Релейный стабилизатор напряжения схема своими руками – Ой!

Схема стабилизатора напряжения: 12в - 220в своими руками

Содержание:
  1. Схема стабилизатора напряжения 220в своими руками
  2. Схемы стабилизаторов напряжения на транзисторах
  3. Схема линейного стабилизатора напряжения 12в
  4. Регулируемый стабилизатор напряжения схема
  5. Схема симисторного стабилизатора напряжения 220в
  6. Стабилизатор напряжения с защитой по току схема
  7. Схема релейного стабилизатора напряжения 220
  8. Видео: Стабилизатор напряжения и тока на LM2576

В электрических цепях постоянно возникает необходимость в стабилизации тех или иных параметров. С этой целью применяются специальные схемы управления и слежения за ними. Точность стабилизирующих действий зависит от так называемого эталона, с которым и сравнивается конкретный параметр, например, напряжение. То есть, когда значение параметра будет ниже эталона, схема стабилизатора напряжения включит управление и отдаст команду на его увеличение. В случае необходимости выполняется обратное действие – на уменьшение.

Данный принцип работы лежит в основе автоматического управления всеми известными устройствами и системами. Точно так же действуют и стабилизаторы напряжения, несмотря на разнообразие схем и элементов, используемых для их создания.


Схема стабилизатора напряжения 220в своими руками

При идеальной работе электрических сетей, значение напряжения должно изменяться не более чем на 10% от номинала в сторону увеличения или уменьшения. Однако на практике перепады напряжения достигают гораздо больших значений, что крайне отрицательно сказывается на электрооборудовании, вплоть до его выхода из строя.

Защититься от подобных неприятностей поможет специальное стабилизирующее оборудование. Однако из-за высокой стоимости, его применение в бытовых условиях во многих случаях экономически невыгодно. Наилучшим выходом из положения становится самодельный стабилизатор напряжения 220в, схема которого достаточно простая и недорогая.

За основу можно взять промышленную конструкцию, чтобы выяснить, из каких деталей она состоит. В состав каждого стабилизатора входят трансформатор, резисторы, конденсаторы, соединительные и подключающие кабели. Самым простым считается стабилизатор переменного напряжения, схема которого действует по принципу реостата, повышая или понижая сопротивление в соответствии с силой тока. В современных моделях дополнительно присутствует множество других функций, обеспечивающих защиту бытовой техники от скачков напряжения.

Среди самодельных конструкций наиболее эффективными считаются симисторные устройства, поэтому в качестве примера будет рассматриваться именно эта модель. Выравнивание тока этим прибором будет возможно при входном напряжении в диапазоне 130-270 вольт. Перед началом сборки необходимо приобрести определенный набор элементов и комплектующих. Он состоит из блока питания, выпрямителя, контроллера, компаратора, усилителей, светодиодов, автотрансформатора, узла задержки включения нагрузки, оптронных ключей, выключателя-предохранителя. Основными рабочими инструментами служат пинцет и паяльник.

Для сборки стабилизатора на 220 вольт в первую очередь потребуется печатная плата размером 11,5х9,0 см, которую нужно заранее подготовить. В качестве материала рекомендуется использовать фольгированный стеклотекстолит. Схема размещения деталей распечатывается на принтере и переносится на плату с помощью утюга.

Трансформаторы для схемы можно взять уже готовые или собрать самостоятельно. Готовые трансформаторы должны иметь марку ТПК-2-2 12В и соединяться последовательно между собой. Для создания первого трансформатора своими руками потребуется магнитопровод сечением 1,87 см2 и 3 кабеля ПЭВ-2. Первый кабель применяется в одной обмотке. Его диаметр составит 0,064 мм, а количество витков – 8669. Оставшиеся провода используются в других обмотках. Их диаметр будет уже 0,185 мм, а число витков составит 522.

Второй трансформатор изготавливается на основе тороидального магнитопровода. Его обмотка выполняется из такого же провода, как и в первом случае, но количество витков будет другим и составит 455. Во втором устройстве делаются отводы в количестве семи. Первые три изготавливаются из провода диаметром 3 мм, а остальные из шин, сечением 18 мм2. За счет этого предотвращается нагрев трансформатора во время работы.

Все остальные комплектующие рекомендуется приобретать в готовом виде, в специализированных магазинах. Основой сборки является принципиальная схема стабилизатора напряжения, заводского изготовления. Вначале устанавливается микросхема, выполняющая функцию контроллера для теплоотвода. Для ее изготовления используется алюминиевая пластина площадью свыше 15 см2. На эту же плату производится монтаж симисторов. Теплоотвод, предназначенный для монтажа, должен быть с охлаждающей поверхностью. После этого сюда же устанавливаются светодиоды в соответствии со схемой или со стороны печатных проводников. Собранная таким образом конструкция, не может сравниваться с заводскими моделями ни по надежности, ни по качеству работы. Такие стабилизаторы используются с бытовыми приборами, не требующими точных параметров тока и напряжения.


Схемы стабилизаторов напряжения на транзисторах

Качественные трансформаторы, применяемые в электрической цепи, эффективно справляются даже с большими помехами. Они надежно защищают бытовую технику и оборудование, установленные в доме. Настроенная система фильтрации позволяет бороться с любыми скачками напряжения. За счет контроля над напряжением происходят изменения величины тока. Предельная частота на входе увеличивается, а на выходе – уменьшается. Таким образом, ток в цепи преобразуется в течение двух этапов.

В начале на входе задействуют транзистор с фильтром. Далее происходит включение в работу диодного моста. Для завершения преобразования тока в схеме применяется усилитель, чаще всего устанавливаемый между резисторами. За счет этого в устройстве поддерживается необходимый уровень температуры.

Схема выпрямления действует следующим образом. Выпрямление переменного напряжения с вторичной обмотки трансформатора происходит с помощью диодного моста (VD1-VD4). Сглаживание напряжения выполняет конденсатор С1, после чего оно попадает в систему компенсационного стабилизатора. Действие резистора R1 задает стабилизирующий ток на стабилитроне VD5. Резистор R2 является нагрузочным. При участии конденсаторов С2 и С3 происходит фильтрация питающего напряжения.

Значение выходного напряжения стабилизатора будет зависеть от элементов VD5 и R1 для выбора которых существует специальная таблица. Транзистор VT1 устанавливается на радиаторе, у которого площадь охлаждающей поверхности должна быть не менее 50 см2. Отечественный транзистор КТ829А может быть заменен зарубежным аналогом BDX53 от компании Моторола. Остальные элементы имеют маркировку: конденсаторы – К50-35, резисторы – МЛТ-0,5.


Схема линейного стабилизатора напряжения 12в

В линейных стабилизаторах используются микросхемы КРЕН, а также LM7805, LM1117 и LM350. Следует отметить, что символика КРЕН не является аббревиатурой. Это сокращение полного названия микросхемы стабилизатора, обозначаемой как КР142ЕН5А. Таким же образом обозначаются и другие микросхемы этого типа. После сокращения такое название выглядит по-другому – КРЕН142.

Линейные стабилизаторы или стабилизаторы напряжения постоянного тока схемы получили наибольшее распространение. Их единственным недостатком считается невозможность работы при напряжении, которое будет ниже заявленного выходного напряжения.

Например, если на выходе LM7805 нужно получить напряжение в 5 вольт, то входное напряжение должно быть, как минимум 6,5 вольт. При подаче на вход менее 6,5В, наступит так называемая просадка напряжения, и на выходе уже не будет заявленных 5-ти вольт. Кроме того, линейные стабилизаторы очень сильно нагреваются под нагрузкой. Это свойство лежит в основе принципа их работы. То есть, напряжение, выше стабилизируемого, преобразуется в тепло. Например, при подаче на вход микросхемы LM7805 напряжения 12В, то в этом случае 7 из них уйдут для нагрева корпуса, и лишь необходимые 5В поступят потребителю. В процессе трансформации происходит настолько сильный нагрев, что данная микросхема просто сгорит при отсутствии охлаждающего радиатора.


Регулируемый стабилизатор напряжения схема

Нередко возникают ситуации, когда напряжение, выдаваемое стабилизатором, необходимо отрегулировать. На рисунке представлена простая схема регулируемого стабилизатора напряжения и тока, позволяющая не только стабилизировать, но и регулировать напряжение. Ее можно легко собрать даже при наличии лишь первоначальных познаний в электронике. Например, входное напряжение составляет 50В, а на выходе получается любое значение, в пределах 27 вольт.

В качестве основной детали стабилизатора используется полевой транзистор IRLZ24/32/44 и другие аналогичные модели. Данные транзисторы оборудуются тремя выводами – стоком, истоком и затвором. Структура каждого из них состоит из металла-диэлектрика (диоксида кремния) – полупроводника. В корпусе расположена микросхема-стабилизатор TL431, с помощью которой и настраивается выходное электрическое напряжение. Сам транзистор может оставаться на радиаторе и соединяться с платой проводниками.

Данная схема может работать с входным напряжением в диапазоне от 6 до 50В. Выходное напряжение получается в пределах от 3 до 27В и может быть отрегулировано с помощью подстрочного резистора. В зависимости от конструкции радиатора, выходной ток достигает 10А. Емкость сглаживающих конденсаторов С1 и С2 составляет 10-22 мкФ, а С3 – 4,7 мкФ. Схема сможет работать и без них, однако качество стабилизации будет снижено. Электролитические конденсаторы на входе и выходе рассчитываются примерно на 50В. Мощность, рассеиваемая таким стабилизатором, не превышает 50 Вт.


Схема симисторного стабилизатора напряжения 220в

Симисторные стабилизаторы работают по аналогии с релейными устройствами. Существенным отличием является наличие узла, переключающего обмотки трансформатора. Вместо реле используются мощные симисторы, работающие под управлением контроллеров.

Управление обмотками с помощью симисторов – бесконтактное, поэтому при переключениях нет характерных щелчков. Для намотки автотрансформатора используется медный провод. Симисторные стабилизаторы могут работать при пониженном напряжении от 90 вольт и высоком – до 300 вольт. Регулировка напряжения осуществляется с точностью до 2%, отчего лампы совершенно не моргают. Однако во время переключений возникает ЭДС самоиндукции, как и в релейных устройствах.

Симисторные ключи обладают повышенной чувствительностью к перегрузкам, в связи с чем они должны иметь запас по мощности. Данный тип стабилизаторов отличается очень сложным температурным режимом. Поэтому установка симисторов осуществляется на радиаторы с принудительным вентиляторным охлаждением. Точно так же работает схема тиристорного стабилизатора напряжения 220В своими руками.

Существуют устройства с повышенной точностью, работающие по двухступенчатой системе. На первой ступени выполняется грубая регулировка выходного напряжения, а на второй ступени этот процесс осуществляется значительно точнее. Таким образом, управление двумя ступенями выполняется с помощью одного контроллера, что фактически означает наличие двух стабилизаторов в едином корпусе. Обе ступени имеют обмотки, намотанные в общем трансформаторе. При наличии 12 ключей, эти две ступени позволяют регулировать выходное напряжение в 36 уровнях, чем и обеспечивается его высокая точность.


Стабилизатор напряжения с защитой по току схема

Данные устройства обеспечивают питание преимущественно для низковольтных устройств. Такой стабилизатор тока и напряжения схема отличается простотой конструкции, доступной элементной базой, возможностью плавных регулировок не только выходного напряжения, но и тока, при котором срабатывает защита.
Основой схемы является параллельный стабилизатор или регулируемый стабилитрон, а также биполярный транзистор с высокой мощностью. С помощью так называемого измерительного резистора контролируется ток, потребляемый нагрузкой.

Иногда на выходе стабилизатора возникает короткое замыкание или ток нагрузки превышает установленное значение. В этом случае на резисторе R2 падает напряжение, а транзистор VT2 открывается. Происходит и одновременное открытие транзистора VT3, шунтирующего источник опорного напряжения. В результате, значение выходного напряжения снижается практически до нулевого уровня, и регулирующий транзистор оказывается защищенным от перегрузок по току. Для того чтобы установить точный порог срабатывания токовой защиты, применяется подстроечный резистор R3, включаемый параллельно с резистором R2. Красный цвет светодиода LED1 указывает на срабатывание защиты, а зеленый LED2 – на выходное напряжение.

После правильно выполненной сборки схемы мощных стабилизаторов напряжения сразу же включаются в работу, достаточно всего лишь выставить необходимое значение выходного напряжения. После загрузки устройства реостатом выставляется ток, при котором срабатывает защита. Если защита должна срабатывать при меньшем токе, для этого необходимо увеличить номинал резистора R2. Например, при R2 равном 0,1 Ом, минимальный ток срабатывания защиты будет составлять около 8А. Если же нужно, наоборот, увеличить ток нагрузки, следует параллельно включить два и более транзисторов, в эмиттерах которых имеются выравнивающие резисторы.


Схема релейного стабилизатора напряжения 220

С помощью релейного стабилизатора обеспечивается надежная защита приборов и других электронных устройств, для которых стандартный уровень напряжения составляет 220В. Данный стабилизатор напряжения 220В, схема которого всем известна. Пользуется широкой популярностью, благодаря простоте своей конструкции.

Для того чтобы правильно эксплуатировать это устройство, необходимо изучить его устройство и принцип действия. Каждый релейный стабилизатор состоит из автоматического трансформатора и электронной схемы, управляющей его работой. Кроме того, имеется реле, помещенное в надежный корпус.  Данный прибор относится к категории вольтодобавочных, то есть с его помощью лишь добавляется ток в случае низкого напряжения.

Добавление необходимого количества вольт осуществляется путем подключения обмотки трансформатора. Обычно для работы используется 4 обмотки. В случае слишком высокого тока в электрической сети, трансформатор автоматически уменьшает напряжение до нужного значения. Конструкция может быть дополнена и другими элементами, например, дисплеем.

Таким образом, релейный стабилизатор напряжения имеет очень простой принцип работы. Ток измеряется электронной схемой, затем, после получения результатов, он сравнивается с выходным током. Полученная разница в напряжении регулируется самостоятельно путем подбора необходимой обмотки. Далее, подключается реле и напряжение выходит на необходимый уровень.


Стабилизатор напряжения и тока на LM2576

electric-220.ru

Релейный стабилизатор со среднеквадратичным вольтметром.

РадиоКот >Схемы >Питание >Преобразователи и UPS >

Релейный стабилизатор со среднеквадратичным вольтметром.

Несмотря на то что на дворе 21 век есть еще места, где напряжение изменяется в широких пределах в зависимости от времени суток и подключенной нагрузки. Вот для таких мест и предназначен этот стабилизатор.
Принцип действия релейного стабилизатора основан на добавлении с помощью трансформатора (автотрансформатора) дополнительного напряжения на выход. При слишком высоком напряжении необходимо наоборот убрать излишки. Стабилизатор может быть реализован в виде автотрансформатора с одним выходом и несколькими входами. В зависимости от величины входного напряжения с помощью реле происходит переключение входного напряжения между входами автотрансформатора.

Схема, на основании которой решено было разрабатывать устройство, содержала компараторы для принятия решения о включении реле. Но для увеличения сервисных возможностей устройство было решено создавать с использованием микроконтроллера. Наиболее массово используемыми контроллерами на постсоветском пространстве можно считать контроллеры Atmel. Из них был выбран наиболее распространенный atmega8.
С помощью встроенного АЦП он измеряет входное напряжение и принимает решение о включении необходимого реле. За основу был взят проект вольтметра среднеквадратичных значений по ссылке https://arv.radioliga.com/component/option,com_remository/Itemid,27/func,fileinfo/id,85/ . Схему пришлось изрядно доработать.
Во-первых, для обеспечения безопасности устройства измеряемое напряжение должно подаваться на вход устройства с помощью трансформатора. Для точного измерения напряжения после трансформатора не годится обычный диодный мостик из-за падения в 0,6 вольта на каждом диоде. Поэтому должен был быть использован выпрямитель без ошибки.
Во-вторых, необходимо было доработать схему на предмет дополнительных выходов для управления реле.
И наконец, в-третьих, необходимо было разработать заново программу измерения напряжения (в исходном проекте отсутствуют исходники) и принятия решения о включении того или иного реле.
Первоначально схема была составлена в симуляторе для проверки работоспособности идеи:

Описание схемы
Измеряемое напряжение через трансформатор TR1 подается на активный выпрямитель на операционном усилителе LM358 (U2). Активный выпрямитель работает следующим образом. При положительной волне напряжение подается на делитель, состоящий из последовательного соединения R1, R2 и R3. На инвертирующий вход ОУ подается положительное напряжение. ОУ в насыщении. Выход ОУ близок к уровню земли. При отрицательной полуволне напряжения ОУ работает как инвертирующий усилитель с коэффициентом усиления R2/R1. Сопротивление R3 выступает в качестве дополнительной нагрузки ОУ. Для симметричного выпрямления и согласования напряжения с входным диапазоном АЦП значения сопротивлений должны быть точно подогнаны и подчиняться следующим формулам:
R1 = R2*Uout*1024/Uin/2.5
R3 = (R1 + R2)/(R1/R2 - 1)
После активного выпрямителя через фильтр R5-C2, убирающий высокочастотные помехи, выпрямленное напряжение подается на вход АЦП PC0 контроллера. Значение выпрямленного напряжения отображается на светодиодном индикаторе. Для управления служат 3 кнопки. 4 выхода микроконтроллера используются для управления реле. Три из них переключают напряжение, а четвертое отключает нагрузку в случае перенапряжения или слишком низкого напряжения.

Описание работы
Напряжение с точностью до вольта отображается на светодиодном 3 разрядном индикаторе. Обновление показаний производится с частотой приблизительно 3 раза в секунду. Такое замедление выполнено специально, поскольку обновление показаний каждый период иногда приводило к мельтешению последнего разряда. В нормальном режиме на индикатор выводится усредненное по 16 периодам среднеквадратичное значение напряжения.
После каждого периода производится расчет напряжения. Это напряжение сравнивается с заданными порогами включения реле. Для обеспечения более редкого переключения реле применен программный гистерезис и фильтрация. Фильтрация заключается в задержке переключения на несколько периодов. Если за это время напряжение пришло в норму, переключения не осуществляется. Время фильтрации оперативно подстраивается программно.
Если входное напряжение превышает заданный верхний порог или падает до нижнего порога, отключается главное реле и нагрузка обесточивается. Верхний и нижний пороги отключения можно оперативно изменять.
После того как напряжение вошло в диапазон регулирования стабилизатора, нужным образом коммутируются входы автотрансформатора, и подключается нагрузка. Это подключение происходит не мгновенно, а с некоторой задержкой. Величина задержки подстраивается оперативно.
Все оперативно подстраиваемые параметры (верхний и нижний порог, время фильтра, задержка включения) сохраняются в энергонезависимой памяти.
При любом переключении реле мгновенное среднеквадратичное значение (на последнем перед переключением периоде) в течение 2 секунд отображается на индикаторе. Признаком отображения мгновенного значения является завершающая дополнительная точка. По окончании отображения мгновенного напряжения прибор переходит в предыдущий режим отображения.

Управление прибором.
Прибор имеет 2 основных режима отображения: режим среднеквадратичного значения напряжения и режим отображения частоты сети и 3 кнопки:UP, DOWN и ENTER. В режиме напряжения отображается среднеквадратичное значение напряжения без десятичных точек. При отображении частоты горит десятичная точка в среднем разряде. Переключение в режим частотомера осуществляется нажатием кнопки ENTER, обратно - по любой. Нажатие клавиш UP, DOWN в режиме измерения напряжения включает меню настройки. Меню имеет 5 настроек, каждая из которых отображается 2 стилизованными буквами:
rE - return - возврат из режима настроек в режим отображения напряжения
Hi - hight - верхний порог отключения
Lo - low - нижний порог отключения
dE - delay - задержка включения нагрузки ( периодов)
Fi - filter - время фильтра (периодов)
Перемещение в меню осуществляется по кругу клавишами UP, DOWN. Настройка активизируется нажатием клавиши ENTER. При этом отображается текущее значение параметра. Значение может быть увеличено или уменьшено клавишами UP, DOWN соответственно. При удержании клавиши через некоторое время происходит автоматическое изменение параметра с частотой примерно 5 раз в секунду. Значение задержки включения в этом случае изменяется на 10, остальные - на 1. Клавишей ENTER значение сохраняется, после чего происходит возврат в меню настройки. Причем короткое нажатие производит только оперативное изменение параметра. Длинное нажатие сохраняет параметр в энергонезависимую память. После сохранения в энергонезависимой памяти на дисплее некоторое время (4 сек) отображается надпись SA (saved). Выход из меню настройки осуществляется выбором пункта rE (return).
Внимание! При работе в любом режиме может отображаться текущее напряжение, вызвавшее переключение. В течение до 2 секунд после этого нажатия клавиш отрабатываются, но изменения могут не отображаться на индикаторе. Возврат к отображению текущего параметра происходит автоматически через 2 секунды.

Схема
После успешного апробирования основных принципов в симуляторе был собран прибор по следующей схеме.

По сравнению с симулятором произведены некоторые изменения. Роль инверторов выполняют транзисторы, добавлен разъем программирования и стабилизатор питания.
В этой схеме на вход Uin подается измерительный сигнал с трансформатора. Действующее значение этого сигнала 1.8В при 220В входного напряжения. Резисторы R3 и R6 используются для подстройки отображаемого значения под реальное входное напряжение. Разъем J2 подает сигналы на модуль управления реле.

Конструкция и детали
Основная схема собрана на печатной плате, остальное выполнено навесным монтажом.
В качестве транзисторов управления индикатором могут быть использованы любые маломощные npn. В качестве ОУ - любой у которого диапазон входа и выхода достигает уровня земли. Транзисторы управления реле - обязательно дарлингтоны. В авторской конструкции применены КТ829 с резисторами 5,6к в базе. Реле - на 24 вольта с током около 70мА. Автотрансформатор изготовлен из ЛАТРа с подпайкой к нему дополнительных выводов и исключения подвижного контакта. Отводы подобраны таким образом, что бы между ними было напряжение около 22В. Контроллер заменить без исправления программного обеспечения нельзя. Fuses настроены на работу контроллера от внутреннего RC генератора на 8 МГц. Вся конструкция помещена в корпус от компьютера. Плата с контроллером вставляется на место CD привода и прикреплена к пластмассовой заглушке.

Настройка
Настройке подлежит, прежде всего, активный выпрямитель. Для его настройки необходимо измерить входное и выходное напряжение измерительного трансформатора ( коэффициент трансформации). Потом по известному значению R4 согласно формулам рассчитать значения остальных двух резисторов. Эти сопротивления выставить построечными резисторами.
После этого подать сетевое напряжение на вход трансформатора и подстроить верхний резистор R3 таким образом, чтобы отображаемое напряжение соответствовало реальному напряжению в сети. Потом отключить устройство от трансформатора и подать отрицательное напряжение на вход. Запомнить показания прибора. Потом подать на вход положительное напряжение и подстроить нижним резистором R6 показания, что бы они совпадали с запомненными. Таким образом настраивается симметрия выпрямления обеих полуволн. Процедуру настройки нужно повторить несколько раз до тех пор пока после нее показания не будут соответствовать входному напряжению.

Параметры
Интервал входного напряжения при выходном напряжении 220В+-20% - 160В - 260В.
Разрешающая способность вольтметра среднеквадратичных значений - 1В
Диапазон измеряемых напряжений - 0 - 700В
Диапазон частот вольтметра - 0 - 200 Гц
Разрешающая способность частотомера - 0.1 Гц
Диапазон измерения частоты - 38 - 70 Гц
Интервал задержки включения - 0 - 32000 периодов ( 0 - 10 мин)
Время фильтрации - 0 - 999 периодов
Верхний порог отключения - 220 - 500В
Нижний порог отключения - 100 - 179В

Алгоритмы
Далее идет описание математической обработки сигнала для получения среднеквадратичного значения. Для простого повторения конструкции оно может быть опущено при прочтении. При разработке устройств обычно уделяется мало внимания описанию алгоритма. Но в устройствах на контроллерах именно он представляет главную ценность.
Микроконтроллер с частотой около 9500Гц (192 выборки на периоде) производит выборки входного сигнала. В обработчике прерывания АЦП каждая выборка возводится в квадрат и добавляется к значению накопителя квадратов напряжений. По окончании каждого периода значение накопителя квадратов передается на обработку в основной цикл программы.
Для нахождения минимума используется 8 последних отсчетов сигнала. Высчитывается их взвешенная сумма. При минимальном значении суммы, или вернее, как только это значение начало увеличиваться по сравнению с предыдущим значением, считаем, что сигнал прошел минимум. Так как может быть некоторая несимметричность при настройке выпрямителя, то измерение производится по периоду, хотя вполне можно было бы считать и каждые полпериода.
В основном цикле программы обнаруживается, что сумма квадратов напряжений на периоде посчитана и производится вычисление напряжения. Для этого суммы квадратов и количество отсчетов подвергаются усреднению по 16 точкам методом скользящего среднего. После этого усредненное значение суммы квадратов делится на усредненное значение количества отсчетов и из частного извлекается корень. Полученное значение масштабируется и выводится на индикатор.
Для индикации применен светодиодный индикатор на 3 цифры и динамическая индикация. Индикатор обновляется в том же обработчике прерывания от АЦП.

Файлы:
Файл проекта Proteus.
Прошивка МК с исходником.

Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Ремонт релейного стабилизатора напряжения | Электрик



Во многих квартирах особенно сельской местности в доме обязательно стоит стабилизатор.
Некоторые хозяева используют его для работы особо "чувствительной" техники, газовых котлов, холодильников и другой подобной бытовой техники.

Некоторые более заботливые владельцы, устанавливают стабилизатор "на весь дом", такие стабилизаторы, как правило, обладают не малыми габаритами и весом и мощность их начинается от 7 - 10 кВт и больше.

Именно о таких стабилизаторах мы и поговорим в этой статье, а собственно о их ремонте и поиске неисправности, так как и каждая техника они выходят из строя.
В этой статье мы рассмотрим ремонт релейного стабилизатора известной китайской фирмы "Forte - ACDR - 10000" на 10кВт.

Но прежде чем приступить к ремонту, давайте разберемся в природе его устройства.
Релейный стабилизатор состоит из нескольких частей, собранных в единую систему:

Автоматический трансформатор - самая тяжелая его часть, это большой железный сердечник с несколькими обмотками соединенными по принципу автотрансформатора. Несколько концов толстого медного провода выходящих с трансформатора, коммутируются с помощью реле, количество которых зависит от обмоток и ступеней переключения.

Элементы управления - силовые элементы с помощью которых и осуществляется переключения обмоток и пуск с задержкой. В релейных стабилизаторах роль таких элементов выполняют реле, ну а в "моделях по дороже", в роли таких элементов могут служить полупроводниковые элементы - симисторы которые имеют куда больший ресурс работы на "переключение".

Блок управления - основная плата устройства с установленным на нее микропроцессором, с соответствующей прошивкой который запрограммирован на переключения и управления силовыми элементами (реле). При заранее определенных ступенях напряжения, переключаются соответствующие обмотки автотрансформатора. В случаях когда это не возможно, по причине поломки, выдается "ошибка" и стабилизатор пере запускается или отключается. Там же предусмотрена и схема задержки на включения (например 120 секунд).

Блок индикации и измерения напряжения - плата, как правило, установленная на лицевой панели  (крышке) стабилизатора. Там же, на ней установлены "цифровые индикаторы" или дисплей.
Кроме них, могут быть установлены и элементы управления, например включения "задержки".

Стабилизатор постоянно сравнивает входной уровень напряжения с номинальным и "решает" либо добавить, либо уменьшить определенное количество вольт в "домашнюю" электросеть. Осуществляются такие решения подключением либо отключением (переключением) необходимых обмоток, в данном случае с помощью реле.

Во всех стабилизаторах существует система защиты которая проверяет входные и выходные напряжения, ток, температуру на соответствие номинальным значением и условиям эксплуатации. Защитные механизмы у каждого стабилизатора свои, но можно выделить несколько основных:

  • Пределы стабилизации (входное и выходное напряжение)

  • Отношение выходного напряжения к входному

  • Превышение тока нагрузки (перегрузка)

  • Перегрев трансформатора, превышение температуры внутри устройства

  • Невозможность "переключить" обмотку (при выходе из строя элементов управления)

Выполняем ремонт

Самой частой причиной поломки таких стабилизаторов являются реле, переключающие обмотки трансформатора. В следствие многоразовых переключений контакты реле могут выгорать, заклинивать, а может перегореть и самая катушка.

Если выходное напряжение исчезает или появляется индикация "ошибка" – необходимо проверить все реле. Сначала осмотрев внешне и если никаких видимых повреждений незаметно, то разобрать корпус каждого реле.
Сразу станет заметно какие контакты на сколько изношены, а где и вовсе сгоревшие.

В данном стабилизаторе, неисправность проявлялась в виде отключения стабилизатора по "ошибке" что сопровождалось звуковой индикацией. Отключался он не всегда, а только при сильно пониженном напряжение, но в приделах нормы стабилизации. - где то около 175 вольт. Отключался в независимости от нагрузки на выходе что явно отметало как причину общую перегрузку. Перед выключением слышно как несколько раз пощелкивают реле.

Как позже выяснилось, блок управления давал команду реле переключится на другую обмотку, но так как физически обмотки переключенными не были то и вылетала "ошибка" и стабилизатор попросту выключался.

Разобрав все пластмассовые крышки реле было обнаружено подгорание на двух реле, но в одном из них контактная площадка которая должна подключать обмотки, полностью выгорела и "контакт" был попросту невозможен, хоть реле и щелкало чтобы замкнуть пластины.

Мог еще произойти и такой случай при котором контакты могли б залипнуть друг к другу и в итоге несколько обмоток трансформатора окажутся короткозамкнутыми. Трансформатор начнет перегреваться и если не сработает защита то может и перегореть одна из обмоток автотрансформатора. Кстати говоря, подобная опасность присуща не только релейным стабилизаторам но и симисторным.

Очень часто в релейных стабилизаторах выходят из строя транзисторные ключи, которые в разных моделях стабилизаторов могут собираться на разных типах транзисторов. Когда при прозвоне радиоэлементов схемы были обнаружены неисправные "усилители", их необходимо заменить на такие же по параметрам.

Профилактическая мера по восстановлению слегка подгоревших реле стабилизатора довольно простая и состоит из таких действий:

1. снимаем крышку реле
2. снимаем пружину, чтоб освободить подвижный контакт реле
3. каждый подвижный и неподвижный контакт нужно зачистить с помощью мелкой наждачки
4. промыть контактные площадки спиртом
5. после высыхания спирта, покрыть защитным средством KONTAKT S-61

При более сильном и значительном обгорание контактов реле и если нет возможности его заменить можно поступить следующим образом: по возможности почистить контакты реле (методом описанным выше) и поменять реле местами.
То - есть там где в стабилизатора самая часто используемая обмотка на которой постоянно обгорает реле, поставить "новое" реле, а "подуставшее" реле поставить на место того реле что сохранилось в хорошем состояние, там оно прослужит еще много времени.

В случае полного выгорания контактной площадки реле, его нужно заменить на новое.
Но когда нет времени ждать посылки с новым реле или есть желание попробовать восстановить обгоревшую часть пластины самостоятельно, можно поступить как сделал я.

В таких же соотношениях размеров, был вырезан кусок медной жилы которая была закреплена по всей длине пластины припоем, предварительно залудив жилу и саму пластину. Но так чтоб место контакта припадало все таки на медную часть, а не на припой.

При наличии мощной точечной сварки, все это лучше было сварить  для большей надежности на случай возможного нагрева пластины.
Но так как в данном устройстве реле было заменено и поставлено на место где не происходит обгорания, например на понижающую часть обмотки, то и беспокоится не о чем.

Другие неисправности

Кроме явных механических проблем с реле и выхода из строя "усилителей" представленных в виде ключевых транзисторов, могут встречаться и другие поломки уже на плате блока управления: холодная пайка, отслаивающиеся дорожки на плате, заусеницы в местах пайки, шарики от припоя и отхождения контактов в штырьковых соединениях - вот лишь малое что может послужить причиной неисправной работы стабилизатора.

Иногда встречается такая неполадка как хаотическое отображение сегментов на дисплее,в то же время может наблюдаться хаотическое включение реле. Частой причиной такого поведения есть "холодная пайка" кварцевого резонатора который работает на частоте 8 - 16 мегагерц, плохой его пропай ведет к неправильной работе микропроцессора.
По этому всю заднюю часть платы лучше сразу осмотреть по поводу плохой пайки, заусениц или шариков с припоя которые там часто бывают в виду быстрой пайки плат монтажниками которые ее собирают.

Затем можно осмотреть плату на дефекты радиоэлементов. Очень часто со временем электрические конденсаторы вздуваются и выходят из строя, выявить это будет не сложно. Их необходимо заменить на аналогичные.
Кроме того в стабилизаторе был выявлен клеммник с трещиной, который не мог обеспечить надежный контакт мощного силового кабеля. Такой клеммник ввиду невозможности создать достаточную затяжку провода, мог нагреваться и тем самим со временем еще и усугубить надежность контакта.

Диагностика


Но после ремонта стабилизатора или даже на этапе диагностики неисправности, возникает необходимость проверить работу устройства в разном диапазоне напряжений, как повышенных так и пониженных.

В мастерских для этих целей служит ЛАТР или лабораторный автотрансформатор регулируемого типа. Его подключают на вход проверяемого стабилизатора и уже изменяя напряжения на входе, имитируя перепады в сети, смотрят на поведение стабилизатора, справляется ли он с работой в номинальных (паспортных) пределах напряжения.

Но так как у меня нет соответствующего регулируемого автотрансформатора, то мы пошли немного другим путем. Была собрана определенная "схема":

1. На входе стабилизатора, последовательно фазе была подключена лампочка примерно 60ват, мощность лампочки подбирается экспериментальным путем.

2. На выходе в роли нагрузки был подключен обычный сетевой шуруповерт или дрель (400 - 1000 Ват) с кнопкой плавной регулировки оборотов.

Во время работы шуруповерта на минимальных оборотах, лампочка которая включена на входе последовательно - не светится. Стабилизатор при этом запущен и работает без проблем.
Начинаем плавно увеличивать обороты шуруповерта, лампочка при этом светит все ярче.
Чем интенсивней яркость лампочки, тем больше проседает напряжение на входе стабилизатора, что естественно видно на индикации дисплея. Кроме того, при уменьшению напряжения на входе , слышно как переключаются обмотки трансформатора и щелкают реле.
Таким не хитрым способом можно проследить правильно ли работает стабилизатор, при условие что в вашей домашней же сети будет нормальное напряжение (220 - 240 вольт).

Как видим, отремонтировать стабилизатор напряжения можно и в домашних условиях. Ну или по крайней мере можно разобрать и определить поломанный узел и оценить стоимость работ по его восстановлению или замене. Предполагается что человек который приступит к ремонту стабилизатора, будет обладать базовыми знаниями в электричестве и электронике и будет иметь минимальный набор инструментов, паяльник, мультиметр и мелкий инструмент.
Следует быть осторожным работая с напряжением при диагностике и проверке работы.Все остальные работы по ремонту и замене производятся в обесточенном состояние.

elektt.blogspot.com

Ремонт стабилизаторов напряжения своими руками

Сегодня рассмотрим перечень базовых неисправностей стабилизаторов напряжения различных типов с описанием причин возникновения и методов их ремонта.

Сегодня рассмотрим перечень базовых неисправностей стабилизаторов напряжения различных типов с описанием причин возникновения и методов их ремонта. Ведь не каждая поломка стабилизатора напряжения требует сервисного ремонта, особенно по истечении гарантийного срока.

О внутреннем устройстве и типах стабилизаторов

Из всех разновидностей стабилизаторов напряжения можно выделить три наиболее распространённых топологии с довольно специфичными принципами преобразования. Среди них нельзя однозначно выделить самую надёжную, слишком многое зависит от характера питания и типа нагрузки, а также от добротности исполнения прибора. В нашем обзоре мы рассмотрим сервоприводные, релейные и полупроводниковые преобразователи, особенности их работы и типовые неисправности.

В сервоприводном стабилизаторе основным функциональным органом служит линейный трансформатор со множеством выводов средних точек вторичной, а иногда и первичной обмотки — от 10 до 40 в зависимости от класса точности. Концы выводов собраны в коллекторную гребёнку, по которой перемещается токосъёмная каретка. В зависимости от действующего напряжения по линии питания, стабилизатор поправляет положение каретки, регулируя тем самым число задействованных витков и, соответственно, коэффициент трансформации. На выходе схемы может осуществляться более тонкая подстройка напряжения, например с помощью интегральных полупроводниковых стабилизаторов.


Релейные трансформаторы устроены похожим образом. Число выводов трансформатора у них меньше, вместо плавного регулирования тонкость подстройки достигается рекомбинацией включенных в работу обмоток. За оперативное переключение отвечают силовые реле со сложной конфигурацией релейной группы. Как и в предыдущем случае, на выходе могут стоять дополнительные фильтры, стабилизаторы и устройства защиты, тем не менее, основную работу выполняют трансформатор и релейная сборка под аналоговым управлением.

В основе электронных стабилизаторов напряжения может лежать два принципа преобразования. Первый — переключение обмоток трансформатора, но уже с помощью симметричных тиристоров, а не реле. Второй принцип — преобразование тока в постоянный, его накопление в буферных ёмкостях (конденсаторах), а затем обратное преобразование в «переменку» с чистой синусоидой посредством встроенного генератора. Схема на первый взгляд кажется достаточно сложной, но зато так обеспечивается беспрецедентно высокая точность стабилизации и качественная защита линии.

Конечно, есть и другие схемы стабилизаторов, в том числе и гибридные, но по причине узкоспециализированного применения или архаичности их мы рассматривать не будем. Каждое из трёх наиболее распространённых семейств обладает так называемыми детскими болезнями или врождёнными недостатками техники. И поэтому важнейшая задача перед отправкой прибора в сервисный центр — установить, не является ли поломка причиной несоблюдения норм ухода или заурядной для этого вида стабилизатора неисправностью.

Типовые неисправности релейных приборов

Релейные стабилизаторы характеризуются оптимальным соотношением стоимости и надёжности. Основному износу подвергается релейная группа, а при частой или постоянной работе в режиме повышенной нагрузки — также и диэлектрическая изоляция трансформаторных обмоток.

Диагностировать реле как причину неисправности достаточно просто. Первым делом производится демонтаж компонентов с печатной платы, отличить их можно по компактному прямоугольному корпусу, иногда из прозрачного пластика, с числом выводов не менее шести. Чтобы определить назначение выводов и схему переключения можно обратиться к принципиальной электрической схеме или технической спецификации на конкретный тип реле согласно указанной на корпусе маркировки.

Можно произвести пробное включение реле, для чего на контакты катушки подается рабочее напряжение, как правило, его указывают на корпусе изделия. Отсутствие щелчка при подключении — явный признак сгоревшей катушки или залипших контактов. Если щелчок слышен, но при прозвонке группы основных контактов не соблюдается схема их переключения, проблема, скорее всего, в механизме отброса и прижатия, либо в обугленных контактных площадках.

Значительная часть радиоэлектронных реле имеет разборный корпус и может подвергаться обслуживанию: восстановлению работы механизма, очистке контактных подушечек от нагара ластиком, иногда даже замене неисправной катушки. Однако лучшим решением будет всё же приобретение новых реле на замену вышедшим из строя согласно артикулу или расположению выводов.

Потеря диэлектрической прочности трансформатора вследствие перегрева сопровождается междувитковыми замыканиями и внешне наблюдается как потемнение или разрушение изоляции обмоток. Основной признак — существенное снижение сопротивления ниже паспортных норм.

Поскольку большинство бюджетных стабилизаторов имеют одну цельную первичную обмотку и многовыводную вторичную, перемотка не вызывает особых сложностей. В каждом звене число витков небольшое, их можно аккуратно уложить даже без веретена или прочих намоточных приспособлений. Самое важное — точно соблюдать количество витков и направление укладки, а также верно определить исходное удельное сопротивление проводников, а не просто приобретать обмоточный провод по диаметру.

Другая разновидность неисправностей трансформатора — срабатывание полупроводникового термопредохранителя, который обычно включен в разрыв одной из обмоток. Для замены полупроводникового элемента достаточно уточнить его серию или основные параметры, чтобы подобрать аналог. Обычно термопредохранитель подключён последовательно с первым звеном вторичной обмотки, поэтому для доступа к нему придётся снять все наружные витки. Диагностируется проблема просто: между началом обмотки и первым отводом цепь не прозванивается, зато все остальные витки в полном порядке.

Поломки сервоприводных стабилизаторов

Основная причина поломок сервоприводных устройств очевидна: износ токосъёмного узла. Именно этот недостаток и входит в разряд детских болезней, которые не удается устранить в большинстве моделей бюджетной техники.

Существует два вида токосъёмных механизмов. При малых нагрузках с задачей переключения обмоток прекрасно справляются обычные подпружиненные щётки. Устройство полностью повторяет принцип работы коллекторных двигателей электроинструмента, разве что сам коллектор развёрнут из цилиндрического положения в плоскость. Второй тип токосъёмников имеет щёточный узел в виде ролика, за счёт чего снижается трение при движении, а значит, не происходит интенсивного износа ламелей. При этом скорость износа плиточных и роликовых щёток примерно сопоставима.

Недостаток роликового токосъёмника проистекает из его геометрии. Контактное пятно очень малое — только лишь линия касания цилиндрического ролика к плоскости. Правда, в наиболее технически совершенных моделях ламели имеют радиусные канавки, хотя такое решение не совсем оправдано: по мере износа графитового ролика площадь контакта неизбежно снижается. В зависимости от интенсивности эксплуатации, замена щёток требуется с периодичностью от 3 до 7 лет. Ситуация может усугубляться при наличии большого количества пыли и нагара — вплоть до замыкания нескольких обмоток или полной потери контакта.

Хотя сервоприводные стабилизаторы также подвержены работе в режиме перегрузки, их трансформатор изнашивается меньше. В отличие от релейных приборов, в которых при переключении регулярно происходят броски напряжения и тока, коллекторный узел проводит регулировку более плавно, из-за чего механическое действие тока выражено минимально. Лаковая изоляция обмоток по-прежнему иссыхает и становится хрупкой, но при этом не осыпается.

В основном же принцип работы сервоприводного стабилизатора предельно прозрачен. Если при включении присутствует индикация входного напряжения, но прибор не реагирует, неисправность кроется либо в самом приводе, либо в контрольно-измерительной цепи. В последнем случае неисправный элемент схемы легко обнаружить чисто визуально или прозвонкой. Если на выходе нет напряжения — неисправен трансформатор, если же не обеспечивается должная точность стабилизации — на лицо наличие междувиткового замыкания во вторичной обмотке, загрязнение коллектора, износ токосъёмных щеток или самих ламелей.

Характерные проблемы электронных устройств

Инверторные стабилизаторы считаются наименее ремонтопригодными в домашних условиях. Причин тому несколько, но первоочередная — необходимость специальных познаний в схемотехнике и, в частности, принципах работы импульсных источников питания. Не получится обойтись и без соответствующей материальной базы: паяльного оборудования с регулировкой температуры, а также измерительных приборов. Комплект средств диагностики выходит далеко за пределы обычного мультиметра, потребуется прибор с расширенным набором функций для измерения ёмкости, частоты и индуктивности, также желательно иметь в распоряжении простейший осциллограф.

Наиболее частой причиной сбоев в работе инверторных стабилизаторов можно назвать нарушение в работе тактового генератора. Необходимо, исходя из номинальной мощности прибора и параметров трансформатора, определить оптимальную рабочую частоту импульсного преобразователя, после чего сравнить её с реальными параметрами. Обычно сбой частоты служит следствием неисправности в опорном колебательном контуре, подключённым к соответствующим выводам ИС тактового генератора.

Полный отказ прибора возможен по ряду причин. Если встроенной системы диагностики не имеется или по её показаниям невозможно определить поломку, скорее всего причиной неисправности стал выход из строя полевых или IGBT ключей, что достаточно просто определить по внешнему виду корпуса. Другая характерная причина неисправностей — поломка встроенного источника питания цепей управления, эта часть схемы в наибольшей степени уязвима к колебаниям напряжения, особенно импульсным.

Не будет лишним сделать прозвонку всех цепей, их проводимость должна соответствовать принципиальной и электрической схемам прибора. Из наиболее уязвимых элементов можно назвать входной и выходной выпрямители, снабберные цепочки трансформатора (для подавления импульсных перенапряжений), а также корректор коэффициента мощности при наличии такового.

Общие рекомендации

Радиоэлектронные компоненты встречаются не только в инверторных стабилизаторах, они могут применяться в контрольно-измерительных цепях или устройствах индикации и самодиагностики. В основном это касается пассивных элементов и микросхем с низкой степенью интеграции: операционных усилителей, логических элементов, совмещённых транзисторов, стабилизаторов тока и напряжения.

Выход из строя этих элементов наиболее часто можно определить чисто по внешним признакам: сгоревшие транзисторы и диоды имеют треснувший корпус, резисторы — следы подгара лакового покрытия, конденсаторы попросту раздувает. Поэтому пристальный внешний осмотр печатной платы — первый этап определения неисправности.

Если визуально причины поломки определить не удаётся, должна производиться последовательность контрольных замеров. Сначала проверяется проводимость и качество диэлектрической изоляции схемы в отключенном состоянии. После этого при подаче питания измеряются напряжения в ключевых точках: на клеммах подключения, после предохранителя, на фильтрах и стабилизаторах, обмотках трансформатора, основных узлах схемы управления.

Если описанные методы диагностики не дают результата, лучше обратиться в сервисный центр, ведь даже простая поломка может быть весьма специфичной, при том, что любительских познаний в электротехнике и домашних условий для её устранения оказывается недостаточно. опубликовано econet.ru  

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

econet.ru

Как правильно подключить стабилизатор напряжения

Стабилизаторы напряжения приобретают не от хорошей жизни, и раз вы это сделали, то у вас, скорее всего уже есть или были проблемы с напряжением.

Стандартный уровень напряжения согласно норм, должен быть 230 вольт (не 220, как многие до сих пор считают).

Но в зависимости от места проживания (протяженность и загруженность линий электропередач) и возможных аварий в электросетях (обрыв нулевого провода, перегрузка), напряжение может быть либо стабильно заниженным-повышенным, либо просто ”скакать” в произвольных величинах.

Когда приобретается маленький аппарат для защиты одного конкретного прибора – компьютер, холодильник, телевизор, котел, то с подключением проблем не возникает.

На стабилизаторе имеется вилка и розетка. Тут разберется даже школьник.

А вот если вы хотите установить мощный аппарат, для защиты электроприборов всего дома одновременно, тогда придется повозиться со схемой подключения.

Что нужно для подключения

Помимо самого стабилизатора, вам понадобится ряд дополнительных материалов:

  • трехжильный кабель ВВГнГ-Ls

Сечение провода должно быть точно таким же, как и на вашем вводном кабеле, который приходит на рубильник или автомат главного ввода. Так как через него будет идти вся нагрузка дома.

  • выключатель трехпозиционный

Данный выключатель в отличие от простых, имеет три состояния:

1включен потребитель №1 2выключено 3включен потребитель №2

Можно использовать и обычный модульный автомат, но при такой схеме, если понадобится отключиться от стабилизатора, придется каждый раз полностью обесточивать весь дом и перекидывать провода.

Есть конечно же режим байпас или транзит, но чтобы перейти на него, нужно соблюдать строгую последовательность. Подробнее об этом будет сказано ниже.

С данным переключателем, вы одним движением целиком отсекаете агрегат, а дом остается со светом напрямую.

  • провод ПУГВ разных цветов

Вы должны четко понимать, что стабилизатор напряжения устанавливается строго до электросчетчика, а не после него.

Ни одна энергоснабжающая организация вам не разрешит подключиться по другому, как бы вы не доказывали, что тем самым, кроме эл.оборудования в доме, вы хотите защитить и сам прибор учета.

Стабилизатор имеет свой холостой ход и также потребляет эл.энергию, даже работая без нагрузки (до 30Вт/ч и выше). И эта энергия должна быть учтена и подсчитана.

Второй важный момент – крайне желательно, чтобы в схеме до места подключения прибора стабилизации было либо УЗО, либо дифф.автомат.

Это рекомендуют все производители популярных марок Ресанта, Sven, Лидер, Штиль и т.п. Это может быть вводной дифф.автомат на весь дом, не важно. Главное, чтобы само оборудование было защищено от утечек тока.

В ниже описываемом способе как раз и будет рассматриваться такой вариант. Ведь очень часто эти аппараты вешают на стене в комнатах, прихожих, в свободном доступе для прикосновения.

А пробой обмоток трансформатора на корпус, не такая уж и редкая вещь.

Инструкция по подключению в щитке

Первым делом монтируете в электрощитке, сразу после вводного автомата трехпозиционный переключатель.

  • в первом положении, когда язычок поднят вверх, напряжение будет подаваться в дом напрямую с электросети, без задействования стабилизатора

Вдруг он у вас вышел из строя или нужно провести какие либо ревизионные работы. Не будете же каждый раз откидывать провода и обесточивать всю квартиру.

  • во втором положении II (язычок автомата смотрит вниз) – эл.снабжение будет идти через стабилизатор
  • положение "0" – все электроприборы отключены, как от стабилизатора, так и от внешней сети

Выбираете место установки стабилизатора напряжения. Ставить где попало его тоже нельзя. Существуют определенные правила, которых следует придерживаться.

Прокладываете от щитка до этого места два кабеля ВВГнГ-Ls.

Каждый из них желательно промаркировать и сделать соответствующие надписи с обоих концов:

  • вход на стабилизатор
  • выход из стабилизатора

Снимаете изоляцию с жил и сначала подключаете кабель в электрощитке. Фазу с того провода, что идет на вход стабилизатора, подсоединяете к выходным зажимам вводного автомата.

Далее разбираетесь с кабелем стабилизатор-выход. Фазную жилу (пусть это будет белый провод), подключаете к контакту №2 на трехпозиционном выключателе.

Ноль и землю с обоих кабелей сажаете на соответствующие шинки.

Теперь нужно подать фазу непосредственно с вводного автомата на трехпозиционный. Зачищаете монтажный провод ПУГВ, оконцовываете жилы наконечниками НШВИ и заводите его с фазного выхода вводного автомата на зажим №4 выключателя.

Все что остается сделать в щитке – запитать все автоматы с клеммы №1 трехпозиционника.

Проделываете эту операцию опять же гибкими монтажными проводами.

Таким образом по схеме вы подали фазу с вводного автомата на 3-х позиционный, а уже далее через его контакты распределили нагрузку, путем подключения через стабилизатор (контакт №2-№1) и напрямую без него (контакт №4-№1).

В вашем конкретном случае данные номера контактов могут не совпадать с указанными здесь цифрами! Обязательно уточняйте все в инструкции или в паспорте на автомат.

Подключение стабилизатора

Теперь переходим к непосредственному подключению самого стабилизатора. Для того, чтобы подобраться к его контактам, может понадобиться снять внешнюю крышку.

Пропускаете два кабеля (вход и выход) через отверстия и зажимаете под клеммы по следующей схеме:

  • фазную жилу входного кабеля стабилизатора затягиваете на клемме ВХОД (Lin)
  • нулевую жилу (синего цвета) к клемме N (Nin)
  • заземляющую жилу к винтовому зажиму с обозначением ”земля”

Кстати, отдельной клеммы ”земля” может и не быть. Тогда данную жилу закручиваете под винт на самом корпусе аппарата.

Есть модели с клеммниками всего под 3 провода. В них назад возвращается только фаза.

Ноль на питание электроприборов берется с общего щитка.

Теперь когда вы подали напряжение от щитка до стабилизатора, вам нужно вернуть это напряжение, но уже стабилизированное обратно в общий щит.

Для этого подсоединяете кабель - выход со стабилизатора.

  • его фазную жилу к зажиму ВЫХОД (Lout)
  • нулевую к N (Nout)
  • жилу заземления, туда же где и заземляющая жила от входного кабеля

Еще раз визуально проверяете всю схему и закрываете крышку.

Проверка схемы

Первое включение нужно осуществлять без нагрузки. То есть все автоматы кроме вводного и того, что идет на стабилизатор должны быть отключены.

Запускаете его на холостой ход и контролируете работу. Входные и выходные параметры, нет ли посторонних шумов или писка.

Также не помешает проверить правильность и точность тех.данных, что высвечиваются на электронном табло.

Если у вас дома трехфазная сеть 380В, то для такого подключения рекомендуется использовать 3 однофазных стабилизатор напряжения, с подключением каждого по отдельной фазе.

Более подробно о преимуществах трехфазных и однофазных аппаратов и когда какой нужно выбирать, можно ознакомиться в статье ”Как выбрать стабилизатор напряжения для дома”.

Ошибки подключения

1Неправильное расположение и место установки

У вас может быть все идеально подключено и соблюдена схема, но стабилизатор будет постоянно греться и отключаться, либо на его табло выскакивать ошибки.

О том, где можно, а где ни в коем случае нельзя располагать данный прибор подробно читайте в статье ”Где устанавливать стабилизатор напряжения в доме”.

2Подключение через простой автомат, а не трехпозиционный

Безусловно, данный пункт и ошибкой то трудно назвать. Тем более 90% потребителей именно так и делают.

Однако, этот выключатель может реально спасти ваш прибор от выхода из строя.

Дело в том, что переключение стабилизатора напряжения из обычного режима в режим “транзит”, должно выполняться с определенной последовательностью.

Сначала вы отключаете автоматы на панели стабика.

Потом сам переключатель переводите в положение ТРАНЗИТ или БАЙПАС.

И только затем снова включаете автоматы.

Многие забывают об этом и делают переключение под нагрузкой. Что в итоге приводит к поломкам.

С 3-х позиционным автоматом такое исключено. Вы автоматически переключаете напряжение, без каких либо манипуляций на стабилизаторе. И все это одной клавишей!

Никакой последовательности запоминать не нужно. Так что данную процедуру можно смело доверять любому члену семьи.

3Использование для подключения кабеля меньшего сечения чем вводной

Вы можете выбирать меньшее сечение, только когда запитываете отдельные электроприемники.

Если же у вас на стабилизаторе сидит весь дом, то будьте добры соблюдать параметры по вводу согласно всей общедомовой нагрузке.

4Отсутствие наконечников на многожильных проводах

Почему-то многие забывают, что зачастую через стабилизатор проходит вся нагрузка вашего дома. Ровно такая же как и на вводом автомате.

При этом в электрощите все провода обжаты, даже на выключателях освещения с минимальными токами, а вот на клеммниках стабилизатора или его автоматах, постоянно можно встретить голый провод просто поджатый винтом.

Поэтому не скупитесь, и заранее вместе с аппаратом приобретайте соответствующие наконечники.

5Выбивает общий автомат в щитке

Иногда после подключения стабилизатора, начинает выбивать вводной автомат. При этом без стабилизатора, все нормально и ничего не отключается.

Многие сразу грешат на неправильную схему подключения или дефект аппарата. Везут его на гарантийный ремонт и т.п.

А причина может быть совсем в другом. Если у вас через чур низкое напряжение 150-160В, то при его повышении до стандартных 220-230В, ток в сети значительно вырастет.

Отсюда и все проблемы. Обращайте на это внимание, прежде чем нести его обратно в магазин.

Источники - //cable.ru, Кабель.РФ

Статьи по теме

domikelectrica.ru

Стабилизатор сетевого напряжения. Автоматика в быту. Электронные устройства автоматики.

 

СТУПЕНЧАТЫЙ   СТАБИЛИЗАТОР  ПЕРЕМЕННОГО  НАПРЯЖЕНИЯ

         Ступенчатые стабилизаторы переменного напряжения  ввиду простоты изготовления и отсутствия дефицитных элементов наиболее оптимальны для  самостоятельного изготовления,  не содержат  быстроизнашивающихся механических  элементов  и  простыми средствами позволяют достичь большой выходной мощности.   Принцип работы таких стабилизаторов основан на вольтодобавке к сетевому напряжению с помощью коммутируемых отводов вторичной обмотки силового трансформатора, которая должна обеспечивать рабочий ток, равный максимальному току на выходе стабилизатора.  Например, при максимальной выходной мощности стабилизатора 3 кВт вторичная обмотка силового трансформатора должна обеспечить ток около 15А.   Требуемая мощность силового трансформатора определяется путём перемножения максимального рабочего тока на напряжение вольтодобавки  и,  в большинстве случаев, ниже выходной мощности стабилизатора в 4 -6 раз.  В большинстве случаев достаточно  3- 4 ступеней регулирования выходного напряжения с шагом 10 ... 20В.  Для коммутации отводов трансформатора можно применить  мощные реле, пускатели, тиристоры или симисторы.  При использовании последних  схема управления значительно усложняется, т.к. требуется гальваническая развязка цепей управления тиристорами или симисторами каждой ступени и  исключение возможности включения симистора следующей ступени, если не отключился симистор предыдущей ступени.  При  расчёте  числа  витков  обмоток  трансформатора   для  каждой  ступени  следует учитывать  соответствующее уменьшение сетевого напряжения в этой рабочей точке.  Если, например,  выбранное напряжение каждой ступени составляет 15В, количество витков  первой ступени (А) следует считать исходя из уровня напряжения в электрической  сети   205В  (коэффициент трансформации равен 205/15= 13,7).  Второй ступени (В) - исходя из уровня сетевого напряжения 190В  (коэффициент трансформации равен 190/15= 12,7),  коэффициент трансформации третьей ступени (С)    175/15 = 11,7   и т.д.  Сечение проводника вторичной обмотки  должно составлять не менее 1мм2 на каждые 6А.  Вариант такого стабилизатора представлен ниже.   

        Схема обеспечивает 4 ступени регулирования выходного напряжения.  В основе работы  устройства положен принцип сравнения  установленных на входах  счетверённого компаратора  уровнях  напряжений с величиной, пропорциональной уровню напряжения в сети.  При уменьшении сетевого напряжения  на выходах компараторов (по схеме сверху вниз) последовательно появляются  сигналы напряжением около 10В,  которые поступают на  дешифратор (микросхемы D1, D2, D3).  Дешифратор  служит  для  экономичного включения реле - при любом напряжении в сети срабатывает только одно реле К1 - К4.  Схему можно переработать, снизив напряжение питания  микросхем до 5В и вместо трёх логических микросхем использовать  четырёхразрядный двоичный дешифратор, например КР1533ИД3  (SN74ALS154N). 

       Тип реле, применяемых в схеме, зависит от выходной мощности стабилизатора.  При  требуемом токе нагрузки свыше 15А  для коммутации  отводов вторичной обмотки следует установить магнитные пускатели,  катушки которых  соответственно подключаются  к  отводам силового трансформатора через контакты маломощных реле К1 ... К4, а общий провод  соединяется с выводом  "Ф" вилки сетевого питания. Это делается для того, чтобы при пониженном напряжении в сети напряжение катушек пускателей  соответствовало номинальному.

 

           Для  устойчивой работы стабилизатора напряжения  конденсаторы измерительной цепи должны иметь малую утечку.  Электролитический конденсатор С1  лучше использовать танталовый или ниобиевый, а конденсатор С3  должен быть  плёночным лавсановым.  Резисторы измерительных цепей R1, R6  должны быть  стабильного ряда.  Настройку  схемы начинают при отключенных реле К1 ... К4  с установки  напряжения +5,00В в точке Е  с помощью многооборотного подстроечного резистора R6  при напряжении  в сети равным точно 220В.  Далее с помощью подстроечных резисторов R2 - R5   настраивают пороговые напряжения  срабатывания компараторов.  Уровни напряжений настройки каждой ступени  рассчитываются по формуле:  UA=UE * U 1 ступени / 220B;   UB=UE * U 2 ступени / 220B; UС=UE * U 3 ступени / 220B и  т.д.   Все настройки осуществляют с помощью цифрового мультиметра.  Для исключения дребезга реле при  напряжении в сети, близком к напряжению срабатывания порога,  компараторы имеют небольшой гистерезис характеристики, который определяется соотношением  сопротивлений резисторов R12/R7,  R13/R8  ый определяется соотношением  сопротивлений резисторов R12/R7,  R13/R8  и т.д.  Это соотношение должно быть около  50 ... 60, что обеспечивает гистерезис  порядка 5 ... 10В    в рабочих  точках  сетевого напряжения.    Транзисторы могут быть любыми n-p-n   с достаточным  для коммутации реле током коллектора и предельным напряжением не менее 50В  и коэффициентом усиления не менее 100.  Сопротивление резистора  R21 полностью зависит от типа применяемых реле  и величины напряжения на  отводах вторичной обмотки силового трансформатора.

 

 

      В схему можно ввести индикацию срабатывания порогов, подключив светодиоды  параллельно катушкам реле через гасящий резистор, как показано на рисунке.

 


Уважаемые посетители!
Все материалы сайта в случае их некоммерческого использования предоставляются бесплатно, хотя автор затрачивает достаточно большие средства на их обновление расширение и размещение.
Если Вы хотите, чтобы автор отвечал на Ваши письма, обновлял и добавлял  новые материалы - активней используйте контекстную рекламу,  размещённую на страницах - для себя  Вы  узнаете много нового и полезного,
а автору  позволит частично компенсировать собственные затраты  чтобы  уделять
Вам больше внимания.

ВНИМАНИЕ!

Вам нужно разработать сложное электронное устройство?

Тогда Вам сюда...

 

kravitnik.narod.ru

Релейный стабилизатор напряжения: устройство + фото

В этой статье наш сайт «Все-электричество» расскажет, как сделать выбор релейного стабилизатора напряжения. На сегодняшний день многие люди используют бытовые приборы в доме. Каждый прибор вам необходимо будет защитить от изменений в электрическом токе. Также вам необходимо будет обеспечить стабильное напряжение. Релейный стабилизатор напряжения поможет обеспечить надежную защиту.

Благодаря этому устройству вы сможете обеспечить надежную защиту приборов. Стандартный уровень напряжения должен составлять 220 Вольт. Релейный стабилизатор можно встретить практически везде. Он считается достаточно популярным и распространенным. Его популярность обеспечена простой конструкцией.

Релейный стабилизатор напряжения и его конструкция

Перед тем как использовать этот прибор вам необходимо будет изучить его принцип работы. Релейный стабилизатор напряжения имеет автоматический трансформатор и электронную схему, которая будет управлять его работой. Также он имеет реле, которое защищено надежным корпусом. Этот прибор считается вольтодобавочным. Это означает, что устройство будет только добавлять ток при низком напряжении.

Добавление вольт будет происходить благодаря подключению обмотки. Обычно этот вид трансформатора может иметь 4 обмотки. Если электрическая сеть предоставит слишком сильный ток, тогда автоматический трансформатор сможет вычесть необходимое количество вольт. Схема релейного стабилизатора включает в себя:

  1. Вольтодобавочный трансформатор.
  2. Реле.
  3. Микросхему управления.

Это главные схемы релейного стабилизатора. Кроме этого, конструкция также может в себя включать и дополнительные элементы. Также вы можете встретить устройства, которые имеют дисплей. У нас вы можете прочесть про феррорезонансные стабилизаторы.

Принцип работы релейного стабилизатора

У многих возникает вопрос, каким образом работает релейный стабилизатор? Измерение тока проводит электронная схема. После получения данных происходит сравнение тока, который должен быть на выходе. В конце будет рассчитываться разница вольт.

После получения данных устройство самостоятельно подбирает необходимую обмотку. После подключения реле напряжение будет достигать необходимого уровня.

Особенности работы

Работа этого устройства считается достаточно простой. Это устройство способно регулировать ток ступенчато. В результате этого при подключении обмотки ток будет увеличиваться или уменьшаться на определенную величину. Иногда их уровень может не соответствовать норме. Подобное последовательное срабатывание может вызывать дополнительные скачки напряжения.

Если детально изучить его работу, тогда можно будет понять, что реле быстро переключает обмотки. В результате этого скачки напряжения считаются незначительными. Их заметность может возникнуть в результате скачков входного тока. Если вы используете высокоточное оборудование, тогда техника может выйти из строя. Постоянная подача тока будет практически невозможной.

Если вы посмотрите напряжение и дисплей будет показывать 220 Вольт, тогда возможно вы попали на плохого производителя. Производители могут специально запрограммировать устройство, чтобы оно постоянно показывало 220 Вольт.

Обычно для стабилизации напряжения прибору необходимо тратить до 0,15 секунд. Релейные стабилизаторы также могут прекращать подачу выходного тока. Это может произойти в том случае, когда на входе появляется минимально допустимый ток. Если напряжение стабилизируется, тогда стабилизатор возобновит свою работу. Восстановление тока происходит в течение 0.6 секунд. У нас вы можете прочесть про защиту электропроводки  помощью стабилизатора.

Преимущества релейного стабилизатора

Теперь вы уже знаете принцип работы этого устройства. Теперь вам необходимо будет узнать о преимуществах этого устройства. К основным преимуществам на сегодняшний день можно отнести:

  1. Небольшие размеры. Этот процесс обусловлен только тем, что вольтодобавочный трансформатор способен только компенсировать разницу между вольтами.
  2. Широкий диапазон величин напряжения.
  3. Достаточно широкий спектр рабочей температуры. Некоторые модели могут работать при температуре от -40 до +40 градусов.
  4. Низкий уровень шумности.
  5. Низкий уровень чувствительности.
  6. Допустимая длительная перегрузка составляет до 110 процентов.

Также многие производители сообщают, что эта продукция может работать на протяжении длительного времени.

Недостатки релейного стабилизатора

Как и любая другая продукция, релейные стабилизаторы тоже имеют определенные недостатки. Недостатки обусловлены принципом работы и схемой построения этого устройства. Его слабым местом работы считается реле. Некачественное реле может стать причиной преждевременного выхода реле из строя. Кроме этого, во время переключения реле вы сможете услышать посторонний шум.

Еще к одному весомому недостатку считается принцип ступенчатого выравнивания тока. Во время переключения обмоток будут происходить значительные скачки напряжения. ВО время переключения реле можно будет увидеть, как мерцают светодиодные лампы.

Важно знать! Если вы желаете приобрести себе дешевую продукцию, тогда вам необходимо выбрать стабилизатор, мощность которого будет превышать на 30 процентов мощность всех приборов в доме.

Правила эксплуатации прибора

Если вы планируете выбрать релейный стабилизатор, тогда вам необходимо будет проводить его регулярное обслуживание. Проводить осмотр устройства необходимо каждый год. Во время проведения осмотра вам следует обратить внимание:

  • Уровень надежности всех соединений проводов.
  • Уровень циркуляции воздуха в работе системы.
  • Наличие всех повреждений.
  • Правильность работы измерительных приборов.

Если вы увидите ослабленные соединения или загрязненность, тогда вам необходимо будет отключить стабилизатор и устранить проблемы. Помещение, в котором установлен стабилизатор обязательно должно быть сухим. Влажность воздуха не должна превышать 80 процентов. Во время эксплуатации все вентиляционные отверстия должны быть открыты. Также вам обязательно необходимо выполнить заземление этого устройства.

Читайте также: стабилизатор напряжения своими руками.

vse-elektrichestvo.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о