Выпрямитель это устройство преобразующее: переменный ток в постоянный, схема выпрямителя тока

Выпрямители. Виды и устройство. Структура и особенности

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Устройство и структура выпрямителя

Рис. 1

Выпрямители в общем виде можно изобразить структурной схемой (Рис. 2), в которую входит:

1 — Силовой трансформатор.
2 — Диодный мост, состоящий из диодов.
3 — Устройство фильтрования.
4 — Нагрузочная цепь со стабилизатором.

Рис. 2

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства (Рис. 1 — а). Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста Uн.

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1

, и нагрузочную цепь с Uн, Iн одновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный (Рис. 1 — б). В блоке применяются чаще всего элементы в виде диодов.

На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки (Рис. 1 — в). В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Стабилизатор напряжения

Устройство стабилизации напряжения предназначено для снижения внешнего влияния на выходное напряжение. Воздействиями могут быть: изменение частоты тока, температуры, перепады напряжения и другие факторы. В конструкции стабилизатора используются полупроводниковые элементы в виде стабилитронов, тиристоров, симисторов и других полупроводников, устройство и работа которых будет рассмотрена отдельно.

Классификация

Выпрямители, выполненные на основе полупроводниковых элементов, классифицируются по различным признакам.

По мощности на выходе:
  • Повышенной мощности – свыше 100 киловатт.
  • Средней мощности – менее 100 кВт.
  • Малой мощности – до 0,6 киловатт.
По фазности сети питания:
  • 1-фазные.
  • 3-фазные.
По количеству импульсов одного полюса выпрямленного напряжения U2 за один период:
  • Однотактные (имеют один полупериод).
  • Двухтактные (два полупериода).
По типу управления вентилями выпрямители делятся на:
  • Управляемые. В схеме применяются транзисторы, тиристоры.
  • Неуправляемые. Используются диоды.
Выпрямители разделяют для следующих видов нагрузки:
  • Активно-емкостная.
  • Активно-индуктивная.
  • Активная.
Расчет выпрямителя

Характер нагрузки, формы потребления тока влияют на способы расчета выпрямителя, и значительно отличаются. Расчет выпрямителя выполняется путем подбора схемы выпрямителя, вида вентилей, определения нагрузки на трансформатор, фильтр и диоды, энергетических и электрических параметров.

Ряд факторов влияет на выбор схемы прибора. Эти факторы необходимо учитывать согласно предъявляемому требованию к выпрямителю.

К таким факторам можно отнести:
  • Мощность и напряжение.
  • Пульсация и частота напряжения на выходе.
  • Значение обратного напряжения на диодах и их количество.
  • Коэффициент мощности и другие параметры.
  • КПД.

Коэффициент применения трансформатора по мощности оказывает большое влияние на расчет выпрямителя. Этот параметр вычисляется формулой:

Где Id, Ud, — средние величина выпрямленного тока и напряжения, I1, U1  — рабочая первичная величина тока и напряжения, I2, U2  – рабочая величина вторичного тока и напряжения.

При повышении коэффициента использования трансформатора размеры прибора в общем уменьшаются, а КПД увеличивается.

Схемы выпрямления
Однофазные выпрямители

Схемы приборов для подключения к питанию однофазной сети используются чаще всего для бытовых электрических устройств. В них применяются однофазные трансформаторы, функционирующие с фазой и нолем. Обе обмотки трансформатора таких приборов являются однофазными.

Однофазная однотактная схема

Однополупериодная схема чаще всего используют для выравнивания токов малой мощности (несколько миллиампер), когда нет необходимости идеального выравнивания напряжения на выходе выпрямителя. Такая схема характерна значительными пульсациями выходного напряжения и малым коэффициентом использования трансформатора.

На диаграмме видна работа однотактного выпрямителя на активную нагрузку.

Нагрузочный ток id под воздействием ЭДС вторичной обмотки (е2) может пройти только за те полупериоды, на которых анод диода обладает положительным потенциалом по отношению к катоду. По диоду в первый полупериод протекает ток ivd, а во второй полупериод ток становится нулевым (при отрицательном потенциале анода).

Напряжение на выходе выпрямителя ud всегда ниже ЭДС обмотки е2, из-за того, что определенная часть напряжения теряется. Наибольшее обратное сопротивление вентиля Uобрmax достигает амплитудной величины ЭДС вторичной обмотки.

Диаграммы токов обеих обмоток трансформатора аналогичны, если не считать ток намагничивания и удалить из него величину Id, так как она не трансформируется в первичную обмотку. Из-за этой величины в сердечнике трансформатора образуется вспомогательный магнитный поток, который насыщает сердечник.

Такой эффект называется вынужденным подмагничиванием. Это можно выделить, как основной недостаток схемы. После насыщения ток намагничивания трансформатора повышается по сравнению с нормальным режимом. Повышение этого тока создает условия для увеличения сечения проводника первичной обмотки. Вследствие этого возрастают размеры трансформатора.

Похожие темы:

Выпрямитель напряжения: принцип работы и разновидности

Выпрямитель напряжения – это устройство для преобразования переменного электричества в постоянный ток. В его основе находится полупроводниковый прибор, имеющий одностороннюю проводимость. Такими приборами служат диод или тиристор. Если существует небольшая мощность, несколько сотен Ватт, используется однофазный выпрямитель. Они применяются в самых различных электрических устройствах.

Существуют преобразователи, рассчитанные на тысячи и более Ватт. Здесь используются другие элементы электроники, рассчитанные на такие высокие мощности. В данной статье будут рассмотрены все типы выпрямителей тока, зачем они нужны и по каким принципам они функционируют. В качестве дополнения материал содержит несколько видеороликов и одну научно-популярную статью.

Выпрямитель напряжения (стабилизатор)

Выпрямитель напряжения (стабилизатор)

Структура и особенности

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Выпрямителем называется электронное устройство, предназначенное для преобразования электрической энергии переменного тока в постоянный. В основе выпрямителей лежат полупроводниковые приборы с односторонней проводимостью – диоды и тиристоры.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Стабилизатор напряжения

Стабилизатор напряжения

Полупроводниковые схемы

Любой выпрямитель — это схема. Она включает в себя вторичную обмотку трансформатора, выпрямляющий элемент, электрический фильтр и нагрузку. При этом существует возможность получать умножение напряжения. Выпрямленное напряжение — это сумма постоянного и переменного напряжений. Переменная составляющая — это нежелательная компонента, которую уменьшают тем или иным способом. Но поскольку используются полуволны переменного напряжения, иначе быть не может.

Его можно уменьшить двумя способами:

  • улучшая эффективность электрического фильтра;
  • улучшая параметры выпрямляемого переменного напряжения.

Простейший выпрямитель однополупериодный. Он отсекает одну из полуволн переменного напряжения. Поэтому коэффициент пульсаций в такой схеме получается самым большим. Но если выпрямляется трехфазное напряжение с одним диодом в каждой фазе, а также одним и тем же фильтром, получится в три раза меньший коэффициент пульсаций. Однако наилучшими характеристиками обладают двухполупериодные выпрямители.

Интересно почитать! Что такое варистор и где его применяют.

Использовать обе полуволны переменного напряжения можно двумя способами:

  • по схеме моста;
  • по схеме со средней точкой обмотки (схема Миткевича).

Сравним обе эти схемы для одного и того же значения выпрямленного напряжения. В схеме моста используется меньше витков вторичной обмотки трансформатора, что является преимуществом. Но при этом в однофазном выпрямительном мосте необходимы четыре диода. В схеме со средней точкой необходимо в два раза больше витков вторичной обмотки со средней точкой, что является недостатком. Еще один недостаток этой схемы — необходимость симметрии частей обмотки относительно средней точки.

Схема устройства стабилизатора напряжения

Схема устройства стабилизатора напряжения

Асимметрия будет дополнительным источником пульсаций. Но зато в этой схеме нужны только два диода, что является преимуществом. При выпрямлении на диоде существует напряжение. Его величина почти не изменяется в зависимости от силы тока, протекающего через этот диод. Поэтому мощность, рассеиваемая на полупроводниковом диоде, растет по мере увеличения силы выпрямленного тока.

Как работает выпрямитель напряжения

Это весьма ощутимо при большой силе тока, и поэтому полупроводниковые диоды размещаются на охлаждающих радиаторах и при необходимости обдуваются.

При выпрямлении тока большой силы два диода схемы со средней точкой будут экономичнее и компактнее в сравнении с четырьмя диодами выпрямительного моста. Схемы выпрямителей в свое время не появились из ниоткуда. Их изобрели инженеры. Поэтому схемы выпрямителей в литературе иногда называются в связи с именами своих первооткрывателей. Мостовая схема именуется как «полный мост Гретца». Схема со средней точкой — «выпрямитель Миткевича».

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства. Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста Uн.

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iн одновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Силовой трансформатор

Силовой трансформатор

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный. В блоке применяются чаще всего элементы в виде диодов. На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Диодный мост

Диодный мост

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки. В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Интересно почитать: что такое клистроны.

Отличия выпрямителя и стабилизатора

В связи с ростом энергопотребления домохозяйств подстанции не редко приходится модернизировать. В ином случае качество энергоснабжения заметно снижается. Решением проблемы может стать установка стабилизатора или выпрямителя напряжения. Под выпрямителем тока понимается полупроводниковое, механическое, электровакуумное устройство. Большинство таких приборов создают «пульсирующий» ток. Их основные преимущества заключаются в следующем:

  • незначительные пульсации напряжения, неразрывная форма выходного тока;
  • высокий КПД во всем регулировочном диапазоне;
  • эффективное воздушное охлаждение;
  • герметичность конструкции обеспечивает защиту от проникновения внутрь агрессивных сред;
  • современные модели имеют промышленный интерфейс для управления с пульта или компьютера при различной удаленности;
  • возможность задать автоматический режим работы;
  • модульная конструкция выпрямителей высокой мощности позволяет работать при неисправности одного силового модуля;
  • оптимальные массогабаритные параметры;
  • возможность использования в качестве устройства выпрямления одно- и трехфазного тока.

Представленные в продаже выпрямители тока просты в обслуживании и отличаются высокой степенью ремонтопригодности. Для них характерен высокой энергетический фактор, то есть небольшое реактивное энергопотребление (за исключением тиристорных моделей).

Как работает выпрямитель напряжения

Стабилизаторы напряжения – уникальная техника для автоматической регулировки сетевых параметров на прикрепленных зажимах с заранее установленными пределами. Основное отличие стабилизаторов от выпрямителей заключается в принципе их действия. Например, в стабилизирующих устройствах параметрического типа в основу положено использование свойств нелинейных элементов: карборундовых резисторов, насыщенных дросселей, нелинейных конденсаторов.

Стабилизаторы компенсационного типа работают за счет воздействия колебаний выходного напряжения через цепочку обратной связи на регулирующий элемент. Как правило, это замкнутые системы автоматической регулировки, поэтому их иногда именуют регуляторами напряжения. Через регулирующий орган ток проходит импульсно или непрерывно. Преимущества стабилизаторов напряжения:

  • многофункциональность в отличие от выпрямителей. Современные модели стабилизаторов не только регулируют напряжение, но и могут включать задержку его подачи;
  • возможность сетевого мониторинга посредством вольтметров встроенного типа;
  • наличие дополнительной защиты от замыканий в подключенной сети и перенапряжений с внешней стороны;
  • позволяют владельцу быть в курсе происходящего с электросетью.

В качестве еще одного примера схемы выпрямления переменного тока рассмотрим двухтактный выпрямитель. Его еще называют однофазным диодным мостом. Принципиальная схема двухтактного выпрямителя переменного напряжения приведена на рисунке

схема двухтактного выпрямителя переменного напряжения

схема двухтактного выпрямителя переменного напряжения

Временные диаграммы токов и напряжений этого устройства совпадают с временными диаграммами двухфазного однотактного выпрямителя тока, приведенными на рисунке 4. В выпрямителе переменного тока на диодном мосте присутствует только одна вторичная обмотка, поэтому k = 1. В то же самое время количество импульсов тока за период равно 2, поэтому пульсность в данной схеме равна p= k · q = 1 · 2 = 2. По этой формуле полное название устройства, приведенного на рисунке 5, это двухтактный однофазный выпрямитель тока.

Частота первой гармоники пульсаций в данном случае, как и для двухфазного однотактного выпрямителя вдвое выше частоты сети. Тем не менее, области применения этих типов выпрямителей тока несколько отличаются. Для низковольтных устройств лучше подходит схема, показанная на рисунке 3, так как в ней падение напряжения происходит только на одном диоде.

В ряде случаев это настолько важно, что можно пренебречь возрастанием стоимости трансформатора. В преобразователях AC/DC с относительно высоким выходным напряжением лучше применять схему, приведенную на рисунке 5, так как на ее диодах действует одинарное обратное напряжение (в схеме двухфазного однотактного выпрямителя — удвоенное, так как напряжение на нагрузке и напряжение обмотки трансформатора складываются).

Однофазный выпрямитель напряжения подходит только для схем с относительно небольшим потребляемым током. При необходимости получить значительные величины постоянного тока лучше использовать трехфазный выпрямитель тока. Его основным преимуществом является меньший уровень пульсаций выходного напряжения, что значительно снижает требования к сглаживающему фильтру. В качестве примера приведем схему трехфазного однотактного выпрямителя тока. Она показана на рисунке 6.

Механическое выпрямление напряжения

Определение выпрямления означает получение однонаправленного электрического тока. Его величина при этом будет зависеть от формы переменного напряжения в каждом полупериоде. Но однонаправленный электрический ток при этом получается, как при положительном полупериоде напряжения, так и при его отрицательном значении. При этом нагрузка при переходе напряжения через ноль должна отключаться от ненужной полуволны напряжения. Первые выпрямители выполняли эту задачу механическими контактами.

Они либо приводились в движение синхронным двигателем, либо перемещались достаточно быстродействующим соленоидом. В обеих схемах контакты, переключающие напряжение, перемещаются синхронно с напряжением. В схеме с двигателем они вращаются, замыкаясь в нужный момент времени. Узел, предназначенный для выпрямления напряжения, при вращении аналогичен коллектору двигателя постоянного тока. Количество ламелей – контактов определяется числом оборотов синхронного двигателя.

Схема получения повышенного напряжения.

Схема получения повышенного напряжения.

При переходе синусоиды выпрямляемого напряжения через ноль обе щетки контактируют либо с началом, либо с концом ламели. Начало ламели совпадает с острием стрелки, указывающей направление вращения двигателя. Время контакта щеток с ламелью совпадает с длительностью половины периода выпрямляемого напряжения.

Синхронный двигатель вращается точно и кратно частоте питающего напряжения, которое он выпрямляет присоединенным к нему коллектором. Но его инерционность не позволит выпрямить скачкообразное изменение частоты питающего напряжения. Поэтому он эффективен только как выпрямитель напряжения электросети.

Популярные выпрямители напряжения

Таблица параметров популярных моделей выпрямителей напряжения с фото.

Выпрямитель на соленоиде замыкает контакт либо на время, когда сердечник втягивается, либо наоборот. Он может сработать только при некотором минимальном напряжении, которое достаточно для перемещения контактов. Поэтому часть полуволны вблизи перехода напряжения через ноль не будет обработана как следует.

Но зато такой выпрямитель может быть изготовлен довольно-таки небольшим. Поэтому он был широко распространен в свое время. Очевидно то, что без коммутации электрической цепи выпрямления напряжения не может быть. А возможности механического контакта ограничены мощностью искры, которая возникает в момент разрыва электрической цепи. Она постепенно уничтожает этот контакт тем быстрее, чем больше электрическая мощность при его размыкании.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности "Программное обеспечение вычислительной техники и автоматизированных систем", МИФИ, 2005–2010 гг.

Написано статей

Более подробно о том, что такое выпрямитель тока, рассказано в статье Выпрямитель тока: Лекция. Если у вас остались вопросы, можно задать их в комментариях на сайте. А также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу.

В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.electrosam.ru

www.digteh.ru

www.stihl-msk.ru

www.electricalschool.info

www.domelectrik.ru

Предыдущая

ТеорияЧто такое электрический ток, виды и условия его существования

Следующая

ТеорияКак устроен однополупериодный выпрямитель и где применяется

Принцип работы выпрямителя

Маломощные выпрямители

Одними из самых  распространенных преобразователей тока являются выпрямители переменного тока в пульсирующий ток. Они имеют очень широкое применение. Условно их можно разделить на маломощные выпрямители (до нескольких сотен ватт)  и выпрямители большой мощности (киловатты и больше).

Принцип работы выпрямителя

Структурная схема выпрямителя:

Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя).

Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток , как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения  или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.

Собственно выпрямителем является та его часть, которая обведена на рисунке пунктиром и состоит из трансформатора и выпрямительного устройства.

Нулевая схема выпрямления

Рассмотреть принцип действия самого простого выпрямителя однофазного тока целесообразно на нулевой схеме. 

Нулевая схема выглядит так:

Трансформатор Тр  имеет на вторичной стороне две обмотки, соединенные последовательно таким образом, что относительно средней точки а  напряжения  на свободных концах обмоток в и с одинаковые по величине, но противоположные по фазе. Выпрямительное устройство образовано двумя диодами D1 и D2, которые соединены вместе своими катодами, тогда как каждый анод соединен с соответствующей обмоткой. Нагрузка Zн присоединена между катодами диодов и точкой трансформатора.

Как возникает пульсирующее напряжение на нагрузке? Сначала будем считать нагрузку чисто активным сопротивлением, Zн=Rн.  Когда напряжение в обмотках будет изменяться по синусоидальному закону, то в тот полупериод, когда к аноду диода приложен положительный потенциал, будет проходить прямой ток.

Поскольку напряжение на диоде составляет доли вольта, пренебрежем им. Тогда вся положительная полуволна переменного напряжения будет приложена просто к нагрузке Rн.  Когда напряжение приложенное минусом к аноду, тока не будет (малым обратным током диода также пренебрежем). Таким образом, до нагрузки будем доходить лишь положительная полуволна переменного напряжения в течении половины периода. Вторая половина периода будет свободна от тока.

Вторичные обмотки соединены противофазно, нагрузка общая для обеих обмоток, таким образом, в то время, когда в одной из них (например в верхней) ток будет проходить, другая будет от него свободна и наоборот.

Поэтому в нагрузке каждый полупериод будет заполнен полуволной переменного напряжения:

И выпрямленное напряжение Ud будет иметь вид одинаковых полуволн, которые повторяются с периодом, вдвое меньшим, чем период переменного напряжения в сети питания (2π радиан). Для обобщения, что будет удобно, далее будем считать, что период изменения выпрямленного напряжения меньше 2π в m раз и равняется 2π/m (в нашем случае m-2). Если нагрузка активное сопротивление Rн, то и ток в нем id , будет повторять кривую напряжения.

Рассмотренная схема будет иметь тот недостаток, что во вторичных обмотках по сравнению с первичной имеют место значительные пульсации тока, потому что эти обмотки работают по очереди. Поскольку они намотаны на один сердечник, магнитный поток в последнем будет переменным, поэтому и в первичной обмотке ток будет переменным, имея как положительную, так и отрицательную полуволны.

Как известно из курса электротехники, действующие и средние значения тока или напряжения одинаковые только для постоянного тока. Чем больше пульсации, тем больше будет действующее значение относительно среднего. Поэтому мощности обеих сторон трансформатора не будут одинаковыми. Однако трансформатор один, и объем железа для его сердечника следует выбирать, исходя из какого-то одного значения мощности.

Поэтому условно ввели понятие типовой мощности трансформатора, которая равняется среднему мощностей обеих сторон:

Выпрямительный мост или схема Гретца

Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):

В этом случае первые полупериоды будут работать, например, диоды D2  и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:

 Мостовая схема имеет менее сложный, более легкий и дешевый трансформатор. 

Эта схема появилась исторически раньше нулевой, однако распространения не получила, потому что имела четыре диода вместо двух. А при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение.

Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую.

Основные соотношения для выпрямителя

Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку Ud и среднее значение тока в нем Id.

Среднее значение выпрямленного напряжения

Запомним это выражение на дальнейшее. В нашем случае m=2 и 

 . Поскольку Ud считаем заданным, то

Амплитудное значение вторичного напряжения

Из предыдущего выражения имеем:

Коэффициент трансформации трансформатора

Этот коэффициент определяет отношения питающей сети к напряжению на обмотке вторичной стороны:

Действующее значение тока вторичной обмотки

Ток вторичной обмотки в то же время есть током в нагрузке. Поскольку нагрузка чисто активная и ток в ней повторяет по форме пульсирующее напряжение, то между его средним значением и его действующим значением существует такая же зависимость, что и для напряжений, то есть

Действующее значение тока первичной обмотки

Ток в первичной обмотке повторяет с учетом n ток вторичной обмотки :

Мощность трансформатора

Мощности первичной и вторичной сторон трансформатора в этой схеме одинаковые, поэтому:

Пульсация выпрямленного напряжения

Пульсирующее напряжение состоит из среднего значения Ud   и бесконечного количества гармоничных составляющих, амплитуды которых можно определить по формулам Фурье. Если начало координат выбрать так как на рисунке, то в гармоничном составе будут присутствовать только косинусные гармоники (т.к. кривая симметрична относительна оси координат). Амплитуда k-ой гармоники определяется по формуле:

Где: l – полупериод π/m;  

Наибольшую амплитуду будет иметь первая гармоника U(1)m, поэтому определим только ее, предположив, что k=1:

Заменив  

 получим:

Отношение первой гармоники к среднему значению называют коэффициентом пульсаций:

Запомним эту формулу на будущее, а сейчас отметим, что в нашем случае при m – 2, q – 2/3. Это большие пульсации – амплитуда первой гармоники составляет 67% от среднего значения выпрямленного напряжения.

 Средний ток диодов

Как мы уже видели диоды работают по очереди – каждый из них проводит в среднем половину общего тока , который есть в нагрузке. Поэтому каждый из диодов должен быть рассчитан на ток  Iв = Id/2

Наибольшее обратное напряжение на диоде

В то время когда диод B1 проводит его можно считать замкнутым, и тогда к диоду B2 будет приложено в обратном направлении напряжение вторичной обмотки. Поэтому каждый из диодов должен быть рассчитан на ее амплитудное значение:

Что такое однофазный выпрямитель, принцип работы, типы и схемы

Выпрямитель преобразует колеблющийся синусоидальный источник переменного напряжения в источник постоянного напряжения постоянного тока с помощью диодов, тиристоров, транзисторов или преобразователей. Этот процесс выпрямления может принимать различные формы с полуволновыми, двухполупериодными, неконтролируемыми и полностью управляемыми выпрямителями, преобразующими однофазный или трехфазный источник питания в постоянный уровень постоянного тока. 

Описание

Выпрямители являются одним из основных строительных блоков преобразования мощности переменного тока с полуволновым или двухволновым выпрямлением, обычно выполняемым полупроводниковыми диодами. Диоды позволяют переменным токам течь через них в прямом направлении, в то же время блокируя протекание тока в обратном направлении, создавая постоянный уровень напряжения постоянного тока, что делает их идеальными для выпрямления.

Однако постоянный ток, который выпрямляется диодами, не такой чистый, как ток, получаемый, скажем, от источника батареи, но имеет изменения напряжения в виде пульсаций, наложенных на него в результате переменного питания.

Но для однофазного выпрямления нам нужна синусоидальная форма переменного тока с фиксированным напряжением и частотой, как показано на рисунке.

Сигналы переменного тока обычно имеют два числа, связанных с ними. Первое число выражает степень вращения осциллограммы вдоль оси x, на которую генератор вращался от 0 до 360 o .

 Это значение известно как период (T), который определяется как интервал, взятый для завершения одного полного цикла сигнала. Периоды измеряются в градусах, времени или радианах. Соотношение между периодами синусоидальных волн и частотой определяется как: T = 1 / ƒ .

Второе число указывает амплитуду значения, тока или напряжения, вдоль оси y. Это число дает мгновенное значение от нуля до некоторого пикового или максимального значения (A MAX , V MAX или I MAX  ), указывающее наибольшую амплитуду синусоидальных волн, прежде чем снова вернуться к нулю. Для синусоидальной формы волны есть два максимальных или пиковых значения, одно для положительных и одно для отрицательных полупериодов.

Но помимо этих двух ценностей есть еще две, которые представляют интерес для нас в целях исправления. Один — это Среднее значение сигналов, а другой — его среднеквадратичное значение. Среднее значение формы сигнала получается путем добавления мгновенных значений напряжения (или тока) в течение одного полупериода и обнаруживаются как: 0,6365 * V P . Обратите внимание, что среднее значение за один полный цикл симметричной синусоидальной волны равно нулю.

Среднеквадратическое значение или эффективное значение синусоиды (синусоида — это другое название синусоидальной волны) обеспечивает такое же количество энергии для сопротивления, что и источник постоянного тока того же значения. Среднеквадратическое значение (RMS) синусоидального напряжения (или тока) определяется следующим образом: 0,7071 * V P.

Принцип работы

Все однофазные выпрямители используют полупроводниковые устройства в качестве основного устройства преобразования переменного тока в постоянный. Однофазные неконтролируемые полуволновые выпрямители являются наиболее простой и, возможно, наиболее широко используемой схемой выпрямления для малых уровней мощности, поскольку на их выход сильно влияет реактивное сопротивление подключенной нагрузки.

Для неконтролируемых выпрямительных цепей полупроводниковые диоды являются наиболее часто используемым устройством и расположены таким образом, чтобы создавать либо полуволновую, либо двухполупериодную схему выпрямителя. Преимущество использования диодов в качестве устройства выпрямления состоит в том, что по своей конструкции они являются однонаправленными устройствами, имеющими встроенный однонаправленный pn-переход.

Этот pn-переход преобразует двунаправленный переменный источник питания в однонаправленный ток, устраняя половину источника питания. В зависимости от подключения диода, он может, например, пропустить положительную половину сигнала переменного тока при прямом смещении, исключая при этом отрицательный полупериод, когда диод становится обратным смещением.

Обратное также верно, устраняя положительную половину или форму волны и передавая отрицательную половину. В любом случае, выход из одного диодного выпрямителя состоит только из одной половины формы сигнала 360 o, как показано на рисунке.

Полуволновое выпрямление

Приведенная выше конфигурация однофазного полуволнового выпрямителя пропускает положительную половину формы сигнала переменного тока, причем отрицательная половина исключается. Меняя направление диода, мы можем пропустить отрицательные половины и устранить положительные половины формы сигнала переменного тока. Поэтому на выходе будет серия положительных или отрицательных импульсов.

Таким образом, на подключенную нагрузку не подается напряжение или ток, R L в течение половины каждого цикла. Другими словами, напряжение на сопротивлении нагрузки R L состоит только из половины сигналов, либо положительных, либо отрицательных, поскольку оно работает только в течение половины входного цикла, отсюда и название полуволнового выпрямителя.

Надеемся, что мы видим, что диод позволяет току течь в одном направлении, создавая только выход, который состоит из полупериодов. Эта пульсирующая форма выходного сигнала не только изменяется ВКЛ и ВЫКЛ каждый цикл, но присутствует только в 50% случаев, и при чисто резистивной нагрузке это содержание пульсации высокого напряжения и тока является максимальным.

Этот пульсирующий постоянный ток означает, что эквивалентное значение постоянного тока падает на нагрузочном резисторе, поэтому R L составляет только половину среднего значения синусоидальных сигналов. Поскольку максимальное значение синусоидальной формы сигнала равно 1 (sin (90 o )), среднее значение постоянного тока, полученное для половины синусоиды, определяется как: 0,637 x максимальное значение амплитуды.

Таким образом, во время положительного полупериода A AVE составляет 0,637 * A MAX . Однако, поскольку отрицательные полупериоды удалены из-за выпрямления диодом, среднее значение в течение этого периода будет нулевым.

Среднее значение синусоиды

Таким образом, для полуволнового выпрямителя в 50% случаев среднее значение составляет 0,637 * A MAX, а в 50% случаев — ноль. Если максимальная амплитуда равна 1, среднее значение или эквивалент значения постоянного тока, видимый по сопротивлению нагрузки, R L будет:

Таким образом, соответствующие выражения для среднего значения напряжения или тока для полуволнового выпрямителя задаются как:

AVE  = 0,318 * V MAX

I AVE  = 0,318 * I MAX

Обратите внимание, что максимальное значение A MAX — это значение входного сигнала, но мы также могли бы использовать его среднеквадратичное значение или среднеквадратичное значение, чтобы найти эквивалентное выходное значение постоянного тока однофазного полуволнового выпрямителя. Чтобы определить среднее напряжение для полуволнового выпрямителя, мы умножаем среднеквадратичное значение на 0,9 (форм-фактор) и делим произведение на 2, то есть умножаем его на 0,45, получая:

AVE  = 0,45 * V RMS

I AVE  = 0,45 * I RMS

Затем мы можем видеть, что схема полуволнового выпрямителя преобразует либо положительные, либо отрицательные половины формы сигнала переменного тока в импульсный выход постоянного тока, который имеет значение 0,318 * A MAX или 0,45 * A RMS, как показано.

Полноволновое выпрямление

Двухполупериодный выпрямитель использует обе половины входной синусоидальной формы волны для обеспечения однонаправленного выход, т.к. он состоит из двух полуволновых выпрямителей, соединенных вместе для питания нагрузки.

Однофазный двухполупериодный выпрямитель делает это с помощью четырех диодов, расположенных в виде моста, пропускающих положительную половину формы волны, как и раньше, но инвертирующих отрицательную половину синусоидальной волны для создания пульсирующего выхода постоянного тока. 

Несмотря на то, что напряжение и ток на выходе выпрямителя пульсируют, оно не меняет направление, используя полные 100% формы входного сигнала и, таким образом, обеспечивает двухполупериодное выпрямление.

Однофазный двухполупериодный мостовой выпрямитель

Эта мостовая конфигурация диодов обеспечивает двухполупериодное выпрямление, потому что в любое время два из четырех диодов смещены в прямом направлении, а два других — в обратном. Таким образом, в проводящем тракте два диода вместо одного для полуволнового выпрямителя. Следовательно, будет разница в амплитуде напряжения между V IN и V OUT из-за двух прямых падений напряжения на последовательно соединенных диодах. Здесь, как и прежде, для простоты математики мы примем идеальные диоды.

Так как же работает однофазный двухполупериодный выпрямитель? Во время положительного полупериода V IN диоды D 1 и D 4 смещены в прямом направлении, а диоды D 2 и D 3 — в обратном. Затем для положительного полупериода входного сигнала ток течет по пути: D 1 — A — R L — B — D 4 и возвращается к источнику питания.

Во время отрицательного полупериода V IN диоды D 3 и D 2 смещены в прямом направлении, а диоды D 4 и D 1 — в обратном. Затем для отрицательного полупериода входного сигнала ток течет по пути: D 3 — A — R L — B — D 2 и возвращается к источнику питания.

В обоих случаях положительные и отрицательные полупериоды входного сигнала создают положительные выходные пики независимо от полярности входного сигнала и, как таковой, ток нагрузки I всегда течет в том же направлении через нагрузку, R L между точками или узлами A и B. Таким образом, отрицательный полупериод источника становится положительным полупериодом при нагрузке.

Таким образом, в зависимости от того множества проводящих диодов, узел А всегда более положительный, чем узел B. Поэтому ток и напряжение нагрузки являются однонаправленными или постоянными, что дает нам следующую форму выходного сигнала.

Форма волны на выходе выпрямителя

Хотя этот пульсирующий выходной сигнал использует 100% входного сигнала, его среднее напряжение постоянного тока не совпадает с этим значением.

Однако двухполупериодные выпрямители имеют два положительных полупериода на входной сигнал, что дает нам другое среднее значение.

Среднее значение двухполупериодного выпрямителя

Для двухполупериодного выпрямителя для каждого положительного пика имеется среднее значение 0,637 * A MAX, и, поскольку на входной сигнал имеется два пика, это означает, что есть две серии средних значений, суммируемых вместе. Таким образом, выходное напряжение постоянного тока двухполупериодного выпрямителя в два раза выше, чем у предыдущего полуволнового выпрямителя. Если максимальная амплитуда равна 1, среднее значение или эквивалент значения постоянного тока, видимый по сопротивлению нагрузки, R L будет:

Таким образом, соответствующие выражения для среднего значения напряжения или тока для двухполупериодного выпрямителя задаются как:

AVE  = 0,637 * V MAX

I AVE  = 0,637 * I MAX

Чтобы определить среднее напряжение для двухполупериодного выпрямителя, мы умножаем среднеквадратичное значение на 0,9:

AVE  = 0,9 * V RMS

I AVE  = 0,9 * I RMS

Двухполупериодная схема выпрямителя преобразует ОБЕ положительную или отрицательную половинки сигнала переменного тока в импульсный выход постоянного тока, который имеет значение 0,637 * A MAX или 0,9 * A RMS.

Полноволновой полууправляемый мостовой выпрямитель

Двухполупериодное выпрямление имеет много преимуществ по сравнению с более простым полуволновым выпрямителем, например, выходное напряжение более согласовано, имеет более высокое среднее выходное напряжение, входная частота удваивается в процессе выпрямления и требует меньшего значения емкости сглаживающего конденсатора, если таковой требуется. Но мы можем улучшить конструкцию мостового выпрямителя, используя тиристоры вместо диодов в его конструкции.

Заменив диоды внутри однофазного мостового выпрямителя тиристорами, мы можем создать фазо-управляемый выпрямитель переменного тока в постоянный для преобразования постоянного напряжения питания переменного тока в контролируемое выходное напряжение постоянного тока. Фазоуправляемые выпрямители, полууправляемые или полностью управляемые, имеют множество применений в источниках питания переменного тока и в управлении двигателями.

Однофазный мостовой выпрямитель — это то, что называется «неуправляемым выпрямителем» в том смысле, что приложенное входное напряжение передается непосредственно на выходные клеммы, обеспечивая фиксированное среднее значение эквивалентного значения постоянного тока. Чтобы преобразовать неуправляемый мостовой выпрямитель в однофазную полууправляемую выпрямительную цепь, нам просто нужно заменить два диода тиристорами (SCR), как показано на рисунке.

В конфигурации с полууправляемым выпрямителем среднее напряжение нагрузки постоянного тока контролируется с использованием двух тиристоров и двух диодов. Как мы узнали из нашего урока о тиристорах, тиристор будет проводить (состояние «ВКЛ») только тогда, когда его анод (A) более положительный, чем его катод (K) и импульс запуска подается на его затвор (G). В противном случае он остается неактивным.

Таким образом, задерживая импульс запуска, подаваемый на клемму затвора тиристоров, на контролируемый период времени или угол ( α ) после того, как напряжение питания переменного тока прошло пересечение нулевого напряжения между анодным и катодным напряжением, мы можем контролировать, когда тиристор начинает проводить ток и, следовательно, контролировать среднее выходное напряжение.

Во время положительного полупериода входного сигнала ток течет по пути: SCR 1 и D 2 и обратно к источнику питания. Во время отрицательного полупериода V INпроводимость проходит через SCR 2 и D 1 и возвращается к источнику питания.

Понятно, что один тиристор из верхней группы ( SCR 1 или SCR 2 ) и соответствующий ему диод из нижней группы ( D 2 или D 1 ) должны проводить вместе, чтобы протекать ток любой нагрузки.

Таким образом, среднее выходное напряжение V AVE зависит от угла включения α для двух тиристоров, включенных в полууправляемый выпрямитель, поскольку два диода неуправляются и пропускают ток всякий раз, когда смещено вперед. Таким образом, для любого угла срабатывания затвора α среднее выходное напряжение определяется как:

Обратите внимание, что максимальное среднее выходное напряжение возникает, когда α = 1, но все еще равно 0,637 * V MAX, как для однофазного неуправляемого мостового выпрямителя.

Мы можем использовать эту идею для контроля среднего выходного напряжения моста на один шаг вперед, заменив все четыре диода тиристорами, что дает нам полностью управляемую схему мостового выпрямителя .

Полностью управляемый мостовой выпрямитель

Однофазные мостовые выпрямители с полным управлением известны чаще как преобразователи переменного тока в постоянный. Полностью управляемые мостовые преобразователи широко используются в управлении скоростью машин постоянного тока и легко достигаются путем замены всех четырех диодов мостового выпрямителя тиристорами, как показано на рисунке.

В конфигурации с полностью управляемым выпрямителем среднее напряжение нагрузки постоянного тока контролируется с использованием двух тиристоров на полупериод. Тиристоры SCR 1 и SCR 4 запускаются вместе как пара во время положительного полупериода, в то время как тиристоры SCR 3 и SCR 4 также запускаются вместе как пара во время отрицательного полупериода. Это 180 oпосле SCR 1 и SCR 4 .

Затем в режиме работы с непрерывной проводимостью четыре тиристора постоянно переключаются в виде чередующихся пар для поддержания среднего или эквивалентного выходного напряжения постоянного тока. Как и в случае полууправляемого выпрямителя, выходное напряжение можно полностью контролировать, изменяя угол задержки включения тиристоров ( α ).

Таким образом, выражение для среднего напряжения постоянного тока однофазного полностью управляемого выпрямителя в режиме непрерывной проводимости дается как:

со средним выходным напряжением, изменяющимся от V MAX / π до -V MAX / π путем изменения угла зажигания, α от π до 0 соответственно. Поэтому, когда α <90 o,среднее напряжение постоянного тока является положительным, а когда α> 90 oсреднее напряжение постоянного тока является отрицательным. То есть мощность течет от нагрузки постоянного тока к источнику переменного тока.

Резюме однофазного выпрямления

Однофазные выпрямители могут принимать различные формы для преобразования переменного напряжения в постоянное напряжение из неконтролируемых однофазных выпрямителей на полуволнах в полностью управляемые двухполупериодные мостовые выпрямители с использованием четырех тиристоров.

Преимуществами полуволнового выпрямителя являются его простота и низкая стоимость, так как для него требуется только один диод. Однако это не очень эффективно, так как используется только половина входного сигнала, дающего низкое среднее выходное напряжение.

Двухполупериодный выпрямитель более эффективен, чем полуволновой выпрямитель, поскольку он использует оба полупериода входной синусоидальной волны, создавая более высокое среднее или эквивалентное выходное напряжение постоянного тока. Недостатком двухполупериодной мостовой схемы является то, что она требует четырех диодов.

Фазоуправляемое выпрямление использует комбинации диодов и тиристоров (SCR) для преобразования входного напряжения переменного тока в контролируемое выходное напряжение постоянного тока. Полностью контролируемые выпрямители используют четыре тиристора в своей конфигурации, тогда как наполовину управляемые выпрямители используют комбинацию как тиристоров, так и диодов.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.

Выпрямители тока: принцип работы, схема

Выпрямитель - это устройство, которое создано для преобразования тока. Многие модели устанавливаются с фильтрами. Сфера применения выпрямителей очень широкая. Они активно используются в блоках питания, подстанциях, а также сварочных аппаратах.

В первую очередь модели делятся по фазам. Существуют двухфазные, а также трехфазные модификации. Мостовые устройства изготавливаются исключительно для преобразователей. По мощности выделяют силовые элементы, а также модели сигналов. По наличию устройств стабилизации они делятся на полноволновые, неполноволновые, двухпериодные и трансформаторные модификации. Для того чтобы разобраться в выпрямителях, необходимо рассмотреть схему обычной модели.

выпрямители тока

Схема выпрямителя

Схема выпрямителя тока включает в себя проводники с различной проводимостью тока. Также в устройствах используются каналы. Электронные вентили устанавливаются различной чувствительности. Если рассматривать мостовые модификации, то у них применяются стабилитроны. Также на рынке представлены диодные устройства.

Принцип действия

Принцип работы выпрямителя основывается на преобразовании тока. Осуществляется данный процесс за счет изменения частоты. Для этого в устройстве имеется электронный вентиль. Для стабилизации процесса преобразования используются каналы. Чтобы избежать проблем с отрицательной полярностью, устанавливаются стабилитроны. Непосредственно подключение устройства осуществляется через проводники.

выпрямитель тока 220

Силовые устройства

Выпрямители тока данного типа используются в различных блоках питания. Наиболее часто их можно встретить в персональных компьютерах. Схема устройства предполагает использование векторного транзистора. Если рассматривать двухканальную модификацию, то подключение осуществляется через расширитель.

В некоторых устройствах используются тетроды. Если рассматривать трехканальные элементы, то они рассчитаны для блоков питания на 20 В. В данном случае тетроды никогда не применяются. Принцип работы выпрямителей построен на изменении частоты. Многие модификации продаются с электронными вентилями. Если говорить про параметры, то чувствительность устройства колеблется в районе 23 мВ. Непосредственно проводимость тока у моделей не превышает 2 мк.

Принцип работы выпрямителей сигналов

Выпрямители сигналов работают от обратной связи. Использоваться модели могут только в сети с переменным током. Если рассматривать устройства на 12 Вт, то следует отметить, что фильтры применяются только полудуплексного типа. Также стандартная схема выпрямителя подразумевает использование транзистора с ресивером.

У моделей на три канала обязательно используются триггеры. Данные устройства устанавливаются через изоляторы. Выходное напряжение у моделей, как правило, не превышает 20 В. Силовая электроника у выпрямителей позволила решить проблему с перепадами напряжения за счет установки диодных мостов.

выпрямитель напряжения тока

Мостовые устройства

Мостовые выпрямители продаются для блоков питания и преобразователей. Действуют устройства в сети с переменным током. Непосредственно изменение частоты осуществляется за счет работы расширителя. Указанный элемент в выпрямителе играет роль проводника. В некоторых случаях он устанавливается с изоляторами. По системе защиты мостовые выпрямители довольно сильно отличаются.

Если рассматривать модификации на три канала, то у них используются триггеры. Данные элементы могут устанавливаться с обкладкой и без нее. Модификации на четыре канала встречаются очень редко. Показатель проводимости тока у выпрямителей не превышает 40 мк. В данном случае чувствительность устройства равняется 2,5 мк.

Двухфазные модификации

Двухфазные выпрямители тока производятся для транспортных средств. Работают модели по принципу изменения частоты. Осуществляться этот процесс может за счет расширителя либо триггера. Наиболее часто модели встречаются без тетродов. Параметр предельной перегрузки у модификаций не превышает 6 А. Фильтры используются, как правило, проводного типа.

Если рассматривать модификации на три канала, то у них есть двухразрядный триггер. Показатель его чувствительности составляет не более 3 мк. В свою очередь, выходное напряжение максимум равняется 35 В. Силовая электроника у двухфазных устройств дала возможность решить проблему с перегрузками напряжения благодаря использованию диодных мотов.

Трехфазные модели

Трехфазный выпрямитель встретить можно только в трансформаторных подстанциях. Работают устройства от высоковольтной чети. В данном случае принцип работы модели построен то резком увеличении частоты. Параметр выходного напряжения при этом остается неизменными. Выпускаются модели на три и четыре канала. Подсоединение у них происходит через проводники.

Трехфазный выпрямитель на три канала выпускается с тетродами. В некоторых случаях для стабилизации процесса преобразования применяются расширители. Если говорить про выпрямители на четыре канала, то важно отметить, что они производятся всегда с усилителями. В данном случае показатель проводимости тока лежит в пределах 70 мк. Чувствительность выпрямителя равняется не более 4,2 мВ.

трехфазный выпрямитель

Полноволновые устройства

Полноволновый выпрямитель напряжения тока работает за счет смены полярности на расширителях. Транзисторы, как правило, используются открытого типа. Подходят данные устройства для преобразователей на 20 и 30 В. Непосредственно параметр чувствительности у них равняется 3 мВ. В свою очередь, проводимость тока находится в районе 4,5 мк.

Если говорить про модификации на три канала, то они устанавливаются только в блоки питания с усилителями. Фильтры для выпрямителей подходят в основном расширительного типа. Если говорить про устройства на четыре канала, то у них показатель проводимости тока лежит в районе 3 мк. Для трансформаторных подстанций модели не подходят.

схема выпрямителя тока

Неполноволновые модификации

Неполноволновые выпрямители тока отличаются отсутствием электронного вентиля. Выпускаются элементы только с двумя каналами. Непосредственно подсоединение модификации осуществляется через контакты. Изоляторы используются как с обкладкой, так и без нее. В некоторых случаях применяются усилители.

Также важно отметить, что устанавливаются выпрямители данного типа в контроллерах. Параметр выходного напряжения у них, как правило, не превышает 30 В. В среднем чувствительность устройств составляет 75 мВ. В данном случае проводимость тока зависит от типа используемых фильтров.

Однопериодные модификации

Однопериодные выпрямители тока производятся для различных ресиверов. Отличительной чертой элементов принято считать высокий параметр проводимости тока. Работают устройства от обратной полярности. Выпускаются модели на два и три канала. Если рассматривать первый вариант, то важно отметить, что проводники используются с обкладкой. В данном случае расширители устанавливаются редко. Параметр проводимости тока у выпрямителей колеблется в районе 3 мк.

Если говорить про устройства на три канала, то они всегда выпускаются с тетродами. Также схема модификации подразумевает использование модуляторов. Для низкочастотных ресиверов указанные выпрямители подходят идеально. В данном случае чувствительность составляет не более 60 мВ.

Схема двухпериодных устройств

Двухпериодный выпрямитель тока 220 В производится для преобразования тока от приводных устройств. В данном случае процесс происходит за счет изменения частоты напряжения. Расширители у моделей используются, как правило, отрытого типа. Если говорить про модификации на два канала, то у них применяются распределительные фильтры. В некоторых случаях устанавливаются триггеры. Для подключения устройств к приводным установкам необходимы транзисторы полевого типа. Выпускаются они с различной емкостью. Как правило, на рынке представлены модификации на 20 пФ.

Особенности трансформаторных устройств

Трансформаторный выпрямитель (преобразователь электрической энергии) способен работать в сети с постоянным и переменным током. В данном случае триггеры используются трехразрядного типа. Для подключения устройств применяются проводники. Встретить трансформаторные выпрямители можно на подстанциях. Данные устройства рассчитаны на высокое выходное напряжение.

Система защиты у них устанавливается с хроматическими фильтрами. В данном случае параметр чувствительности лежит в пределах 80 мВ. Для приводных механизмов указанные устройства не подходят однозначно. Показатель приводимости тока у них равняется 20 мк. Триггеры для цепей подбираются как открытого, так и закрытого типа. В среднем параметр пороговой перегрузки находится на уровне 5 А.

силовая электроника

Модели с умножением напряжения

Выпрямители данного типа на сегодняшний день активно используются в преобразователях. Стандартная схема модификации включает в себя вентиль, а также транзисторы. В среднем показатель их емкости равняется 2 пФ. Непосредственно проводимость тока составляет не более 3 мк.

Если говорить про модификации на два канала, то у них используются расширители. Устанавливаются они как открытого, так и закрытого типа. Во многих моделях есть регуляторы. Если говорить про выпрямители на четыре канала, то они производятся с модуляторами. Для их работы используются различные триггеры. Чаще всего они встречаются трехразрядного типа.

мостовые выпрямители

Модификации с гальванической развязкой

Устройства с гальванической развязкой работают по принципу понижения частоты. Подключаются они только от сети с переменным током. В данном случае транзисторы устанавливаются на 20 пФ. Непосредственно показатель чувствительности равняется 88 мВ. Если говорить про модификации на три канала, то у них применяются импульсные модуляторы. Во многих моделях есть защитные системы, которые помогают справляться с перегрузами. Фильтры используются с лучевыми тетродами.

ВЫПРЯМИТЕЛИ

   В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Фото трансформаторный блок питания

Фото трансформаторный блок питания

   Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

Фото трансформатора

Фотография трансформатора

   Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель

Схема однополупериодный выпрямитель

Схема однополупериодный выпрямитель

   Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

Выпрямленный ток после однополупериодного выпрямителя

Выпрямленный ток после однополупериодного выпрямителя

   На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Электролитический конденсатор большой емкости

Электролитический конденсатор большой емкости

    Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

   Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

График двухполупериодного выпрямителя

Двухполупериодный выпрямитель, мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

   И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

Диодный мост рисунок

   Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому. 

Объяснение работы диодного моста

Объяснение работы диодного моста

   Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

График мостого выпрямителя

   При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Еще одно изображение диодного моста

Еще одно изображение диодного моста

   Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

Фото импортного диодного моста

   На фото далее изображен отечественный диодный мост КЦ405.

Фото диодный мост кц-405

Фото диодный мост кц405

Трехфазные выпрямители

   Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Фото трехфазного трансформатора

Фото трехфазного трансформатора

   Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Схема Миткевича

Схема Миткевича

   Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова

Схема Ларионова

   Схема Ларионова может использоваться как "звезда-Ларионов” и "треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи - AKV.

   Форум

   Обсудить статью ВЫПРЯМИТЕЛИ


Выпрямитель тока - это... Что такое Выпрямитель тока?

        преобразователь электрического тока переменного направления в ток постоянного направления. Большинство мощных источников электрической энергии вырабатывают ток переменного направления (см. Переменный ток). Однако многие электрические устройства на городском и железнодорожном транспорте, в химической и радиотехнической промышленности, в цветной металлургии и др. работают на токе постоянного направления (см. Постоянный ток) различного напряжения. В простейшем случае переменный ток выпрямляется вентилем электрическим (См. Вентиль электрический), пропускающим ток (например, синусоидальный) только или преимущественно в одном направлении. По видам применяемых вентилей В. т. подразделяют на электроконтактные, кенотронные, газотронные, тиратронные, ртутные, полупроводниковые и тиристорные.

         Различают схемы В. т. однополупериодные, двухполупериодные с нулевым выводом и мостовые. На рис. 1, а приведена однополупериодная схема выпрямителя однофазного тока. Основные элементы В. т.: трансформатор Тр, вентиль В и сглаживающий фильтр С. Напряжение U1, обычно синусоидальное, от источника переменного тока через трансформатор Тр подаётся на вентиль В. Ток J в нагрузке Rн течёт только при положительной полярности подводимого напряжения, т. е. при открытом состоянии В. Конденсатор С заряжается положительными полуволнами пульсирующего тока, а в паузах, соответствующих по времени отрицательным полуволнам, разряжается на нагрузку. Таким образом, пульсирующий ток сглаживается, усредняется.

         Однополупериодные однофазные схемы В. т. применяют главным образом в маломощных устройствах с ёмкостным или индуктивным сглаживающим фильтром. Основное преимущество — простота и малое число вентилей; недостатки — большие пульсации выпрямленного напряжения и высокое обратное напряжение на вентилях (при ёмкостном фильтре).

         В двухполупериодной схеме В. т. (рис. 1, б) применяют трансформатор со средней точкой во вторичной обмотке. Благодаря такому соединению обмотки с вентилями выпрямленный ток формируется из обеих полуволн тока. Частота пульсаций выпрямленного тока при этом возрастает в два раза по сравнению с однополупериодным В. т. (так, если U1 — напряжение промышленной частоты 50 гц, то частота пульсации тока на нагрузке будет 100 гц), что облегчает сглаживание. Мостовая схема В. т. (рис. 1, в) также двухполупериодная, но вторичная обмотка трансформатора выполнена без средней точки и имеет в два раза меньшее количество витков по сравнению со вторичной обмоткой трансформатора на рис. 1, б. Дополнительное сглаживание выпрямленного тока в этих схемах обеспечивается индуктивно-ёмкостными либо резистивно-ёмкостными фильтрами (см. Электрический фильтр). Указанные схемы В. т. применяют обычно в системах питания устройств, у которых потребляемая мощность не превышает нескольких квт (радиоприёмники, телевизоры, некоторые устройства автоматики и телемеханики и др.), и лишь в отдельных случаях для питания мощных (до тысячи квт) устройств (например, двигателей электровозов). Существуют В. т., в которых наряду с выпрямлением тока осуществляется умножение выпрямленного напряжения. Схемы с умножением обычно применяют в высоковольтных установках, предназначенных для испытания электрической изоляции, а также в рентгеновских установках, электронных осциллографах и т.п.          В трёхфазных цепях (См. Трёхфазная цепь) для питания мощных промышленных установок, во избежание несимметричности нагрузки на сеть электроснабжения, применяют схемы трёхфазных В. т. Первичная обмотка трансформатора в таких В. т. соединяется в звезду или треугольник. В зависимости от числа вторичных обмоток трансформатора различают 3-, 6-, 12-, 18-фазные и т.д. однополупериодные и мостовые выпрямители трёхфазного тока. На рис. 2, а приведена трёхфазная однополупериодная схема. Первичная обмотка трансформатора соединена треугольником, а вторичная — звездой. Фазные токи i1, i2, i3 выпрямляются и суммируются, образуя выпрямленный выходной ток J. В мостовой трёхфазной схеме (рис. 2, б) обе обмотки трансформатора соединены звездой. Основные преимущества её такие же, как и у однофазных схем В. т.

         Лит.: Каганов И. Л., Электронные и ионные преобразователи, ч. 1—3, М. — Л., 1950—56.

         М. М. Гельман.

        Рис. 1. Схемы выпрямителей однофазного тока: а — однополупериодная; б — двухполупернодная; в — мостовая.

        Рис. 1. Схемы выпрямителей однофазного тока: а — однополупериодная; б — двухполупернодная; в — мостовая.

        Рис. 2. Схемы выпрямителей трёхфазного тока: а — однополупериодная; б — двухполупериодная мостовая.

        Рис. 2. Схемы выпрямителей трёхфазного тока: а — однополупериодная; б — двухполупериодная мостовая.

Ликбез КО. Лекция №1 Схемы выпрямления электрического тока.


Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:
Uср = Umax / π = 0,318 Umax

где: π - константа равная 3,14.
Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.

Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку Rн, диод VD2 и возвращается в обмотку трансформатора через точку «А». Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку Rн, диод VD1 и возвращается в обмотку трансформатора через точку «В».

Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.

Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.

По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:
Uср = 2*Umax / π = 0,636 Umax

где: π - константа равная 3,14.
Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго - положительный):

 
Трёхфазные выпрямители

Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.

На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.

За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.

На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).

За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую

Как источники питания превращают переменный ток в постоянный в электронных схемах

  1. Программирование
  2. Электроника
  3. Компоненты
  4. Как источники питания превращают переменный ток в постоянный в электронных схемах

Дуг Лоу

Задача преобразования переменного тока в постоянный называется выпрямлением , , а электронная схема, которая выполняет эту работу, называется выпрямителем .Наиболее распространенный способ преобразования переменного тока в постоянный - использование одного или нескольких диодов , тех удобных электронных компонентов, которые позволяют току проходить в одном направлении, но не в другом.

Хотя выпрямитель преобразует переменный ток в постоянный, полученный постоянный ток не является постоянным напряжением. Правильнее было бы назвать его «пульсирующим постоянным током». Хотя пульсирующий постоянный ток всегда движется в одном и том же направлении, уровень напряжения имеет отчетливую пульсацию, повышаясь и понижаясь немного синхронно с формой волны переменного напряжения, подаваемого на выпрямитель.

Для многих цепей постоянного тока значительная пульсация в источнике питания может привести к неисправности цепи. Следовательно, требуется дополнительная фильтрация, чтобы «сгладить» пульсирующий постоянный ток, исходящий от выпрямителя, чтобы устранить пульсации.

Вы можете создать три различных типа выпрямительных схем: полуволновые, двухполупериодные и мостовые. Ниже описывается каждый из этих трех типов выпрямителей.

Однополупериодный выпрямитель

Самый простой выпрямитель состоит из одинарного диода.Этот тип выпрямителя называется однополупериодным выпрямителем , потому что он передает только половину входного переменного напряжения на выход.

Когда напряжение переменного тока положительно на катодной стороне диода, диод пропускает ток на выход. Но когда переменный ток меняет направление и становится отрицательным на катодной стороне диода, диод блокирует ток, так что на выходе не появляется напряжение.

Однополупериодные выпрямители

достаточно просты в сборке, но не очень эффективны.Это связано с тем, что весь отрицательный цикл входа переменного тока блокируется однополупериодным выпрямителем. В результате выходное напряжение в половине случаев равно нулю. Это приводит к тому, что среднее напряжение на выходе составляет половину входного напряжения.

Обратите внимание на резистор с маркировкой R L . Этот резистор на самом деле не является частью выпрямительной цепи. Вместо этого он представляет собой сопротивление нагрузки, которое в конечном итоге будет помещено в схему, когда источник питания будет использоваться.

Двухполупериодный выпрямитель

Двухполупериодный выпрямитель использует два диода, которые позволяют пропускать как положительную, так и отрицательную сторону входа переменного тока.Диоды подключены к трансформатору.

Обратите внимание, что для двухполупериодного выпрямителя необходимо использовать трансформатор с центральным отводом. Диоды подключены к двум внешним выводам, а центральный отвод используется в качестве общего заземления для выпрямленного постоянного напряжения. Двухполупериодный выпрямитель преобразует обе половины синусоидальной волны переменного тока в постоянный ток положительного напряжения.

В результате получается постоянное напряжение, которое пульсирует с двойной частотой входного переменного напряжения. Другими словами, при условии, что на входе используется бытовой ток 60 Гц, на выходе будет импульс постоянного тока с частотой 120 Гц.

Мостовой выпрямитель

Проблема с двухполупериодным выпрямителем заключается в том, что для него требуется трансформатор с центральным отводом, поэтому он вырабатывает постоянный ток, составляющий лишь половину от общего выходного напряжения трансформатора.

Мостовой выпрямитель преодолевает это ограничение за счет использования четырех диодов вместо двух. Диоды расположены в форме ромба, так что на каждой половине фазы синусоидальной волны переменного тока два диода пропускают ток к положительной и отрицательной сторонам выхода, а два других диода блокируют ток.Мостовой выпрямитель не требует трансформатора с центральным отводом.

Выход мостового выпрямителя является импульсным постоянным током, как и выход двухполупериодного выпрямителя. Однако используется полное напряжение вторичной обмотки трансформатора.

Вы можете построить мостовой выпрямитель, используя четыре диода, или вы можете использовать мостовой выпрямитель IC, который содержит четыре диода в правильном расположении. ИС мостового выпрямителя имеет четыре контакта: два для входа переменного тока и два для выхода постоянного тока.

,

ВЫПРЯМИТЕЛЯ. ВВЕДЕНИЕ  Выпрямитель - это электрическое устройство, которое преобразует переменный ток (AC), который периодически меняет направление, в постоянный.

Презентация на тему: «ВЫПРЯМИТЕЛИ. ВВЕДЕНИЕ  Выпрямитель - это электрическое устройство, преобразующее переменный ток (AC), который периодически меняет направление, в постоянный». - Транскрипт презентации:

1 ВЫПРЯМИТЕЛЕЙ RECTIFIERS

2 ВВЕДЕНИЕ  Выпрямитель - это электрическое устройство, которое преобразует переменный ток (AC), который периодически меняет направление, в постоянный ток (DC), который имеет только одно направление, процесс, известный как выпрямление.INTRODUCTION  A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which is in only one direction, a process known as rectification.

3 ТИПЫ ВЫПРЯМИТЕЛЯ Полупериодный выпрямитель Полноволновой выпрямитель Мостовой выпрямитель TYPES OF RECTIFIERS Half wave Rectifier Full wave Rectifier Bridge Rectifier

4 ПОЛОВИННЫЙ ВЫПРЯМИТЕЛЬ  При полуволновом выпрямлении либо положительная, либо отрицательная половина волны переменного тока проходит, а другая половина блокируется.  Поскольку только половина входного сигнала достигает выхода, его использование для передачи энергии очень неэффективно.HALF WAVE RECTIFIER  In half wave rectification, either the positive or negative half of the AC wave is passed, while the other half is blocked.

5 РАБОЧАЯ АНИМАЦИЯ ВЫПРЯМИТЕЛЯ ПОЛОВИНЫ HALF WAVE RECTIFIER WORKING ANIMATION

6 ПОЛОВИННАЯ РЕКТИФИКАЦИЯ HALF WAVE RECTIFICATION

7 РАСЧЕТ ВЫХОДНОГО НАПРЯЖЕНИЯ ПОСТОЯННОГО ТОКА  Выходное постоянное напряжение полуволнового выпрямителя можно рассчитать с помощью следующих двух идеальных уравнений OUTPUT DC VOLTAGE CALCULATION  The output DC voltage of a half wave rectifier can be calculated with the following two ideal equations

8 ПОЛНОСТЬЮ ВОЛНОВОЙ ВЫПРЯМИТЕЛЬ  Двухполупериодный выпрямитель преобразует всю форму входного сигнала в одну с постоянной полярностью (положительной или отрицательной) на выходе. Двухполупериодное выпрямление преобразует обе полярности входного сигнала в постоянный ток, что делает его более эффективным. FULL WAVE RECTIFIER  A full-wave rectifier converts the whole of the input waveform to one of constant polarity (positive or negative) at its output.

10 ПОЛНОСТЬЮ ВОЛНОВОЕ ВЫПРЯМИРОВАНИЕ  В схеме с нецентральным ответвлением трансформатора требуются четыре диода вместо одного, необходимого для полуволнового выпрямления.  Для однофазного переменного тока, если трансформатор с центральным ответвлением, то два диода, соединенные спина к спине (т. Е. Аноды с анодом или катод с катодом), могут образовать двухполупериодный выпрямитель.FULL WAVE RECTIFICATION  In a circuit with a non - center tapped transformer, four diodes are required instead of the one needed for half- wave rectification.

.

Основы эксплуатации, мониторинга и обслуживания выпрямителя

Устойчивость, кажется, является последней модной фразой, а катодная защита (CP) является важным компонентом устойчивости многих металлических конструкций. Что может быть лучше для сохранения и обслуживания инфраструктуры, чем уменьшение коррозии? Некоторые системы CP состоят из расходуемых анодов, которые подвержены естественной коррозии, чтобы защитить менее активные металлы, такие как сталь. Другим нужны источники питания, чтобы направлять защитный ток в нужном направлении.Наиболее распространенными источниками напряжения подаваемого тока являются выпрямители, которые могут выйти из строя. Выпрямители в хорошем состоянии могут обеспечить бесперебойную работу системы CP, что снижает затраты на ремонт и рабочее время / время технических специалистов. В этой статье обсуждаются основы эксплуатации и обслуживания выпрямителя вместе с основными рекомендациями.

Устойчивость - это способность терпеть. Основная цель любой системы катодной защиты (CP) - уменьшить коррозию. Сохранение трубы или другой металлической конструкции за счет предотвращения коррозионного повреждения позволяет ей выдержать нагрузку.Таким образом, уменьшение коррозии ведет к устойчивости.

CP чаще всего достигается с помощью гальванической (протекторной) системы или системы подаваемого тока. Гальваническая система CP состоит из расходуемых анодов, обычно сделанных из активных металлов (алюминия, магния или цинка), которые подвержены коррозии, чтобы обеспечить защитные токи для менее активного металла, такого как трубопроводная сталь. Система CP наложенного тока (ICCP) использует внешнее питание в виде выпрямителя или другого источника напряжения, который управляет анодами наложенного тока (например,(например, чугун, графит и смешанный оксид металлов) для коррозии с целью распределения защитного тока по структуре (катоду).

Выпрямитель - это электрическое устройство, которое преобразует переменный ток (AC), который периодически меняет направление, в постоянный ток (DC), который течет только в одном направлении. Обязательно, чтобы выпрямитель оставался в состоянии постоянной работы. Поскольку выпрямитель - это электрическое устройство, он уязвим для скачков напряжения. Удар молнии поблизости может вызвать срабатывание автоматического выключателя или короткое замыкание диода.Следовательно, регулярные проверки и мониторинг необходимы для поддержания исправного функционирования выпрямителя с длительным сроком службы.

Безопасность - самый важный аспект всех проверок. Целью любой задачи, связанной с работой выпрямителя, является безопасное выполнение работы, включая использование надлежащих средств защиты.

Эксплуатация

Выпрямитель состоит из трех основных компонентов: трансформатора, блока и шкафа. Назначение трансформатора - безопасно отделить входящее переменное напряжение (первичная сторона) от вторичной стороны, которое регулируется для управления выходным напряжением выпрямителя.Обычно эти регулировки выполняются с ответвителями, подключенными к вторичной обмотке с интервалами, которые предлагают несколько вариантов настройки. Пакет является фактическим выпрямителем и состоит из набора кремниевых диодов или селеновых пластин, которые функционируют как однонаправленные токовые клапаны. Диоды или пластины сконфигурированы так, что переменный ток периодически течет в одном направлении и блокируется в другом, в результате чего оба направления волны переменного тока текут в одном направлении. В шкафу с тестовой панелью надежно размещены эти компоненты, что позволяет осуществлять мониторинг и другие расширенные операции.

Дополнительные элементы, которые можно найти в типичном выпрямителе, включают автоматический выключатель, измерители выходного напряжения и тока, грозовые разрядники, ограничители перенапряжения, ответвления трансформатора и предохранители.

В таблице 1 перечислены общие правила, которые можно и нельзя делать с выпрямителями. 1 Эта информация помогает обеспечить безопасность персонала, а также надежную и долгосрочную работу выпрямителя.

Мониторинг

Регулярный контроль рекомендуется для всех выпрямительных установок.Основная цель контроля - убедиться, что выпрямитель все еще работает, и что скачок напряжения не сработал в выключателе. Некоторые объекты требуют определенных проверок через определенные промежутки времени. Например, операторы трубопроводов природного газа и нефтепродуктов должны проверять свои выпрямители шесть раз в год с интервалами, не превышающими 21 месяц. Кроме того, политика компании может предписывать еще более строгие интервалы проверок.

Мониторинг обычно включает визуальный осмотр и электрические испытания.Визуальный осмотр может включать поиск физических повреждений установки / шкафа / компонентов, признаков перегрева и признаков гнезд насекомых / грызунов, а также запись характеристик выпрямительного блока и показаний счетчика / настроек крана. Тестирование часто включает в себя ручные измерения выходного напряжения и тока выпрямителя для проверки точности счетчика и потенциалов структуры к электролиту. Также имеется оборудование для удаленного мониторинга труднодоступных выпрямителей; однако эти устройства лучше всего использовать в качестве дополнения к мониторингу на месте, а не для его замены.

Перед проведением визуального осмотра и тестирования важно надеть соответствующие средства индивидуальной защиты (СИЗ). Следует использовать как минимум защитные очки, кожаную рабочую обувь (при необходимости с водонепроницаемым покрытием) и кожаные или резиновые перчатки. Политика компании может определять дополнительные требования к СИЗ.

При первом приближении к выпрямителю помните о его окружении, например о неровностях земли, ядовитых растениях или стоячей воде. Используйте все органы чувств для обнаружения признаков неисправности, в том числе визуальные (например,ж., жжение) и слышимое (например, треск). Проверьте шкаф на наличие переменного тока с помощью утвержденного детектора переменного тока. Старомодный способ определить, наэлектризован ли шкаф (или горячий), заключался в том, чтобы почистить его тыльной стороной руки. С появлением детектора переменного тока в этом больше нет необходимости и необходимости. Постучите по шкафу, чтобы уведомить всех жителей (ос, мышей, пауков и даже змей) о том, что вы входите. Обязательно имейте под рукой спрей от насекомых.

Техническое обслуживание

Основными причинами выхода из строя выпрямителя являются небрежное обращение, возраст и молнии.Перед выполнением любых действий по устранению неисправностей неработающего выпрямителя обязательно выключите его как с помощью автоматического выключателя, так и при отключении панели. Наиболее частые проблемы выпрямителя включают неисправные счетчики, незакрепленные клеммы, перегоревшие предохранители, открытую конструкцию / заземляющие провода и повреждение молнией (даже при наличии грозозащитных разрядников). Целью поиска и устранения неисправностей является систематическая изоляция компонентов выпрямителя до тех пор, пока не будет обнаружена неисправная деталь, и рекомендуется следовать рекомендациям производителя выпрямителя по обслуживанию и устранению неисправностей.

Протестируйте выключатель, трансформатор, блок выпрямителя, счетчики, предохранители, дроссель, конденсаторы и грозовые разрядники по отдельности. Следите за ненадежными соединениями, признаками искрения и странным запахом. Для проверки целостности конструкции и выводных проводов заземления могут потребоваться дополнительные испытания.

Таблица 2 содержит схему поиска и устранения неисправностей 2 , предназначенную для быстрой диагностики проблем выпрямителя.

Общие сценарии и уловки торговли

Часто встречается выпрямитель с выходом по напряжению и без токового выхода.Поскольку выходное напряжение говорит о том, что схемы выпрямления не повреждены, один или оба выходных кабеля могут быть повреждены, либо заземление анода может быть полностью разряжено. Чтобы начать поиск и устранение неисправностей, определите подходящее временное электрически изолированное заземление, такое как водопропускная труба, забор, анкер с растяжкой опоры электропередачи или уличный знак. Выключите выпрямитель, затем отсоедините подводящий провод конструкции и подключите временное заземление к отрицательному выводу. Отрегулируйте планки отводов до одного из самых низких значений и включите выпрямитель.Если выпрямитель теперь выдает как вольт, так и ампер, значит, подводящий провод конструкции поврежден. Если по-прежнему нет усилителей, выключите выпрямитель, верните провод структурного вывода к отрицательному выводу, отсоедините провод анодного вывода и подключите временное заземление к положительному выводу. Включите выпрямитель. Если выпрямитель теперь выдает и вольт, и ампер, значит, провод анода оборван или существующее заземление истощено. Если по-прежнему нет усилителей, то требуется дополнительное тестирование для оценки эффективности конструкции и анодных выводных проводов, чтобы определить, связана ли проблема с обоими проводами.

Другой распространенный случай - найти выпрямитель с перегоревшим предохранителем. Это может быть результатом скачка напряжения и просто требует установки нового предохранителя. Однако предохранители выпрямителя могут быть довольно дорогими. Временная установка автоматического выключателя поперек зажимов предохранителей позволяет проверить работу выпрямителя, не потребляя несколько предохранителей. Для этого испытания можно использовать типичный домашний автоматический выключатель подходящего размера для применения. Просто прикрепите провода измерительных выводов к каждому концу автоматического выключателя и прикрепите провода к каждому из имеющихся монтажных зажимов предохранителя.Убедитесь, что автоматический выключатель и подводящие провода не касаются шкафа выпрямителя или любого другого металлического предмета. Включите выпрямитель. Если прерыватель не срабатывает, просто замените предохранитель. Если автоматический выключатель срабатывает, значит, существуют другие проблемы, и необходимо выполнить дополнительное устранение неисправностей.

Иногда выпрямитель можно встретить с сработавшим автоматическим выключателем. Это может быть результатом скачка напряжения и просто требует перезапуска автоматического выключателя. Однако скачки напряжения нежелательны, поскольку выпрямитель может оставаться выключенным в течение длительного времени.Обязательно проверьте эффективность электрического заземления выпрямителя и следуйте рекомендациям Национального электрического кодекса (NEC). При необходимости установите дополнительное заземление. Кроме того, существуют ограничители перенапряжения, которые могут быть установлены для уменьшения скачков напряжения. Обязательно следуйте рекомендациям производителя по размеру.

Уход за выпрямителем также очень важен для предотвращения строительства гнезд насекомыми, грызунами и другими животными. Гнезда насекомых и грызунов могут быть опасны внутри шкафа выпрямителя.Укусы насекомых или даже змеи определенно нежелательны. Однако сами гнезда тоже могут вызвать проблемы. Помимо возможной опасности возгорания, гнездо может препятствовать прохождению воздушного потока через шкаф выпрямителя и приводить к перегреву (и возможному выходу из строя) компонентов. Следите за тем, чтобы насекомые и грызуны не попадали в выпрямитель. Некоторые из способов удержать вредителей - закрыть все проникновения в шкаф, кроме тех, которые предназначены для вентиляции, или использовать химические пестициды, чтобы уменьшить их интерес к въезду.Для герметизации проходов и каналов можно использовать уплотнение канала или вязко-эластичный аморфный неполярный полиолефин (например, VISCOTAQ ), чтобы закрыть любое из отверстий шкафа. Простой и эффективный химический пестицид, который идеально подходит для использования в выпрямителе, - это небольшая открытая чашка нафталина. Их легко приобрести, и они очень хорошо работают.

Сводка

Ключом к устойчивости конструкций является эффективное CP как средство контроля / смягчения коррозии. Выпрямители - отличные инструменты, которые помогают обеспечить эффективный ICCP.Они требуют планового контроля и порой мелкого ремонта. Мониторинг и обслуживание выпрямителя необходимы, но их можно выполнять безопасно, что помогает обеспечить надежную и долгосрочную работу выпрямителя.

Благодарности

Автор благодарит за поддержку Integrated Rectifier Technologies, Inc., 15360–116 Ave., Эдмонтон, AB, Канада, T5M 3Z6; Universal Rectifiers, Inc., 1631 Cottonwood School Rd., Rosenberg, TX 77471; ERICO International, 34600 Solon Rd., Solon, OH 44139; Amcorr Products & Services, 8000 IH 10 W.# 600, Сан-Антонио, Техас 78230; Тим Дженкинс; и Дон Олсон.

Ссылки

1 «Общие правила использования выпрямителей», Integrated Rectifier Technologies, Inc., http://irtrectifier.com/technical-info/rectifier-safety/ (15 июля 2013 г.).

2 «Устранение неисправностей выпрямителя», Universal Rectifiers, Inc., http://www.universalrectifiers.com/PDF%20Files/Troubleshooting.pdf (15 июля 2013 г.).

Эта статья основана на документе CORROSION 2015 No. 5667, представленный в Далласе, штат Техас.

Торговое наименование.

,

Первая оптическая ректенна - комбинированный выпрямитель и антенна - преобразует свет в постоянный ток

First optical rectenna -- combined rectifier and antenna -- converts light to DC current Оптическая ректенна из углеродных нанотрубок преобразует зеленый лазерный свет в электричество в лаборатории Баратунде Кола Технологического института Джорджии. Предоставлено: Роб Фелт, Технологический институт Джорджии.

Используя компоненты нанометрового размера, исследователи продемонстрировали первую оптическую ректенну, устройство, которое сочетает в себе функции антенны и выпрямительного диода для преобразования света непосредственно в постоянный ток.

Основанные на многослойных углеродных нанотрубках и крошечных выпрямителях, изготовленных на них, оптические ректенны могут предоставить новую технологию для фотодетекторов, которые будут работать без необходимости охлаждения, сборщики энергии, которые будут преобразовывать отходящее тепло в электричество - и, в конечном итоге, новый способ эффективно улавливать солнечную энергию.

В новых устройствах, разработанных инженерами Технологического института Джорджии, углеродные нанотрубки действуют как антенны для улавливания света от солнца или других источников. Когда световые волны попадают на антенны из нанотрубок, они создают колеблющийся заряд, который проходит через прикрепленные к ним выпрямители. Выпрямители включаются и выключаются на рекордно высоких петагерцовых скоростях, создавая небольшой постоянный ток.

Миллиарды ректенн в массиве могут производить значительный ток, хотя эффективность продемонстрированных устройств остается ниже одного процента.Исследователи надеются увеличить этот результат с помощью методов оптимизации и полагают, что ректенна с коммерческим потенциалом может быть доступна в течение года.

«В конечном итоге мы могли бы сделать солнечные элементы, которые будут вдвое эффективнее при стоимости в десять раз ниже, и это для меня возможность очень сильно изменить мир», - сказал Баратунде Кола, доцент Джорджа В. Школа машиностроения Вудраффа Технологического института Джорджии. «Будучи надежным высокотемпературным детектором, эти ректенны могут быть совершенно разрушительной технологией, если мы сможем достичь эффективности в один процент.Если мы сможем добиться более высокого КПД, мы сможем применить его к технологиям преобразования энергии и улавливанию солнечной энергии ».

Исследование, проведенное при поддержке Агентства перспективных оборонных исследовательских проектов (DARPA), Центра систем космической и морской войны (SPAWAR) и Управления армейских исследований (ARO), планируется опубликовать 28 сентября в журнале Nature Nanotechnology .

Используя компоненты нанометрового масштаба, исследователи продемонстрировали первую оптическую ректенну, устройство, которое сочетает в себе функции антенны и выпрямительного диода для преобразования света непосредственно в постоянный ток.Предоставлено: Технологический институт Джорджии.

Разработанные в 1960-х и 1970-х годах, ректенны работали на длинах волн всего десять микрон, но более 40 лет исследователи пытались создать устройства на оптических длинах волн. Было много проблем: сделать антенны достаточно маленькими, чтобы связывать длины оптических волн, и изготовить согласующий выпрямительный диод, достаточно маленький и способный работать достаточно быстро, чтобы улавливать колебания электромагнитных волн. Но потенциал высокой эффективности и низкой стоимости заставлял ученых работать над этой технологией.

«Физика и научные концепции были там», - сказал Кола. «Сейчас было идеальное время, чтобы попробовать что-то новое и заставить устройство работать благодаря достижениям в технологии производства».

Используя металлические многослойные углеродные нанотрубки и наноразмерные технологии изготовления, Кола и его сотрудники Аша Шарма, Вирендра Сингх и Томас Бугер сконструировали устройства, которые используют волновую природу света, а не его частичную природу.Они также использовали длинную серию тестов - и более тысячи устройств - для проверки измерений как тока, так и напряжения, чтобы подтвердить существование функций выпрямителя, которые были предсказаны теоретически. Аппараты работали в диапазоне температур от 5 до 77 градусов Цельсия.

Производство ректенн начинается с роста лесов вертикально ориентированных углеродных нанотрубок на проводящей подложке. Используя атомно-слойное химическое осаждение из паровой фазы, нанотрубки покрывают материалом оксида алюминия для их изоляции.Наконец, физическое осаждение из паровой фазы используется для осаждения оптически прозрачных тонких слоев кальция, а затем алюминия на вершине леса нанотрубок. Разница в работе выхода между нанотрубками и кальцием обеспечивает потенциал около двух электрон-вольт, которого достаточно, чтобы вытеснить электроны из антенн углеродных нанотрубок, когда они возбуждаются светом.

Во время работы колебательные волны света проходят через прозрачный кальций-алюминиевый электрод и взаимодействуют с нанотрубками.Переходы металл-изолятор-металл на концах нанотрубок служат в качестве выпрямителей, которые включаются и выключаются с фемтосекундными интервалами, позволяя электронам, генерируемым антенной, течь в одном направлении в верхний электрод. Сверхнизкая емкость, порядка нескольких аттофарад, позволяет диоду диаметром 10 нанометров работать на этих исключительных частотах.

First optical rectenna -- combined rectifier and antenna -- converts light to DC current Доцент Технологического института Джорджии Баратунде Кола измеряет мощность, создаваемую преобразованием зеленого лазерного излучения в электричество с помощью оптической ректенны из углеродных нанотрубок.Предоставлено: Роб Фелт, Технологический институт Джорджии.

«Ректенна - это в основном антенна, соединенная с диодом, но когда вы переходите в оптический спектр, это обычно означает наноразмерную антенну, соединенную с диодом металл-изолятор-металл», - пояснил Кола. «Чем ближе вы можете поднести антенну к диоду, тем она эффективнее. Таким образом, в идеальной конструкции антенна используется в качестве одного из металлов в диоде - и это структура, которую мы создали».

Ректенны, изготовленные группой Колы, выращиваются на жестких подложках, но цель состоит в том, чтобы вырастить их на фольге или другом материале, из которого можно было бы производить гибкие солнечные элементы или фотодетекторы.

Cola рассматривает построенные ректенны как простое доказательство принципа. У него есть идеи о том, как повысить эффективность за счет изменения материалов, открытия углеродных нанотрубок для создания нескольких каналов проводимости и уменьшения сопротивления в структурах.

«Мы думаем, что сможем снизить сопротивление на несколько порядков, просто улучшив конструкцию наших устройств», - сказал он. «Основываясь на том, что сделали другие, и на том, что показывает нам теория, я считаю, что эти устройства могут достичь эффективности более 40 процентов."


Новая запатентованная технология изготовления ключ к новой технологии солнечной энергии
Дополнительная информация: Аша Шарма, Вирендра Сингх, Томас Л.Бугер и Баратунде А. Кола, «Оптическая ректенна из углеродных нанотрубок», Nature Nanotechnology , 2015. dx.doi.org/10.1038/nnano.2015.220 Предоставлено Технологический институт Джорджии

Цитата : Первая оптическая ректенна - комбинированный выпрямитель и антенна - преобразует свет в постоянный ток (2015, 28 сентября) получено 11 августа 2020 с https: // физ.орг / Новости / 2015-09-оптический rectennacombined-выпрямитель-antennaconverts-dc.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

,

Оставить комментарий

avatar
  Подписаться  
Уведомление о