диоды VD5, VD6 при этом защищают преобразователь от внешнего напряжения.

   Если не требуется измерений точных значений Iс.нач и Uотс., а только подобрать ПТ с близкими параметрами, можно вместо PA2 включить индикаторы применяемые в бытовой технике для контроля уровней сигналов, М4762, М68501, М4248, М4223 и подобные, добавив к данным индикаторам переключатель и шунты на разные токи. Все остальные измерения производят по описанному выше методу. Данным прибором пользуюсь уже более шести лет. Он очень помогает при конструирование аппаратуры на полевых транзисторах, где к ним применяются особые требования.

   Литература:

 1. Простейшие способы проверки исправности электрорадиоэлементов в ремонтных и любительских условиях, стр. 70, 300 практических советов. Бастанов В.Г. - Моск. рабочий 1986 г.
 2. Измерение параметров и применение полевых транзисторов, - "Радио", 1969, №03, стр. 49-51
 3. Стабилизированный преобразователь напряжения - Радио №11 1981 стр. 61 (за рубежом).
 4. Занимательные эксперименты: некоторые возможности полевого транзистора - "Радио", номер 11, 1998г. Б.Иванов
 5. Приставка для проверки транзисторов. Радио № 1 – 2004, стр. 58-59.
 6. Испытатель полевых транзисторов - А. П. Кашкаров, А. Л. Бутов - Радиолюбителям схемы для дома стр. 242-246, МРБ-1275 2008г.
 7. Измерение параметров полевых транзисторов, - "Радио", 2007, №09, стр. 24-26.
 8. Меерсон А.М. Радиоизмерительная техника (3-е изд.). МРБ - Выпуск 0960 стр. 363-367. (1978)

   Конструкцию прислал на конкурс:Слинченков Александр Васильевич г. Озерск, Челябинская обл.

   Форум по измерителям и тестерам

   Обсудить статью ПРОБНИК ПОЛЕВЫХ ТРАНЗИСТОРОВ


radioskot.ru

Пороговое напряжение на затворе полевого транзистора

    Из-за того, что в открытом состоянии транзистор имеет очень малое сопротивление сток-исток, падение напряжения на нём мало. Именно поэтому имеет значение в какое "плечо" включать нагрузку. Например, для открытия полевого транзистора N-типа на затвор нужно подать положительное напряжение относительно истока — если при этом включить нагрузку в цепь истока, то напряжение на истоке будет равно:

Здесь Rотк. это сопротивление открытого транзистора. Так как данное сопротивление мало (десятки-сотни миллиом), если притянуть затвор к питанию, разница напряжений между затвором и истоком будет недостаточна для полного открытия транзистора даже при большом токе. Данное ограничение можно обойти используя разные источники для питания нагрузки и для управления затвором, но нужно чётко понимать как это работает.

  • Одна из особенностей подключения MOSFET транзистора к цифровым схемам — это необходимость подачи достаточного напряжения затвор-исток. В даташитах на транзистор пороговое напряжение затвор-исток (gate-source), при котором он начинает открываться называется gate threshold voltage (VGS). для полного открытия таким транзисторам надо подать на затвор довольно большое напряжение. Обычно это около 10 вольт, а микроконтроллер чаще всего может выдать максимум 5В. Есть несколько вариантов решения данной проблемы:
  • На биполярных транзисторах соорудить цепочку, подающую питание с высоковольтной цепи на затвор.
  • Применить специальную микросхему-драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117. Надо только не забывать, что есть драйверы как верхнего так и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и коммутирующего транзистора. Для того, чтобы открыть N-канальный транзистор в верхнем плече, ему на затвор нужно подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Этим и отличается драйвер нижнего плеча от драйвера верхнего плеча.
  • Также возможно просто использовать транзистор с малым отпирающим напряжением (т.н. logic level транзисторы). Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.
  • Никогда не оставляйте затвор "болтаться" в воздухе — так как транзистор управляется "полем", на затворе могут наводиться помехи от окружающих электро-магнитных полей, поэтому желательно всегда притягивать его через большое сопротивление либо к питанию, либо к земле, в зависимости от схемы. Сказанное верно, даже если вы используете микроконтроллер для управления транзистором — это поможет избежать неопределённых состояний, когда управляющее устройство, например, перезагружается.

    Наличие емкости на затворе создаёт бросок "зарядного" тока при открытии, поэтому для его ограничения рекомендуется ставить небольшой резистор в цепь затвора. Ограничив ток резистором вы также увеличите время открытия транзистора.

    Для шунтирования импульса тока, образующегося при отключении индуктивной нагрузки, добавляют быстрый защитный диод (TVS-диод), включённый параллельно истоку-стоку. Если имеется однонаправленный супрессор используется обратное включение, хотя допустимо также использовать двунаправленные TVS-диоды. Также, если транзисторы работают в мостовой или полумостовой схеме на высокой частоте (индукционные нагреватели, импульсные источники питания и т.п.), то в цепь стока встречно включается диод Шоттки для блокирования паразитного диода. Паразитный диод имеет большое время запирания, что может привести к сквозным токам и выходу транзисторов из строя.

    Если вы планируете использовать полевой транзистор в качестве быстрого высокочастотного ключа иили для коммутации мощной или индуктивной нагрузки, необходимо использовать т.н. снабберные цепи — часть схемы, замыкающая токи переходных процессов на себя, уменьшая паразитный нагрев транзистора. Снаббер также защищает от самооткрывания транзистора при превышении скорости нарастания напряжения на выводах сток-исток.

    В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от "электрическое поле". Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. "Полевики" по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода: исток, сток, затвор.

    исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания.

    сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания.

    затвор (gate) — управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs.

    Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис.1 изображены типы полевых транзисторов и их обозначения на схемах.

    Рис.1. Типы полевых транзисторов и их схематическое обозначение.

    "Полевик" с изолированным затвором и индуцированным каналом

    Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: "полевик", "мосфет", "ключ".

    Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.

    Обратный диод

    Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях.

    Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой.

    В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору.

    Рис.2. Паразитные элементы в составе полевого транзистора.

    Основные преимущества MOSFET

    • меньшее потребление, высокий КПД. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
    • простая схема управления.Схемы управления напряжением более просты, чем схемы управления током.
    • высокая скорость переключения.Отсутствуют неосновные носители. Следовательно не тратится время на их рассасывание. Частота работы сотни и тысячи килогерц
    • повышеная теплоустойчивость. С ростом температуры растет сопротивление канала, следовательно понижается ток, а это приводит к понижению температуры. Происходит саморегуляция.

    Основные характеристики MOSFET

    • Vds(max) – максимальное напряжение сток-исток в закрытом состоянии транзистора
    • Rds(on) – активное сопротивление канала в открытом состоянии транзистора. Этот параметр указывают для определенных значений Vgs 10В или 4.5В или 2.5 В при которых сопротивление становится минимальным.
    • Vgs(th) – пороговое напряжение при котором транзистор начнет открываться.
    • Ids – максимальный постоянный ток через транзистор.
    • Ids(Imp) – импульсный (кратковременный) ток, который выдерживает транзистор.
    • Ciss, Crss, Coss – емкость затвор-исток (input), затвор-сток (reverse), сток-исток(output).
    • Qg – заряд который необходимо передать затвору для переключения.
    • Vgs(max) – максимальное допустимое напряжение затвор-исток.
    • t(on), t(of) – время переключения транзистора.
    • характеристики обратного диода сток-исток ( максимальный ток, падение напряжения, время восстановление)

    Что еще нужно знать про полевой транзистор?

    P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте.

    МОП транзистор — потенциальный прибор и управляется напряжением (потенциалом), затвор отделен слоем диэлектрика , по сути это конденсатор и через него не протекает постоянный ток, поэтому он не потребляет ток управления в статике, но во время переключения требуется приличный ток для заряда-разряда емкости.

    МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.

    Vgs – управляющее напряжение, Vg-Vs. Если измерять относительно общего минуса, то: для n канального Vgs>0, для p канального Vgs

    Схема включения MOSFET

    Традиционная, классическая схема включения "мосфет", работающего в режиме ключа (открыт-закрыт), приведена на рис 3. Это схема, с общим истоком. Она наиболее распространена, легка в реализации и имеет самый простой способ управления транзистором.

    Нагрузку включают в цепь стока. Встроенный диод, оказывается включенным в обратном направлении и ток через него не протекает.

    Для n-канального: исток на землю, сток через нагрузку к плюсу. Тогда для его открытия, на затвор нужно подать положительное напряжение, подтянуть к плюсу питания. При работе от ШИМ (широтно импульсный модулятор), открывать его будет положительный импульс.

    Для p-канального: исток на плюс питания, сток через нагрузку на землю. Тогда для его открытия, на затвор нужно подать отрицательное напряжение, подтянуть к минусу питания (земле). При управлении от ШИМ, открывающим будет – отрицательный импульс (отсутствие импульса).

    Рис. 3. Классическая схема включения MOSFET в ключевом режиме.

    МОП транзистор, в открытом состоянии, будет пропускать ток как от истока к стоку, так и от стока к истоку. Также и нагрузку можно включать как в цепь стока, так и истока. Но при «нестандартном» включении, усложняется управление транзистором, так для n-канального может потребоваться, напряжение выше питания, а для p-канального – отрицательное напряжение ниже земли (двухполярное питание).

    МОП транзис торы, используемые в цифровой электронике, делятся на два типа.

    1. Мощные силовые – используются в импульсных преобразователях напряжения и в цепях питания.
    2. Транзисторы логического уровня – используются как ключи, коммутируют различные сигналы и управляются микросхемами.

    Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора.

    Другие популярные статьи

    MacBook не включается. Что делать?

    Читателей за год: 8114

    Пожалуй одна из самых распространенных неисправностей, заявленная клиентами при сдаче в ремонт своего MacBook — "не включается". В этой заметке рассмотрим следующие вопросы.

    Типовые неисправности MacBook Pro A1398

    Читателей за год: 7684

    МасBook Pro Retina A1398 появился в середине 2012 года.С 2012 года было выпущено 5 платформ A1398 и с десяток комплектаций.К сожалению, все модели имеют типовые неисправности.

    Проблемы с видео в MacBook и их лечение

    Читателей за год: 6948

    В нашу мастерскую часто попадают MacBook’и с неисправностью графического процессора (он же видеокарта, видеоускоритель, видеочип). Некоторые проблемы решаются софтовым путем — настройка или переустановка системы. В большинство же случаев требуются вмешательство на уровне "железа" — компонентный ремонт — замена чипа на паяльной станции.

    Оставить комментарий

    Что делать если Mac не включается? (видео) Новое в блоге MacBook не грузится дальше "яблока" после обновления macOS Mojave 10.14.5 7 июня 2019 г. Может ли небольшая мастерская назвать себя международной ?:) 2 апреля 2019 г. 5 сайтов распродаж программ для MacOS 21 марта 2019 г. Какие игры идут на MacBook и iMac? 18 февраля 2019 г. Что ломается в Макбуке при его залитии? 7 февраля 2019 г. Поверить статус заказа

    Введите номер телефона, указанный в заказе:

    Прибор для проверки основных параметров маломощных полевых транзисторов выполнен на основе недорогих цифровых мультиметров, возможно, даже с неисправными переключателями пределов измерения. Это минимизировало затраты труда по монтажу и изготовлению конструкции. Цифровые показания несколько облегчают сравнение транзисторов и подбор пар для дифференциальных каскадов. Крутизну транзисторов определяют простейшим расчетом.

    По роду своей деятельности мне часто приходится ремонтировать контрольно-измерительную аппаратуру с полевыми транзисторами. Они применяются в модуляторах, входных каскадах усилителей в осциллографах и цифровых вольтметрах, коммутационных устройствах и пр. Например, в вольтметре В7-38 установлено около 30 транзисторов серии КП301. Эти транзисторы очень чувствительны к статическому электричеству, и малейшее несоблюдение технологии монтажа приводит к выходу их из строя. Большинство неисправностей приборов, которые связаны с выходом из строя полевых транзисторов, удается устранить простой заменой, но если транзисторы используют в дифференциальных или "симметричных" каскадах, их необходимо подобрать по основным параметрам.


    Рис. 1
    К основным параметрам полевых транзисторов относятся начальный ток стока, напряжение отсечки и крутизна характеристики. Определить их, а следовательно, и принять решение о пригодности полевого транзистора к использованию возможно с помощью устройства, схема которого изображена на рис. 1. Изменяя напряжение на затворе и контролируя ток стока, можно узнать все три основных параметра. Для транзисторов с затвором на основе р-n перехода или с изолированным затвором и встроенным каналом начальный ток стока IСнач — это ток стока при нулевом значении напряжения на затворе. Напряжение отсечки U3иотс — напряжение на затворе, при котором ток стока достигает близкого к нулю значения. Крутизна характеристики определяется как отношение изменения тока стока ΔIС (мА) к вызвавшему его изменению напряжения между затвором и истоком ΔUзи (В): S = ΔIС/Δ U3и- Применив в приборе цифровые измерители тока и напряжения, вычислить значение крутизны для транзисторов любой структуры будет несложно.

    Крутизна S полевого транзистора с управляющим р-n переходом зависит от напряжения затвор- исток U3и и имеет максимальное значение Smax при напряжении на затворе, равном нулю. Если измерены значения начального тока стока IСнач и напряжения отсечки U3иотс. крутизну можно приблизительно оценить по формулам:

    где напряжение — в вольтах, ток — в миллиамперах, крутизна — в размерности мА/В [1].

    Для транзисторов с изолированным затвором крутизну при токе стока Ic и напряжении Uзи можно рассчитать по формуле

    S = 2Ic/|Uзи — Uзиотс|

    где UЗИотс — напряжение отсечки либо пороговое напряжение (для транзисторов с индуцированным затвором).

    На основе макета этого устройства изготовлен прибор для оперативного измерения основных параметров полевых транзисторов и контроля их работоспособности.

    Технические характеристики
    Измеряемое напряжение на затворе, В . -12. +12
    Разрешающая способность вольтметра, мВ. 10
    Измеряемый ток стока, мА . .-20. +20
    Разрешающая способность миллиамперметра, мкА. 10
    Погрешность измерения IСнач и Uзи, %, не более . 1
    Ток потребления прибора, мА, не более . 60


    Рис. 2

    В приборе есть защита проверяемого транзистора от повреждения.

    Схема измерителя изображена на рис. 2. Для изменения напряжения на затворе транзистора используется переменный резистор R2, подключенный к двухполярному источнику питания 2×12 В, что позволяет получить характеристику крутизны любого полевого транзистора малой мощности как с n-каналом, так и с р-каналом. Резистор R3 необходим для ограничения тока затвора. Полярность напряжения на стоке изменяют переключателем SB1. Для исключения перегрузки миллиамперметра использован ограничитель тока на транзисторе VT1 и резисторе R1. Ограничение возникает при токе 25 мА, поскольку максимальный измеряемый ток выбран равным 20 мА. Диодный мост VD1 обеспечивает действие ограничителя при любом направлении тока стока. Реле К1 и К2 предотвращают выход из строя измеряемого полевого транзистора от статического электричества: пока не нажата кнопка "Измерение" SB2, обмотка реле отключена, а контакты для подключения транзистора замкнуты между собой и на общий провод. При измерении кнопка нажата и через контакты реле транзистор подключен к измерительным цепям. Светодиод HL1 сигнализирует о том, что происходит процесс измерения.

    Главная часть устройства — миллиамперметр РА1 и вольтметр PV1 — собрана из готовых узлов мультиметров M890D. Основа этих мультиметров — широко известная микросхема ICL7106. Эти приборы выбраны из-за удобного большого корпуса, чтобы снизить трудозатраты при изготовлении измерителя параметров. Питание аналого-цифрового преобразователя (АЦП) мульти-метра — от двухполярного источника питания +5/-5 В, необходимого для микросхем АЦП и остальных частей устройства. Микросхема АЦП имеет такую возможность, если мультиметр доработать так, как показано на фрагменте схемы на рис. 3 (нумерация элементов условная).


    Рис. 3
    В основном включении, используемом при батарейном питании, выводы 30,32 и 35 соединены вместе. При двух-полярном питании вывод 30 (низкоуровневая цепь АЦП) отключают от этой точки. В этом случае микросхема измеряет разность потенциалов между выводами 30 и 31, при этом вход АЦП отвязан от цепей питания. Единственное условие — напряжение в любой из измерительных цепей не должно превышать напряжения питания АЦП относительно общего провода. Такая доработка описана в [2].

    При минимальных переделках микросхема обеспечивает измерение напряжения до 200 мВ без делителей. Для построения вольтметра с пределом 20 В, необходимого для измерения напряжения затвора, использован делитель 1:100, состоящий из резисторов R5 и R6. Для построения миллиамперметра с пределом измерения 20 мА служит резистор R7. При токе 20 мА на нем падает напряжение 200 мВ, которое и измеряет АЦП. Миллиамперметр установлен в цепь истока и измеряет ток транзистора. Такое решение продиктовано невозможностью измерять ток в цепи стока, потому что на измерительных выводах миллиамперметра может присутствовать напряжение, превышающее питающее для микросхемы АЦП. Вольтметр включен между затвором и истоком, поэтому через делитель R5R6 будет протекать ток с максимальным значением не более 12мкА, что будет вызывать ошибку в показаниях миллиамперметра в одну единицу младшего разряда, которая оказывается несущественной.

    Схема блока питания прибора изображена на рис. 4.


    Рис. 4

    Для понижения сетевого напряжения до 12 В используется трансформатор Т1. Далее переменное напряжение выпрямляется диодным мостом VD1 и фильтруется конденсаторами С1, С2. Стабилизаторами двухполярного напряжения +12/-12В служат микросхемы DA1, DA2. Двухполярное напряжение +5/-5 В стабилизирует микросхемы DA3 и DA4. Стабилизаторы включены последовательно для уменьшения падения напряжения на стабилизаторах DA3 и DA4. Схема двухполярного источника питания может быть любой другой; возможно даже использовать автономное питание, например от батарей "Корунд". Для этого потребуется добавить преобразователь напряжения батареи в необходимое для питания остальных узлов измерителя.


    Рис. 5

    Детали и конструкция. В приборе можно применить следующие детали. Резисторы R5-R7 — С2-29 или другие с допуском не более ±0,5 %, хотя номиналы могут отличаться от указанных на схеме; главное — стабильность сопротивления. Остальные резисторы — любые, например МЛТ0.125. Переменный резистор R2 — многооборотный, например, РП1-53 или предназначенный для прецизионной регулировки (по гру-боточной схеме) — СП5-35, СП5-40.

    Если найти такой не удастся, резисторы R2 и R3 можно заменить аналогом — узлом из двух переменных и двух постоянных резисторов, как это сделано в моей конструкции. Схема такого узла изображена на рис. 5. Резистором R1 напряжение устанавливают грубо, a R2 — точно.

    Светодиод можно заменить другими, например, из серий АЛ 102, АЛ307, КИПД, лучше красного цвета свечения. Диодные мосты — КЦ407 с любой буквой, вместо них можно применить отдельные кремниевые диоды с допустимым средним током не менее 200 мА в выпрямителе и 100 мА — в ограничителе тока. Для упрощения конструкции применены микросхемы интегральных стабилизаторов 7812, 7912, 7805 и 7905, отечественные аналоги которых — соответственно КР142ЕН8Б, КР1162ЕН12А, КР142ЕН5А и КР1162ЕН5А.

    Реле — РЭС60 (исполнение РС4.569.435-07) или аналогичные с двумя контактными группами на переключение.

    Сетевой трансформатор Т1 -любой, обеспечивающий выходные напряжения 2х 15 В и ток не менее 100 мА, его можно взять из сетевого адаптера мощностью не менее 6 Вт. Вторичную обмотку такого трансформатора перематывают для получения нужного двухполярного напряжения. Трансформатор и выпрямитель размещены в корпусе адаптера, а элементы стабилизатора расположены в корпусе прибора. Прибор соединяется с адаптером трехпроводным кабелем.

    Весь измеритель сооран в корпусе одного из мультиметров. При изготовлении прибора мультиметры были вскрыты и после удаления ненужных частей плат объединены в одном корпусе, как показано на рис. 6.


    Рис. 6

    Лишние детали — резисторы делителя, переключатель и прочее — удаляют (поэтому поводом для изготовления такого прибора может быть неустранимый дефект переключателя подобного мультиметра). Оставляют только часть платы с микросхемой ICL7106, индикатором, элементами "обвязки" микросхемы и индикатора и кнопками включения, которые выполнят роль переключателей SB1, SB2. Печатные проводники, идущие к этим переключателям, должны быть обрезаны.

    Нижнюю крышку мультиметра обработке не подвергают, а верхнюю придется доработать. У одного прибора крышку спиливают так, чтобы осталась только часть с индикатором и кнопкой. У второго вырезают середину там, где находится переключатель пределов, и на это место вклеивают вырезанную часть конструкции первого прибора. При вырезании частей от верхних крышек сохраняют стойки, в которые ввинчивают винты-саморезы, скрепляющие верхнюю и нижнюю крышки. Сверху, около кнопки, крепят резистор, регулирующий напряжение на затворе. Снизу устанавливают разъем для подключения полевых транзисторов. В качестве разъема использована цанговая панель для микросхем. Середину панели вырезают, и ряд контактов склеивают. Выбор цанговой панели обусловлен высокой износостойкостью.

    В моей конструкции применена небольшая плата из фольгированного текстолита, на которой устанавливают панель, светодиод и реле. В свою очередь, плату двумя винтами крепят к лицевой панели. Лишние отверстия на лицевой панели заклеивают вырезанной по размеру пластиной из пластмассы или электрокартона, на которую приклеивают отпечатанную на принтере накладку, ее вид показан на рис. 7.


    Рис. 7

    Большинство транзисторов имеют цилиндрический корпус с меткой-ключом для определения выводов. Контакты разъема для подключения полевых транзисторов соединяются между собой согласно назначению таким образом, чтобы у каждого типа транзисторов было свое место без необходимости уточнять цоко-левку. В предлагаемом варианте транзисторы устанавливают ключом вверх. Соединения отдельного вывода корпуса транзисторов с истоком, а второго затвора транзисторов серий КП306, КП350 — со стоком обеспечивают через разъем перемычками между соответствующими гнездами. Внешний вид готового прибора показан на рис. 8.


    Рис. 8

    Перед первым включением прибора необходимо проверить значения выходных напряжений стабилизатора. Налаживание прибора заключается в настройке ограничителя тока и установке образцовых напряжений миллиамперметра и вольтметра. Для настройки ограничителя надо подключить образцовый миллиамперметр между контактами "С" и "И" разъема для подключения измеряемого транзистора, нажать на кнопку "Измерение" и подобрать резистор R1, добиваясь показаний 25. 30 мА. Можно заранее подобрать транзистор по параметру ограничения тока, тогда резистор R1 заменяют перемычкой. Далее образцовый миллиамперметр последовательно с переменным резистором подсоединяют к этим же контактам, устанавливают ток 10 мА и резистором настройки образцового напряжения добиваются тех же показаний миллиамперметра прибора. Для настройки вольтметра образцовый вольтметр подключают к выводам "3" и "И", резистором прибора устанавливают напряжение затвора 10 В и резистором регулировки вольтметра прибора устанавливают те же показания.

    Ввиду того что полевые транзисторы могут выйти из строя из-за статического электричества, может быть рекомендована следующая методика работы с прибором. Перед подключением все выводы полевого транзистора следует замкнуть проволочной перемычкой между собой. На приборе устанавливают тип проводимости канала (п- или р-канал), кнопка "Измерение" отжата. Полевой транзистор подключают к своему гнезду, перемычку с выводов снимают, нажимают на кнопку "Измерение" и контролируют его параметры. После измерения отжать кнопку, замкнуть выводы транзистора между собой и вынуть транзистор из панельки.

    С помощью прибора легко диагностировать любой вид неисправности полевых транзисторов. Как показала практика, большинство неисправностей транзисторов сводится к большому току утечки затвора, пробою или обрыву канала либо внутреннему разрыву одного из выводов. Если при нажатии на кнопку "Измерение" напряжение на затворе уменьшится по сравнению с установленным, то имеет место утечка тока с затвора. Показания миллиамперметра не будут нулевыми при любом напряжении на затворе. Во всех других случаях невозможность измерить начальный ток стока и напряжение отсечки говорит о неисправности измеряемого полупроводникового прибора.

    1.Титце У., Шенк К. Полупроводниковая схемотехника. — М.: Мир, 1983.
    2.Садченков Д. А. Современные цифровые мультиметры. — М.: СОЛОН-Р, 2001.
    Автор: В. Андрюшкевич, г. Тула

    crast.ru

    Как выбрать mosfet. » Хабстаб

    В этой статье мы рассмотрим на какие параметры необходимо обратить внимание при выборе mosfet, работающего в ключевом режиме. Транзистор, работающий в ключевом режиме, можно представить себе как переключатель, который имеет два положения: включено и выключено. Обычно этот режим применяется для управления реле, лампочкой, двигателем и прочей нагрузкой, потребляющей большой ток.

    1. Для начала надо узнать напряжение цепи в которой будет работать транзистор, это напряжение будет приложено к выводам Drain и Source.
    Далее, необходимо отобрать транзисторы параметр Vds(Drain to Source Voltage ) которых минимум в 1.5 — 2 раза выше.

    2. Другой не менее важный параметр — это ток, который мы хотим пропустить через транзистор. Максимальное значение тока, который можно пропустить через mosfet определяет параметр Id(Drain Current). Его значение также должно превышать реальный ток в 1.5 — 2 раза. Но это ещё не все, Id, в свою очередь, зависит от температуры.


    На графике видно, что с увеличением температуры корпуса ток, который может пропустить через себя транзистор уменьшается. Поэтому реальное значение Id надо выбирать исходя из того, при какой температуре mosfet будет работать.

    3.Так как мы собираемся управлять нагрузкой, у нас наверняка должна быть управляющая схема и нам необходимо узнать какое напряжение у неё на выходе. Это напряжение подаётся на вывод, именуемый затвором или gate.

    Напряжение на затворе транзистора ограничивают два параметра:

    • Vgs(th)(Gate to Source Threshold Voltage) – пороговое напряжение затвор-исток при котором начинает открываться переход сток-исток
    • Vgs(Gate to Source Threshold Voltage) - максимальное напряжение затвор-исток

    Управляющее напряжение должно быть где-то между ними.

    4.Также от величины управляющего напряжения зависит сопротивление канала, обозначаемое в даташите как Rds

    • Rds(on) - Drain to Source On Resistance - сопротивление перехода сток-исток в открытом состоянии

    От значения Rds зависит мощность(P = I²*Rds), которая будет выделяться на транзисторе. Также надо обратить внимание чтобы значение Rds было хотя бы на порядок меньше(в 10 раз) сопротивления нагрузки.

    Обычно в даташите производитель указывает напряжение Vgs, при котором он гарантирует значение Rds, в некоторых даташитах таких значений приводится несколько, например, для одного и того же транзистора

    • Rds(on) @ 10 V = 2.5 Ohms
    • Rds(on) @ 4.5 V = 3 Ohms

    Чем меньше значение Rds, тем меньше будет греться транзистор.

    Зная Rds можно найти ток, который потечёт через транзистор, для этого надо к сопротивлению нагрузки прибавить значение Rds и напряжение цепи поделить на получившееся сопротивление.

    I = U/(Rнагрузки + Rds)


    Отлично мы нашли ток который потечёт через транзистор, теперь надо убедиться, что транзистор сможет пропустить этот ток при данном напряжении на затворе. Для этого находим график зависимости тока стока(Id) от напряжения на затворе(Vgs).

    На этом графике представлена зависимость максимального Id от Vgs, если получившееся при расчётах значение меньше полученного из графика, идём дальше, если нет - ищем способ увеличить напряжение Vgs или другой транзистор.

    5.Осталось только разобраться какая мощность будет выделяться на кристалле и способен ли эту мощность рассеять транзистор. И здесь есть один нюанс, обычно в даташите указывают максимальную мощность кристалла при температуре корпуса 25°


    но не факт, что ту же мощность сможет рассеять корпус транзистора, по этой причине транзисторы часто устанавливают на радиатор.
    Как узнать нужен ли радиатор?
    Для начала надо рассчитать мощность которая выделяется на кристалле, считается она по следующей формуле

    P = I²*Rds


    Дальше открываем даташит и находим температурное сопротивление кристалл-окружающая среда RθJA

    RθJA показывает на сколько изменится температура кристалла относительно окружающей среды, при изменении мощности на один ватт.
    Теперь если умножить полученное количество ватт на этот параметр и прибавить температуру окружающей среды, можно вычислить температуру кристалла. А как известно она не должна превышать рабочую температуру кристалла (Operating Junction) равную 175°.

    Если получившееся при расчёте значение превышает рабочую температуру кристалла, то необходимо транзистор установить на радиатор. Размеры радиатора конечно же можно и нужно рассчитать, но так как изготавливать радиатор вряд ли кто-то будет, выбираем его из имеющихся.

    hubstub.ru

    Пороговое напряжение на затворе — напряжение открытия транзистора — 2 ответа

    

    Автор Ильмир Абубакиров задал вопрос в разделе Техника

    напряжение открытия транзистора и получил лучший ответ

    Ответ от White Rabbit[гуру]
    Ну, наговорили вам.... знатоЧки БЕЗГРАМОТНЫЕ... .
    Искомое напряжение называется по русски "напряжение отсечки"
    В том смысле, что процесс идёт в другую сторону, и при таком напряжении танзистор ЗАКРЫВАЕТСЯ.
    Кстати, имейте ввиду, что большинство p-n-полевых транзисторов и половина МОП (те, что со встроенным, а не индуцированным каналом) при НУЛЕ на затворе - ОТКРЫТЫ... .
    PS. А смотрите Вы не "не так", а НЕ ТАМ!!! !
    Вы, кажись, хотели ПОЛЕВОЙ транзистор, а в ссылке таблица характеристик БИПОЛЯРНЫХ! White Rabbit
    Искусственный Интеллект
    (292812)
    Биполярный транзистор управляется не напряжением, а ТОКОМ.
    И уж конечно управлять от фотодиода нужно не МОЩНЫМ транзистором, а маломощным супербета.
    То, что вы смотрели в начале (КТ3102) подходит для этого лучше всего...
    Можно подать с делителя (или подобрать эммитеным сопротивлением) ему на эммитер 2 вольта, а от фотодиода подать на базу. Когда напряжение на базе будет больше эммитерного - он и откроется 🙂

    Ответ от 2 ответа[гуру]

    Привет! Вот подборка тем с ответами на Ваш вопрос: напряжение открытия транзистора

    Ответ от 333[активный]
    для полевых транзисторов нормируется сопротивление открытого канала падение напряжения можно вычеслить

    Ответ от Бондарчук Владимир[гуру]
    1 вольт для затвора - мало. Биполярный транзистор больше подходит.
    Надо искать в описаловке пороговое напряжение затвора (Gate Treshold voltage). На обычно нормально открываются полевики гораздо большим напряжением. Даже Logic Level полевики, у которых этот порог пониже (1-2 В) работают при 3 В и более. А обычным дают и 10-15 В. При проектировании схем никто и не рассчитывает, что полевик (MOSFET) будет работать при таком напряжении на затворе. Для них специально создают эти 10-15 В, чтоб они нормально работали.
    Есть еще СИТ, но они не распространены, и вроде открыты при нуле на затворе. Их надо принудительно закрывать.

    Ответ от Ђигр@[гуру]
    Чего-то нагородили тут, наговорили.... оно может и умно, но уж больно непонятно. Каким это <<обычным дают и 10-15 В>>? А если это полевой транзистор КП305А в схеме формирователя импульсов на входе частотомера? Да на его затвор единицы или десятки мкВ подаются, а тут про 10 В говорят.
    Транзистор открывается не при каком-то конкретном напряжении на базе или затворе, а при достижении определенного напряжения на P-N переходе, база коллектор или база эмитер, в зависимости от режима включения.
    Чтоб правильно рассчитать его нужно смотреть графические характеристики или подби рать экспериментально.

    Ответ от Булат 1[гуру]
    Полевики меряются крутизной характеристики, которая измеряется, если мне память не изменяет, в мА/В - изменение тока "сток-исток", делённое на изменение напряги "затвор-исток". Вот эти хар-ки и ищите в инетах.
    Ну, как и у биполярников, у них есть свои нелинейные и линейные (довольно условно) участки, только у бипол. это участки токов, а у полевых участки напряжений, а по поводу биполярников (Тигра, к тебе обращаюсь) эмиттер-база - это p-n переход и он стремится держать постоянное напряжение, поэтому на нём напряга (для кремния) если не ошибаюсь, 1,2 В, а ваши милливольты подаются не на сам p-n переход, а на всю систему "транзистор+обвязка", а на линейном участке хар-ки на эмиттер-базовом переходе стабильно 1,2 В.
    Именно потому схемы на биполярниках прожорливые, что им ток подавай да ещё и напряжение 1,2 В, вот вам и мощность рассеиваемая просто в воздух, вот почему все предпочитают полевики, когда жалко электроэнергию. А когда нужно транзистором двигать трамвай, нужна большая выходная мощность и жалко рассеивать энергию на эмиттер-базе, юзают

    Ответ от Veaceslav Vacarciuc[новичек]
    IRF7807 например.


    Полевой транзистор на Википедии
    Посмотрите статью на википедии про Полевой транзистор

    2oa.ru

    Как разработчику заставить работать новые MOSFETs

    21 декабря 2011

    MOSFET были разработаны более 40 лет назад и некоторые особенности этих устройств до сих пор не получили достойного внимания.

    Приходилось ли вам наблюдать за переходом напряжения VDS в режим «ON», в то время как напряжение VGS находилось в состоянии «OFF»? Может быть, вы использовали MOSFET в линейном режиме и он не работал, несмотря на то, что находился в безопасной области работы (SOA)? Сталкивались ли с тем, что новые, более выгодные по цене приборы с похожими параметрами не работали, когда вы заменяли ими старые?

    В этой статье хотелось бы углубиться в эти вопросы, исследуя нюансы механизмов динамического включения MOSFET, а также механизмы обратного восстановления диода, лавинного пробоя, особенности работы в линейном режиме.

    Из статьи станет понятно, как выбрать правильное устройство и максимально избежать проблем.

     

    Азбука устройства MOSFET

    В общих чертах MOSFET позволяет с помощью низкого напряжения на затворе управлять током, протекающим по каналу «исток-сток». Благодаря этому свойству можно значительно упростить схему управления, а также снизить суммарную затрачиваемую на управление мощность.

    На сегодняшний день широкое распространение получили две технологии производства MOSFET: планарная и Trench.

    Первые MOSFET были созданы по планарной технологии. Транзисторы, изготавливаемые по этой технологии, изображены на рис. 1. Их структура состоит из металла и полупроводника, разделенных слоем оксида кремния SiO2

     

     

    Рис. 1. Планарная технология — первые дискретные MOSFET

    Trench-структура (рис. 2) имеет более высокую плотность ячеек, что выражается в более низком значении Rds(on). В Trench MOSFET на поверхности подложки создается V-образная канавка, на которую осаждается слой оксида, и затем происходит металлизация.

     

     

    Рис. 2. Высокоплотные Trench MOSFET могут быть меньше, чем их планарные собратья, но обладать сравнимым значением Rds(on)

    Поле затвора в Trench MOSFET оказывает влияние на гораздо большую область кремния. В результате этого для получения аналогичного Rds(on) требуются меньшие физические размеры, чем при изготовлении MOSFET по планарной технологии.

    Наряду с явными достоинствами MOSFET имеют и отрицательные стороны. Так, между слоем n- стока и p+ истока формируется внутренний диод. Характеристики этого диода приводятся в технических данных на все MOSFET. Применяя MOSFET в импульсных схемах, всегда нужно принимать во внимание время обратного восстановления внутреннего диода. Также, в MOSFET формируется внутренний NPN-транзистор, коллектором которого является n-слой стока, базой — p-слой, а эмиттером — n-слой истока.

    Необходимо учитывать, что металлизация истока (рис. 3) в некоторых местах имеет очень низкое сопротивление между переходом «база-эмиттер», этот момент осложняет включение транзистора.

     

     

    Рис. 3. Внутренние диод и биполярный транзистор в структуре MOSFET

     

    Емкостные механизмы ложного открывания

    Несколько ложных механизмов включения могут создавать сложности при разработке импульсного источника питания. Открывают список два из них. Они связаны с паразитными емкостями транзистора и переходными процессами. Переходные процессы возникают из-за изменения напряжения на индуктивности. Происходит это во время переключения состояния MOSFET.

    Первый механизм связан с емкостью Миллера CDG и емкостью затвора CGS. Если к выключенному MOSFET приложить напряжение VDS, то фронт этого напряжения наводит ток, протекающий через емкость Миллера, емкость затвора, в итоге на сопротивлении цепи затвора (RG) создается падение напряжения (рис. 4). Если образующийся потенциал превысит пороговое напряжение затвора, произойдет ложное открывание транзистора.

     

     

    Рис. 4. Емкость Миллера с емкостью затвор-исток образуют делитель напряжения

    С ростом температуры увеличивается вероятность ложного открывания транзистора из-за тока, наведенного фронтом напряжения VDS.

    Данная проблема актуальна, когда синхронный понижающий конвертер преобразует напряжение с 12 до 1,8 В или ниже, а выход продолжительное время нагружен на индуктивную нагрузку. В этом случае ключ нижнего плеча проводит ток нагрузки большую часть времени. Когда ключ верхнего плеча запирается, индуктивность коммутируется вниз через внутренний диод транзистора нижнего плеча, затем транзистор нижнего плеча включается. Напряжение «сток-исток» верхнего ключа быстро поднимается от 0 В (включенное состояние) до примерно VCC-VF (выключенное состояние минус напряжение падения на диоде). В это время транзистор весьма восприимчив к ложному отпиранию. Вероятность этого настолько высока, что для качественной оценки используется соотношение QGS и QGD; выбирая MOSFET, мы должны руководствоваться этим соотношением. Чем выше QGD и ниже QGS, тем выше вероятность, что произойдет ложное открывание. Низкое значение RG, низкий выходной импеданс драйвера затвора и низкий импеданс трассировки позволяют качественнее удерживать устройство в запертом состоянии.

    Если в устройстве имеются подозрения на ложные открывания, понаблюдайте за напряжениями VGS, VDS и током ID. Когда нижний ключ отпирается, мы наблюдаем короткий положительный импульс на VGS и связанное с ним понижение VDS. Для борьбы с этим эффектом можно выбрать MOSFET с низкой емкостью CDG, высокой емкостью CGS и более высоким порогом отпирания. Возможна установка дополнительного конденсатора между затвором и истоком. При установке CGS увеличивается суммарный заряд затвора, необходимый для достижения порогового напряжения отпирания MOSFET. Емкость CGS ослабляет влияние эффекта Миллера, заряжаясь создаваемым им током и препятствуя возникновению тока в цепи затвора. Однако этот способ очень редко используется на практике, поскольку увеличение емкости в цепи затвора приводит к росту потерь переключения MOSFET.

    Второй емкостной механизм связан с внутренним NPN-транзистором, сформированным в структуре MOSFET. Переход «база-эмиттер» этого транзистора обладает низким, но не нулевым сопротивлением. Падение напряжения, вызванное протеканием тока по этому сопротивлению, заряжает емкость Миллера (рис. 5)

     

     

    Рис. 5. Тип включения, при котором внутренний транзистор структуры MOSFET оказывает дополнительное влияние

     

    Включение от индуктивности истока

    Структуры большинства выводных MOSFET — SOIC, DPAK, TO-220 и т.д. — сходны между собой. Высокотемпературный припой соединяет основание устройства с выводной рамкой. Это соединение обладает минимальной проводимостью. Также жесткие проволочки соединяют исток прибора от наружного вывода к внутреннему слою. Иногда от вывода истока идет несколько жестких параллельных проволочек, для этого используется технология соединения die-to-leadframe (рис. 6).

     

     

    Рис. 6. Конструкция большинства выводных MOSFET на примере корпуса D2PAK

    Затвор соединен с внешним выводом одним миниатюрным жестким проводником. Проблемы возникают из-за наличия индуктивности выводов истока. Через вывод стока протекает мощный ток, а также обратный ток включения/выключения от драйвера затвора.

    С практической точки зрения невозможно увидеть реальное напряжение на истоке выводного транзистора. Измерив напряжение, мы получим значение лишь на выводе истока, но фактически исток транзистора соединяется с источником напряжения через индуктивность вывода. В абсолютном выражении проводник, расположенный над заземленным проводником в свободном пространстве, обладает индуктивностью 0,8 нГн/мм; таким образом, между источником напряжения и истоком транзистора присутствует индуктивность порядка 3…5 нГн. Большие корпуса транзисторов, например, TO220, как правило, имеют большие значения индуктивности истока.

    Индуктивность истока обладает свойством оказывать противодействие как при включении транзистора, так и при его выключении. Процессы, возникающие при выключении, гораздо заметнее из-за больших токов, протекающих через устройство, и большей энергии, запасенной в индуктивности истока.

    В момент выключения транзистора индуктивность истока пытается сохранить ток в соответствии с выражением V = -Ldi/dt. Отсюда следует, что полярность напряжения на индуктивности изменяется мгновенно, как только MOSFET прерывает ток, протекающий через него. До выключения транзистора напряжение на индуктивности истока имело положительный потенциал на кристалле и отрицательный потенциал на выводной рамке транзистора. После выключения, в течение непродолжительного времени, потенциалы на концах индуктивности истока меняются местами. На конце индуктивности, присоединенной к выводной рамке, образуется положительный потенциал. В течение этого периода это напряжение добавляется к напряжению управления затвора.

    Несмотря на то, что сигнал управления выключением транзистора выбирает путь наименьшего сопротивления, напряжение от индуктивности истока добавляется к низкому напряжению от драйвера, и тем самым создает паразитный сигнал управления состоянием затвора.

    Если это паразитное напряжение достаточно высоко, то оно может включить устройство, противодействуя сигналу драйвера затвора (рис. 7)

     

     

    Рис. 7. Включение транзистора паразитным напряжением, действующим против сигнала драйвера затвора

    Для устранения проблем в высокоскоростных схемах применяются безвыводные корпуса, например, корпус PQFN с технологией медной клипсы от International Rectifier, а также корпус DirectFET. MOSFET в этих корпусах обладают минимальными индуктивностями истока. В устройствах, которые требуют применения выводных компонентов, мы можем подавать на затвор отрицательное напряжение запирания. При наличии достаточного отрицательного напряжения на затворе паразитный импульс не способен сместить потенциал VG до порогового значения.

    В таблице 1 приведены параметры двух новых MOSFET компании IR — IRF6708S и IRF6728M, которые выполнены в корпусе DirectFET малого и среднего размера, соответственно. Их использование позволяет уменьшить размер печатной платы, а также снизить общую стоимость системы. Технология корпусирования DirectFET позволяет получить минимальные сопротивления контактов и паразитные индуктивности выводов, а также обладает высокой эффективностью отвода тепла от кристалла за счет двустороннего охлаждения и других конструктивных особенностей.

    Таблица 1. Параметры новых MOSFET компании International Rectifier  

    Наименование VDS, В RDS(ON)
    тип[email protected] В, мОм
    RDS(ON)
    тип[email protected],5 В, мОм
    VGS, В QG
    тип. @ 4,5 В, нКл
    QG
    тип. @10 В, нКл
    IRF6728M 30 1,8 2,8 ± 20 20 8,7
    IRF6708S2 30 7,5 12 ± 20 6,6 2,2

    Ранее мы упоминали диод, который образуется в p-n-переходе MOSFET между n- областью стока и p-каналом истока. Как и любой другой диод, он обладает временем обратного восстановления (рис. 8).

     

     

    Рис. 8. Типовой график времени обратного восстановления внутреннего диода

    Основными параметрами этого диода являются tRR и QRR, и условия, при которых они были измерены.

    Когда транзистор верхнего плеча в синхронном понижающем преобразователе выключается, индуктивность начинает разряжаться через внутренний диод транзистора нижнего плеча. Это режим потерь, который минимизируют за счет быстрого включения транзистора нижнего плеча. Канал транзистора нижнего плеча открывается и отбирает весь ток на себя, диод закрывается.

    Ток обратного восстановления MOSFET течет через канал наряду с током выброса от индуктивности. Суммарный ток может негативно повлиять на область безопасной работы прибора.

    Может показаться, что единственным вариантом является выбор MOSFET с наиболее низкими QRR и/или tRR. Это не так.

    Параллельно внутреннему диоду можно подключить внешний диод с более низким напряжением VF: таким образом, ток потечет в обход внутреннего диода. MOSFET со встроенным диодом Шоттки, называемые FETky, предполагают наличие внутреннего диода Шоттки, включенного параллельно с внутренним диодом, он выполняет ту же самую роль. Прямое напряжение VF диода Шоттки гораздо меньше, чем у обычного p-n-перехода. Таким образом, Шоттки шунтирует ток выброса. Поэтому быстрый диод Шоттки необходим для уменьшения QRR. В высоковольтных приложениях, для которых FETkeys не производятся, можно включить внешний диод Шоттки необходимого или большего напряжения параллельно с внутренним диодом с минимальной индуктивностью.

     

    Лавинный пробой

    Самый простой способ объяснить лавинный пробой — использовать flyback-конвертер (рис. 9).

     

     

    Рис. 9. Схема flyback-преобразователя для демонстрации лавинного процесса

    Предположим, что структура цепочки RCD, используемая, чтобы минимизировать выбросы напряжения через переключающийся MOSFET, не является внутрисхемной. Кроме того, узел между стоком MOSFET и индуктивностью первичной обмотки разблокирован.

    Когда MOSFET включается, в первичной обмотке начинает нарастать ток в соответствии с выражением V = -Ldi/dt. Когда транзистор выключается, полярность напряжения на катушке мгновенно изменяется, добавляясь к напряжению B+. Катушка перекачивает напряжение обратно, чтобы поддержать ток и разрядить первичную индуктивность.

    С разблокированным стоком напряжение VDS близко или немного выше напряжения B+, в этом случае мы наблюдаем лавинный пробой (рис. 10).

     

     

    Рис. 10. Ограниченный лавинный процесс во Flyback-преобразователе

    Лавинный пробой — когда напряжение на MOSFET повышается быстро и затем отсекается на некотором уровне выше напряжения VDS (обычно 110…115% от VDS). Отсечка происходит, когда напряжение пробоя внутреннего диода MOSFET ограничивает увеличение напряжения. Подтверждением является плоская вершина формы всплеска напряжения.

    Лавинный пробой происходит из-за наличия индуктивности. Например, соленоид или двигатель испытывают аналогичный скачок напряжения при открытии ключа с разблокированной нагрузкой.

    Существует немало статей на тему лавинного пробоя, в которых подробно описаны методики проектирования и расчета подобных цепей.

    Важное отступление по сравнению транзисторов по параметрам лавинного пробоя. Раньше для оценки и тестирования старых транзисторов использовали в качестве нагрузки большие значения индуктивности, для тестирования новых транзисторов используют значительно меньшие величины. Данные различия нужно учитывать, когда производится сравнение транзисторов по параметрам лавинного пробоя, так как новые полевые транзисторы на первый взгляд будут выглядеть значительно хуже по характеристикам, чем более старые.

     

    Линейный режим работы

    Рассмотрим работу MOSFET в линейном режиме.

    На рис. 11 в логарифмическом масштабе на горизонтальной оси отложены значения напряжения «сток-исток» VDS, на вертикальной оси — значения тока стока ID. Кривая области безопасной работы описывает прямо-смещенную характеристику MOSFET-транзистора.

     

     

    Рис. 11. Область безопасных режимов MOSFET

    Положительный наклон в первой декаде ID/VDS отражает постоянное сопротивление RDS(ON), отрицательный — постоянную мощность. При низком напряжении MOSFET не может провести номинальный ток из-за сопротивления канала RDS(ON) и низкого значения VDS. Постоянное сопротивление RDS(ON) показано линейно в первой части кривых (линия зеленого цвета) области безопасной работы.

    Вторая часть кривой (серая линия) отражает максимальный ток через транзистор. Третья часть (синяя линия) — постоянная мощность MOSFET.

    Четвертая часть (линии розового и фиолетового цветов) никогда не описывались, исключение составляют лишь самые новые технические описания у компании IR. Этот сегмент имеет отрицательный наклон свыше постоянной мощности. По сути это выглядит как вторичный пробой в биполярном транзисторе, но это не так. Здесь показана область стабильной работы транзистора в стабильном состоянии — напряжение VDS выше, а ток ID ниже максимально допустимого. Большинство импульсных устройств не работают в этом состоянии. В импульсном источнике питания транзистор находится либо во включенном состоянии, с низким VDS и высоким током (левая верхняя линия области безопасной работы), либо выключен.

    Вторая точка перелома на кривой области безопасной работы показывает границу Спирито. Эта точка перегиба возникает из-за микроскопических особенностей транзистора. MOSFET состоит из множества тысяч параллельных ячеек, каждая ячейка обладает примерно одинаковыми значениями VDS и VGS. Единственный параметр, который отличает ячейку от ячейки — усиление. Когда MOSFET находится в режиме насыщения, то разность в усилении не существенна. Но это заметно в линейном режиме. Ячейка с большим усилением пропускает больший ток, что вызывает локальный перегрев. Решением является перевод транзистора в насыщение, тогда ячейки оптимально распределяют ток, не вызывая перегревов. Наиболее оптимально работают в линейном режиме ранние планарные MOSFET. Обладая низкой плотностью ячейки и низким коэффициентом усиления, они лучше распределяют поток тепла на большой площади, что меньше сказывается на параметрах MOSFET в линейном режиме. Ранние планарные транзисторы (рис. 12) лучше подходят для линейных режимов работы, чем Trench-приборы.

     

     

    Рис. 12. Сравнение технологий при работе в линейном режиме

    Лучше всего это иллюстрируется в сравнении трех различных технологических процессов — ранняя планарная технология, обновленная планарная технология, и Trench-технология.

    Для MOSFET, работающих в линейном режиме с постоянным напряжением «затвор-исток» VGS, током стока ID и температурой, повышение температуры (с сохранением постоянного значения VGS) и увеличение тока приводит к тепловому уходу и нестабильности. И наоборот, уменьшение тока с ростом температуры приводит к повышению стабильности работы транзисторов в линейном режиме.

    На графике ранних планарных MOSFET четко видна точка пересечения, после которой нагрев вызывает тот же или меньший ток для данного значения напряжения VGS. Этого эффекта не наблюдается у MOSFET с обновленной планарной технологией и у Trench.

    Обновленные планарные и Trench-MOSFET не подходят для технологий hot-swap и линейного регулирования, так как они тут же выйдут из линейного режима. Эти приложения требуют MOSFET ранней планарной технологии.

    Инженеры по применению КОМПЭЛ могут дать вам ответ о технологии производства конкретного MOSFET и о возможности его применения в той или иной схеме.

    Данный обзор должен помочь в решении множества проблем при создании прототипов устройств. И хотя не было затронуто большое количество параметров и основных направлений, была предпринята попытка объяснить основные механизмы, взаимодействия, и возможные пути решения возникающих проблем. Независимо от того проектируется ли DC/DC-преобразователь или схема hot-swap, этот материал будет полезен на всех уровнях, от миниатюрных до многоваттных устройств.

    Инженеры компании International Rectifier разработали удобный online-инструмент (он находится на сайте http://www.irf.com/: Design Support ® SyncBuck MOSFET Tool) по выбору оптимальной пары MOSFET для понижающих синхронных преобразователей. Введя все необходимые для расчета данные, вы получите список рекомендуемых транзисторов с кратким перечнем их параметров, типа корпуса и ориентировочной стоимостью.

    Получение технической информации, заказ образцов, поставка — e-mail: [email protected]

     

     

    •••

    Наши информационные каналы

    www.compel.ru

    Управление силовыми ключами MOSFET и IGBT

     

    Раз уж на нашем сайте появились статьи о ШИМ и регулировании мощности нагрузки с помощью микроконтроллеров, то нельзя обойти стороной тему об управлении силовыми ключами. Именно силовые ключи (транзисторы) являются финальным звеном в схеме регулирования мощности нагрузки, примеры схем приведены в статьях об электроприводе постоянного тока.

    В настоящее время в качестве силовых ключей большой и средней мощности применяются в основном MOSFET и IGBT транзисторы. Если рассматривать эти транзисторы как нагрузку для схемы их управления, то они представляют собой конденсаторы с ёмкостью в тысячи пикофарад. Для открытия транзистора, эту ёмкость необходимо зарядить, а при закрывании – разрядить, и   как можно быстрее. Сделать это нужно не только для того, чтобы ваш транзистор успевал работать на высоких частотах. Чем выше напряжение на затворе транзистора, тем меньше сопротивления канала у MOSFET или меньше напряжение насыщения коллектор-эмиттер у IGBT транзисторов. Пороговое значение напряжения открытия транзисторов обычно составляет 2 – 4 вольта, а максимальное при котором транзистор полностью открыт 10-15 вольт. Поэтому следует подавать напряжение 10-15 вольт. Но даже в таком случае ёмкость затвора заряжается не сразу и какое-то время транзистор работает на нелинейном участке своей характеристики с большим сопротивлением канала, что приводит к большому падению напряжения на транзисторе и его чрезмерному нагреву. Это так называемое проявление эффекта Миллера.

    Для того чтобы ёмкость затвора быстро зарядилась и транзистор открылся, необходимо чтобы ваша схема управления могла обеспечить как можно больший ток заряда транзистора. Ёмкость затвора транзистора можно узнать из паспортных данных на изделие и при расчете следует принять Свх = Сiss.

    Для примера возьмём MOSFET – транзистор IRF740. Он обладает следующими интересующими нас характеристиками:

    Время открытия (Rise Time — Tr) = 27 (нс)

    Время закрытия (Fall Time — Tf) = 24 (нс)

    Входная ёмкость (Input Capacitance — Сiss) = 1400 (пФ)

    Максимальный ток открытия транзистора рассчитаем как:

    Максимальный ток закрытия транзистора определим по тому же принципу:

    Так как, обычно мы используем для питания схемы управления 12 вольт, то токоограничивающий резистор определим используя закон Ома.

    То есть, резистор Rg=20 Ом, согласно стандартному ряду Е24.

    Заметьте, что управлять таким транзистором напрямую от контроллера не получится, введу того, что максимальное напряжение, которое может обеспечить контроллер, будет в пределах 5 вольт, а максимальный ток в пределах 50 мА. Выход контроллера будет перегружен, а на транзисторе будет проявляться эффект Миллера, и ваша схема очень быстро выйдет из строя, так как кто-то, или контроллер, или транзистор, перегреются раньше.
    Поэтому необходимо правильно подобрать драйвер.
    Драйвер представляет собой усилитель мощности импульсов и предназначен для управления силовыми ключами. Драйверы бывают верхнего и нижнего ключей в отдельности, либо объединенные в один корпус в драйвер верхнего и нижнего ключа, например, такие как IR2110 или IR2113.
    Исходя из информации изложенной выше, нам необходимо подобрать драйвер, способный поддерживать ток затвора транзистора Ig = 622 мА.
    Таким образом, нам подойдёт драйвер IR2011 способный поддерживать ток затвора Ig = 1000 мА.

    Так же необходимо учесть максимальное напряжение нагрузки, которое будут коммутировать ключи. В данном случае оно равно 200 вольт.
    Следующим, очень важным параметром является скорость запирания. Это позволяет устранить протекание сквозных токов в двухтактных схемах, изображенной на рисунке ниже, вызывающие потери и перегрев.

    Если вы внимательно читали начало статьи, то по паспортным данным транзистора видно, что время закрытия должно быть меньше времени открытия и соответственно ток запирания выше тока открытия If>Ir. Обеспечить больший ток закрытия, можно уменьшив сопротивление Rg, но тогда также увеличится и ток открытия, это повлияет на величину коммутационного всплеска напряжения при выключении, зависящего от скорости спада тока di/dt. С этой точки зрения повышение скорости коммутации является в большей степени негативным фактором, снижающим надежность работы устройства.

    В таком случае воспользуемся замечательным свойством полупроводников, пропускать ток в одном направлении, и установим в цепи затвора диод, который будет пропускать ток запирания транзистора If.

    Таким образом, отпирающий ток Ir будет протекать через резистор R1, а запирающий ток If — через диод VD1, а так как сопротивление p – n перехода диода намного меньше, чем сопротивление резистора R1, то и If>Ir. Для того чтобы ток запирания не превышал своего значения, последовательно с диодом включим резистор, сопротивление которого определим пренебрегая сопротивлением диода в открытом состоянии.

    Возьмем ближайший меньший из стандартного ряда Е24 R2=16 Ом.

     

    Теперь рассмотрим, что же обозначает название драйвера верхнего и драйвера нижнего ключа.
    Известно, что MOSFET и IGBT транзисторы управляются напряжением, а именно напряжением заствор-исток (Gate-Source) Ugs.
    Что же такое верхний и нижний ключ? На рисунке ниже приведена схема полумоста. Данная схема содержит верхний и нижний ключи, VT1 и VT2 соответственно. Верхний ключ VT1 подключен стоком к плюсу питания Vcc, а истоком к нагрузке и должен открываться напряжением приложенным относительно истока. Нижний же ключ, стоком подключается к нагрузке, а истоком к минусу питания (земле), и должен открываться напряжением, приложенным относительно земли.

    И если с нижним ключом все предельно ясно, подал на него 12 вольт – он открылся, подал на него 0 вольт — он закрылся, то для верхнего ключа нужна специальная схема, которая будет открывать его относительно напряжения на истоке транзистора. Такая схема уже реализована внутри драйвера. Все что нам нужно, это добавить к драйверу бустрептную ёмкость С2, которая будет заряжаться напряжением питания драйвера, но относительно истока транзистора, как это изображено на рисунке ниже. Именно этим напряжением и будет отпираться верхний ключ.

    Данная схема вполне работоспособна, но использование бустрептной ёмкости позволяет ей работать в узких диапазонах. Эта ёмкость заряжается, когда открыт нижний транзистор и не может быть слишком большой, если схема должна работать на высоких частотах, и так же не может быть слишком маленькой при работе на низких частотах. То есть при таком исполнении мы не можем держать верхний ключ бесконечно открытым, он закроется сразу после того как разрядится конденсатор С2, если же использовать ёмкость побольше, то она может не успеть перезарядится к следующему периоду работы транзистора.
    Мы не раз сталкивались с данной проблемой и очень часто приходилось экспериментировать с подбором бустрептной ёмкости при изменении частоты коммутации или алгоритма работы схемы. Проблему решили со временем и очень просто, самым надежным и «почти» дешевым способом. Изучая Technical Reference к DMC1500, нас заинтересовало назначение разъёма Р8.

    Почитав внимательно мануал и хорошо разобравшись в схеме всего привода, оказалось, что это разъём для подключения отдельного, гальванически развязанного питания. Минус источника питания мы подключаем к истоку верхнего ключа, а плюс ко входу драйвера Vb и плюсовой ножке бустрептной ёмкости. Таким образом, конденсатор постоянно заряжается, за счет чего появляется возможность держать верхний ключ открытым на столько долго, на сколько это необходимо, не зависимо от состояния нижнего ключа. Данное дополнение схемы позволяетреализовать любой алгоритм коммутации ключей.
    В качестве источника питания для заряда бустрептной ёмкости можно использовать как обычный трансформатор с выпрямителем и фильтром, так и DC-DC конвертер.

    redblot.ru

    Управление мощной нагрузкой постоянного тока. Часть 3.

    Кроме транзисторов и сборок Дарлингтона есть еще один хороший способ рулить мощной постоянной нагрузкой — полевые МОП транзисторы.
    Полевой транзистор работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал. Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением.

    МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.

    Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.

    Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной, по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.

    Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.

    МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь. Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.

    Нагрузка включается в цепь стока. Вообще, в теории, полевому транзистору совершенно без разницы что считать у него истоком, а что стоком — разницы между ними нет. Но на практике есть, дело в том, что для улучшения характеристик исток и сток делают разной величины и конструкции плюс ко всему, в мощных полевиках часто есть обратный диод (его еще называют паразитным, т.к. он образуется сам собой в силу особенности техпроцесса производства).

    У меня самыми ходовыми МОП транзисторами являются IRF630 (n канальный) и IRF9630 (p канальный) в свое время я намутил их с полтора десятка каждого вида. Обладая не сильно габаритным корпусом TO-92 этот транзистор может лихо протащить через себя до 9А. Сопротивление в открытом состоянии у него всего 0.35 Ома.
    Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314, способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.

    Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5.
    Тут вариантов три:

    • На более мелких транзисторах сорудить цепочку, подающую питалово с высоковольтной цепи на затвор, чтобы прокачать его высоким напряжением
    • применить специальную микросхему драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117.

      Надо только не забывать, что есть драйверы верхнего и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и комутирующего транзистора. Если обратишь внимание, то увидишь что с драйвером и в верхнем и нижнем плече используются N канальные транзисторы. Просто у них лучше характеристики чем у P канальных. Но тут возникает другая проблема. Для того, чтобы открыть N канальный транзистор в верхнем плече надо ему на затвор подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Чем собственно и отличается драйвер нижнего плеча от драйвера верхнего плеча.

    • Применить транзистор с малым отпирающим напряжением. Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.

    Но вообще, правильней все же ставить драйвер, ведь кроме основных функций формирования управляющих сигналов он в качестве дополнительной фенечки обеспечивает и токовую защиту, защиту от пробоя, перенапряжения, оптимизирует скорость открытия на максимум, в общем, жрет свой ток не напрасно.

    Выбор транзистора тоже не очень сложен, особенно если не заморачиваться на предельные режимы. В первую очередь тебя должно волновать значение тока стока — I Drain или ID выбираешь транзистор по максимальному току для твоей нагрузки, лучше с запасом процентов так на 10. Следующий важный для тебя параметр это VGS — напряжение насыщения Исток-Затвор или, проще говоря, управляющее напряжение. Иногда его пишут, но чаще приходится выглядывать из графиков. Ищешь график выходной характеристики Зависимость ID от VDS при разных значениях VGS. И прикидыываешь какой у тебя будет режим.

    Вот, например, надо тебе запитать двигатель на 12 вольт, с током 8А. На драйвер пожмотился и имеешь только 5 вольтовый управляющий сигнал. Первое что пришло на ум после этой статьи — IRF630. По току подходит с запасом 9А против требуемых 8. Но глянем на выходную характеристику:

    Видишь, на 5 вольтах на затворе и токе в 8А падение напряжения на транзисторе составит около 4.5В По закону Ома тогда выходит, что сопротивление этого транзистора в данный момент 4.5/8=0.56Ом. А теперь посчитаем потери мощности — твой движок жрет 5А. P=I*U или, если применить тот же закон Ома, P=I2R. При 8 амперах и 0.56Оме потери составят 35Вт. Больно дофига, не кажется? Вот и мне тоже кажется что слишком. Посмотрим тогда на IRL630.

    При 8 амперах и 5 вольтах на Gate напряжение на транзисторе составит около 3 вольт. Что даст нам 0.37Ом и 23Вт потерь, что заметно меньше.

    Если собираешься загнать на этот ключ ШИМ, то надо поинтересоваться временем открытия и закрытия транзистора, выбрать наибольшее и относительно времени посчитать предельную частоту на которую он способен. Зовется эта величина Switch Delay или ton,toff, в общем, как то так. Ну, а частота это 1/t. Также не лишней будет посмотреть на емкость затвора Ciss исходя из нее, а также ограничительного резистора в затворной цепи, можно рассчитать постоянную времени заряда затворной RC цепи и прикинуть быстродействие. Если постоянная времени будет больше чем период ШИМ, то транзистор будет не открыватся/закрываться, а повиснет в некотором промежуточном состоянии, так как напряжение на его затворе будет проинтегрировано этой RC цепью в постоянное напряжение.

    При обращении с этими транзисторами учитывай тот факт, что статического электричества они боятся не просто сильно, а ОЧЕНЬ СИЛЬНО. Пробить затвор статическим зарядом более чем реально. Так что как купил, сразу же в фольгу и не доставай пока не будешь запаивать. Предварительно заземлись за батарею и надень шапочку из фольги :).

    А в процессе проектирования схемы запомни еще одно простое правило — ни в коем случае нельзя оставлять висеть затвор полевика просто так — иначе он нажрет помех из воздуха и сам откроется. Поэтому обязательно надо поставить резистор килоом на 10 от Gate до GND для N канального или на +V для P канального, чтобы паразитный заряд стекал. Вот вроде бы все, в следующий раз накатаю про мостовые схемы для управления движков.

    easyelectronics.ru

    Оставить комментарий

    avatar
      Подписаться  
    Уведомление о