Род тока ас – AC, DC — что это такое?

Категории применения электрооборудования при работе на постоянном (DC) и переменном (AC) токе

Переменный AC-1 Электроцепи сопротивления; неиндуктивная или малоиндуктивная нагрузка
AC-2 Пуск и торможение противовключением электродвигателей с фазным ротором
AC-3 Прямой пуск электродвигателей с короткозамкнутым ротором, отключение вращающихся двигателей
AC-4 Пуск и торможение противовключением электродвигателей с короткозамкнутым ротором
AC-11 Управление электромагнитами переменного тока
AC-20 Коммутация электрических цепей без тока или с незначительным током
AC-21 Коммутация активных нагрузок, включая умеренные перегрузки
AC-22 Коммутация смешанных активных и индуктивных нагрузок, включая умеренные перегрузки
AC-23 Коммутация нагрузок двигателей или других высокоиндуктивных нагрузок
Переменный и постоянный A Отключение электрических цепей в условиях короткого замыкания при отсутствии специальной избирательности (селективности) по времени относительно последовательно соединенных нижестоящих на стороне нагрузки аппаратов
B Отключение электрических цепей в условиях короткого замыкания при наличии специальной избирательности (селективности) по времени относительно последовательно соединенных нижестоящих на стороне нагрузки аппаратов
Постоянный DC-1 Электропечи сопротивления; неиндуктивная или малоиндуктивная нагрузка
DC-2 Пуск электродвигателей с параллельным возбуждением и отключение вращающихся двигателей с параллельным возбуждением
DC-3 Пуск электродвигателей с параллельным возбуждением, отключение неподвижных или медленно вращающихся электродвигателей, торможение противовключением
DC-4 Пуск электродвигателей с последовательным возбуждением и отключение вращающихся электродвигателей с последовательным возбуждением
DC-5 Пуск электродвигателей с последовательным возбуждением, отключение неподвижных или медленно вращающихся двигателей, торможение противовключением
DC-11 Управление электромагнитами постоянного тока
DC-20 Включение и отключение цепи без нагрузки или с незначительным током
DC-21 Коммутация активных нагрузок, включая умеренные перегрузки
DC-22 Коммутация смешанных активных и индуктивных нагрузок, включая умеренные перегрузки, например, двигателей с параллельным возбуждением
DC-23 Коммутация высокоиндуктивных нагрузок, например, двигателей с последовательным возбуждением

www.profsector.com

Категории применения пускателей и контакторов на переменный ток и на постоянный ток.

Переменный

АС-1

Электроцепи сопротивления; неиндуктивная или малоиндуктивная нагрузка

АС-2

Пуск и торможение противовключением электродвигателей с фазным ротором

АС-3

Прямой пуск электродвигателей с короткозамкнутым ротором, отключение вращающихся двигателей (может предусматривать случайные повторно-кратковременные включения или торможение противотоком ограниченной длительности, например при наладке механизма)

АС-4

Пуск и торможение противовключением электродвигателей с короткозамкнутым ротором

АС-5а, AC-5b

Коммутирование разрядных электрических ламп и ламп накаливания соответственно

AC-6a, AC-6b

Управление трансформаторами и батареями конденсаторов соответственно

AC-7a, AC-7b

Коммутирование слабоиндуктивных и двигательных нагрузок в бытовых сетях соответственно 

AC-8a, AC-8b

Коммутирование герметичных двигателей компрессоров холодильников (сочетание двигателя и компрессора в одном корпусе) с ручным или автоматическим взводом расцепителей перегрузки соответственно

AC-11

Управление электромагнитами переменного тока

AC-20

Коммутация электрических цепей без тока или с незначительным током

AC-21

Коммутация активных нагрузок, включая умеренные перегрузки

AC-22

Коммутация смешанных активных и индуктивных нагрузок, включая умеренные перегрузки

AC-23

Коммутация нагрузок двигателей или других высокоиндуктивных нагрузок

Постоянный

ДС-1

Электропечи сопротивления; неиндуктивная или малоиндуктивная нагрузка

ДС-2

Пуск электродвигателей с параллельным возбуждением и отключение вращающихся двигателей с параллельным возбуждением

ДС-3

Пуск электродвигателей с параллельным возбуждением, отключение неподвижных или медленно вращающихся электродвигателей, торможение противовключением

ДС-4

Пуск электродвигателей с последовательным возбуждением и отключение вращающихся электродвигателей с последовательным возбуждением

ДС-5

Пуск электродвигателей с последовательным возбуждением, отключение неподвижных или медленно вращающихся двигателей, торможение противовключением

ДС-6

Управление лампами с вольфрамовой нитью накаливания

ДС-11

Управление электромагнитами постоянного тока

DС-20

Включение и отключение цепи без нагрузки или с незначительным током

DС-21

Коммутация активных нагрузок, включая умеренные перегрузки

DС-22

Коммутация смешанных активных и индуктивных нагрузок, включая умеренные перегрузки, например, двигателей с параллельным возбуждением

DС-23

Коммутация высокоиндуктивных нагрузок, например, двигателей с последовательным возбуждением

priborika.ru

Расшифровка кода категорий применений (AC-20, AC-21, AC-22, AC-23)

Род тока

Режим (категория)

Типичная область применения

Стандарт на изделие

Переменный

~

AC-12

Управление омическими и статическими изолированными нагрузками посредством оптронов

ГОСТ Р 50030.5.1 Аппараты и коммутационные элементы цепей управления

AC-13

Управление статическими изолированными нагрузками посредством трансформаторов

AC-14

Управление слабыми электромагнитными нагрузками

AC-15

Управление электромагнитными нагрузками

AC-20

Соединение и разъединение при нулевой нагрузке

ГОСТ Р 50030.5.3 Выключатели, разъединители, выключатели-разъединители и комбинация их с предохранителями

AC-21

Управление омическими нагрузками, в том числе при умеренных перегрузках

AC-22

Управление смешанными омическими и индуктивными нагрузками

AC-23

Управление двигателями и другими сильно индуктивными нагрузками

Постоянный

=

DC-20

Соединение и разъединение при нулевой нагрузке

ГОСТ Р 50030.5.3 Выключатели, разъединители, выключатели-разъединители и комбинация их с предохранителями

DC-21

Управление омическими нагрузками, в том числе при умеренных перегрузках

DC-22

Управление смешанными омическими и индуктивными нагрузками

DC-23

Управление двигателями и другими сильно индуктивными нагрузками

amadon.ru

Категории нагрузок реле переменного и постоянного тока

Категории нагрузок реле

Цепи переменного тока (AC)
Категория нагрузки Типичные примеры нагрузок
АС-1 Активные нагрузки или нагрузки с незначительной индуктивностью    
АС-2 Коллекторные электродвигатели, включение и выключение   
АС-3 Асинхронные электродвигатели с КЗ ротором, включение, выключение при вращающемся роторе   
АС-4   Асинхронные электродвигатели с КЗ ротором, включение и выключение при вращающемся роторе  
АС-5а Включение люминесцентных ламп или ламп с электронным управлением разрядом    
АС-5б Включение ламп накаливания   
АС-6а Включение и отключение трансформаторов   
АС-6б Включение батарей конденсаторов   
АС-7а Небольшие индуктивные нагрузки в оборудовании для бытовой электротехники    
АС-7б Включение и отключение электродвигателей бытовой электротехники    
АС-8а   Герметичные компрессоры холодильников с ручным сбросом после возникновения перегрузки  
АС-8б Герметичные компрессоры холодильников с автоматическим сбросом и перезапуском после возникновения перегрузки    
АС-12 Управление резистивными нагрузками и полупроводниковыми приборами при применении опторазвязок для гальванической изоляции    
    
АС-13 Управление резистивными нагрузками и полупроводниковыми приборами при применении трансформаторов для гальванической изоляции
АС-14 Управление небольшими электромагнитами и контакторами   
АС-15 Управление электромагнитами переменного тока    
АС-20 Коммутация при отсутствии тока нагрузки   
АС-21 Управление резистивными нагрузками с небольшими перегрузками при переходных процессах    
АС-22 Управление резистивно-индуктивными нагрузками, включая небольшие перегрузки при переходных процессах    
АС-23 Коммутация электродвигателей или других мощных индуктивных нагрузок    

 

Цепи переменного и постоянного тока (AC/DC)
Категория нагрузки
Типичные примеры нагрузок
А   Защитные схемы без требований к кратковременному току перегрузки  
В Защитные схемы с нормированным кратковременным током перегрузки    

 

Цепи постоянного тока (DC)
Категория нагрузки Типичные примеры нагрузок
DC-1 Активные нагрузки или нагрузки с незначительной индуктивностью   
DC-3 Шунтовые электродвигатели, включение, выключение при вращающемся роторе, динамическое торможение    
DC-5 Электродвигатели, включение, выключение при вращающемся роторе, динамическое торможение    
DC-6 Включение ламп накаливания    
DC-12 Управление резистивными нагрузками и полупроводниковыми приборами при применении опторазвязок для гальванической
     изоляции    
DC-13 Управление электромагнитами    
DC-14 Управление электромагнитными нагрузками со встроенными ограничительными резисторами    
DC-20 Коммутация при отсутствии тока нагрузки    
DC-21 Управление резистивными нагрузками с небольшими перегрузками при переходных процессах    
DC-22 Управление резистивно-индуктивными нагрузками, включая небольшие перегрузки при переходных процессах (например,
     шунтовые электродвигатели)    
DC-23 Коммутация электродвигателей или других мощных индуктивных нагрузок    

У нас вы можете приобрести различные виды реле лучшего качества от проверенных производителей.

Также на нашем сайте есть компенсатор реактивной мощности в Москве в магазине компании АТ-Электросистемы, который отличается высоким качеством и недорогими ценами.

at-electro.ru

каким символом обозначается на электроустановках

Заряженные частицы, перемещаясь, создают такое явление, как электрический ток. Применимо к электричеству этими частицами являются электроны. Они движутся по проводнику в электрической цепи от источника, выдающего заряд, к объекту, который этот заряд потребляет. Если это движение неизменно во времени и не меняет своего направления, его называют постоянным. Если такие изменения имеют место, говорят о переменном токе.

Движение заряженных частиц

Что такое переменный ток

В цепях постоянного электричества отрицательно заряженные частицы движутся от плюса к минусу. Если рассматривать источник тока как некоторый двухполюсник, имеющий два электрода, к которым подключается питаемая цепь, то на одном всегда будет плюс, а на другом – минус.

Переменный ток не позволяет зафиксировать такую маркировку полюсов. У двухполюсника переменного тока нельзя чётко обозначить, какой заряд присутствует на том или ином выводе. Можно рассматривать только мгновенные значения зарядов в определённый промежуток времени. Изменение полярности имеет временную зависимость. Это значит, что переменный ток меняет своё направление с течением времени.

Важно! Переменное электричество изменяется по гармоническому синусоидальному закону. Его графиком на оси координат является синусоида, в то время как график постоянного движения электронов представляет собой прямую линию, параллельную оси ОХ.

Графическое изображение двух типов электричества

Источники электрической энергии

Мировое производство электроэнергии базируется на работе электростанций. Основной принцип работы станций заключается в том, что турбины установленных в них электрогенераторов вращаются с помощью других видов энергии. Они получили своё название соответственно типу используемой энергии:

  • тепловые (ТЭС) – в качестве сырья используются органические виды топлива: уголь, газ, мазут и другие;
  • гидроэлектростанции (ГЭС) – лопасти турбины вращает падающая вода, она же используется для охлаждения рабочих поверхностей генераторов;
  • атомные станции (АЭС) – один из видов ТЭС, где для получения пара, вращающего турбину, используют тепло, выделяемое в результате ядерной реакции.

Размещение тех или иных видов электростанций зависит от распределения по регионам сырьевых ресурсов, географического расположения рек и выбора подходящих мест для возведения АЭС.

Внимание! Основную долю производства мировой электроэнергии до сих пор берут на себя ТЭС. Опасность при эксплуатации АЭС пока является сдерживающим фактором для полного перехода на этот мощный вид производства электричества.

Неравномерная плотность проживания населения на планете не позволяет максимально приблизить такие источники энергии к местам потребления. Поэтому приходится передавать производимое электричество на дальние расстояния. Так как и потребление, и получение энергии происходит в реальном режиме, созданы энергосистемы, объединяющие электростанции между собой. Кроме того, сами системы организованы в более мощные энергосистемы. Это сделано для создания резерва рабочей мощности и возможности регулировать подачу электроэнергии к потребителям в бесперебойном режиме.

Разница в часовых поясах, сезонные колебания потребления – всё это нагружает одни станции и недогружает другие. Энергосистемы позволяют станциям подпитывать друг друга в случае перегрузок.

Кроме традиционных электростанций, хорошо зарекомендовали себя альтернативные источники: ветряные генераторы и солнечные батареи. С их помощью решают задачи по обеспечению электропитанием потребителей в отдельных случаях.

Что касается источников постоянного тока, то их можно разделить на два типа:

  • химические – гальванические элементы, использующие реакции окисления, и электролитические, генерирующие энергию посредством электролиза;
  • электромеханические – генераторы постоянного тока, превращающие энергию вращения в её электрический вид.

Гальванические элементы (батарейки) имеют конечный срок службы. Они конструктивно изготовлены так, что после окончания реакции окисления вырабатывание электричества прекращается. Электролитические элементы (аккумуляторы) имеют периодический режим работы. После разряда их можно заряжать, подавая на их полюса ток заряда, и использовать снова.

Источники электроэнергии

Обозначения на схемах и в приборах

Графическое обозначение тока постоянной полярности на схемы наносится в виде знаков плюс (+) и минус (-). Источник электричества постоянной полярности имеет вид двух вертикальных чёрточек, одна из которых вдвое длиннее. Та, что короче, – это минус, длинная – плюс. Запомнить различие можно легко. Если длинную черту разделить пополам, то из неё можно сложить знак «+». На корпусах приборов, блоков питания, на гнёздах подключения разъёмов питания можно увидеть буквенное обозначение DC (direct current). Это по-английски означает «однонаправленный ток». Рядом часто наносят графическое обозначение – длинная горизонтальная линия, под ней располагается пунктирная линия, у которой длина штрихов равна длине промежутков.

Обозначение переменного тока на схемах и на приборах осуществляется в буквенном изображении AC (Alternating Current) и графическим символом – отрезком синусоиды длиной в период. Число фаз может указываться цифрой или количеством волнистых линий, если это необходимо.

Обозначения постоянного и переменного электричества

Измерительные приборы и электрооборудование

Как обозначается ток на приборах, позволяющих измерять электрические характеристики? Обозначения те же самые, как и на приборах, его потребляющих. При измерении тока или напряжения прежде, чем прикасаться щупами к токоведущим частям электроустановок или открытых участков тоководов, необходимо выставить пределы измерения на приборе и род тока, которые соответствуют параметрам измеряемого участка.

Осторожно. Неправильная подготовка прибора к измерениям может вывести его из строя, привести к короткому замыканию измеряемого участка линии и поражению оператора электрическим током.

На корпуса электрооборудования, на защитные щиты и кожухи электродвигателей и генераторов наносятся опознавательные символы, информирующие о полярности, частоте, величине напряжения и других характеристиках.

Области применения DC напряжения

Постоянный ток, обозначение которого наносится на устройства, получают не только с помощью гальванических элементов. Преобразователи переменного электричества в постоянное имеют в своём составе выпрямительные устройства. Использование выпрямителей расширило область применения DC напряжения. Оно применяется в следующих сферах:

  • на линиях постоянного напряжения (ЛЭП) в электросетях;
  • при организации мини,- и микросетей для электропитания локальных потребителей постоянным током;
  • на транспорте;
  • в устройствах управления электроприводами;
  • в бытовой технике и электронике.

Цепи и устройства, работающие на постоянном напряжении, не только востребованы, но и подвергаются усовершенствованию и широкому повсеместному внедрению.

Расшифровка обозначения мощности AC  на схеме и корпусах

Из таблички на картинке ниже видно, как обозначается Р переменного тока. Она указывается в киловаттах (кВт). Такие же обозначения присутствуют и на электрических схемах. Это номинальная мощность оборудования, при которой оно работает в штатном режиме, и её КПД соответствует заявленному.

Характеристики электродвигателя на шильдике машины

Что означает AC и DC на панели мультиметра

На рабочей панели любого прибора DC – это обозначение постоянного напряжения. При установке переключателя на такие значки постоянного тока можно тестировать постоянные электрические величины.

Знак AC призван обозначать пределы, в которых тестер может работать с переменными значениями электричества.

Важно! Если численный порядок измеряемой величины не известен, то необходимо устанавливать максимально высокий предел измерения, постепенно снижая его до достижения необходимой точности тестирования. Если тип тока тоже не ясен, лучше предположить, что он изменяется во времени.

Обозначение переменного тока на схемах и приборах обязательно указывает его напряжение, частоту и количество фаз. Стандарты обозначений предусматривают однозначное и понятное для специалистов символьное отображение информации.

Видео

amperof.ru

Что такое AC/DC преобразователь? В чем отличие выпрямителей от AC/DC преобразователя?

АС- переменный ток, DC- постоянный ток (директ кор... ) по англ. Так их и называют на западе- обычно всевозможные зарядки...

Это по англицки. Типа "круто".

АС/DC - это не преобразователь, а простой трансформаторный адаптер, либо версия импульсного источника питания, понижающие сетевое напряжение и выпрямляющие его. Возможны варианты со стабилизирующими элементами (или схемами) , фильтрующими элементами выходного напряжения. DC/AC - вот это преобразователи, в основе которого высокочастотный генеатор. На выходе такого устройства переменное напряжение (110-240), правда не синусоидальное, но близко к нему

Найди одно отличие выпрямителя от AC/DC <a rel="nofollow" href="http://talesfromethehood.files.wordpress.com/2009/09/ac-dc-highway-to-hell-front.jpg" target="_blank">http://talesfromethehood.files.wordpress.com/2009/09/ac-dc-highway-to-hell-front.jpg</a>

Преобразователь АС/DC преобразует постоянный ток в переменный, а выпрямитель AC/DC выпрямляет переменный в постоянный.

Английский Аббревиатура переменный ток/постоянный ток (А по вопросу, как одно и то же может само от себя отличаться?)

AC/DC -выпрямитель, DC/AC - инвертор.

touch.otvet.mail.ru

Переменный ток ac расшифровка. Разница между переменным и постоянным током

Сегодня, если вы посмотрите вокруг, практически все, что вы видите, питается от электричества в той или иной форме.
Переменный ток и постоянный ток являются двумя основными формами зарядов, питающих наш электрический и электронный мир.

Что такое AC? Переменный ток может быть определен, как поток электрического заряда, который изменяет свое направление через регулярные промежутки времени.

Период / регулярные интервалы, при котором AC меняет свое направление, является его частотой (Гц). Морские транспортные средства, космические аппараты, и военная техника иногда используют AC с частотой 400 Гц. Тем не менее, в течение большей части времени, в том числе внутреннего использования, частота переменного тока устанавливается на 50 или 60 Гц.

Что такое DC? (Условное обозначение на электроприборах) Постоянный ток является током (поток электрического заряда или электронов), который течет только в одном направлении. Впоследствии, нет частоты связанной с DC. DC или постоянный ток имеет нулевую частоту.
Источники переменного и постоянного тока:

АС: Электростанции и генераторы переменного тока производят переменный ток.

DC: Солнечные батареи, топливные элементы, и термопары являются основными источниками для производства DC. Но основным источником постоянного тока является преобразование переменного тока.

Применение переменного и постоянного тока:

АС используется для питания холодильников, домашних каминов, вентиляторов, электродвигателей, кондиционеров, телевизоров, кухонных комбайнов, стиральных машин, и практически всего промышленного оборудования.

DC в основном используется для питания электроники и другой цифровой техники. Смартфоны, планшеты, электромобили и т.д.. LED и LCD телевизоры также работают на DC, который преобразовывается от обычной сети переменного тока.

Почему AC используется для передачи электроэнергии. Это дешевле и проще в производстве. AC при высоком напряжении может транспортироваться на сотни километров без особых потерь мощности. Электростанции и трансформаторы уменьшают величину напряжения до (110 или 230 В) для передачи его в наши дома.

Что является более опасным? AC или DC?
Считается, что DC является менее опасным, чем AC, но нет окончательного доказательства. Существует заблуждение, что контакт с высоким напряжением переменного тока является более опасным, чем с низким напряжением постоянного тока. На самом деле, это не о напряжении, речь идет о сумме тока, проходящего через тело человека. Постоянный и переменный ток может привести к летальному исходу. Не вставляйте пальцы или предметы внутрь розеток или гаджетов и высокой мощности оборудования.

На сегодняшнее время в продаже существует адаптивный ксенон с лампами и блоками розжига AC и DC. Это один и тот же ксенон, но имеющий некоторые различия, о которых вы, как покупатель и пользователь, обязательно должны знать. Этот материал посвящен ксенону AC и DC, особенностям, отличиям и многому другому, что полезно будет знать.

Вступительная часть о ксеноне AC и DC

На первый взгляд отличить блоки розжига AC и DC невозможно. Главное их различие в том, что AC – это блоки розжига, которые имеют переменный ток, а DC – постоянный. Различие таких двух ксенонов можно заметить при их работе, а точнее во время розжига и поддержания тлеющего разряда. Мерцание ламп выдает блоки розжига DC.

Для того, чтобы конкретно понять различия между ксеноном AC и DC необходимо знать их конструкцию. Разительно отличаются такие комплекты именно по принципу работы, что является наиболее важным для данного устройства в светотехнике для автомобилей. Как уже отмечалось, их принцип работы виден в момент розжига ксеноновой лампы и поддержании горения. Для того, чтобы образовать электрическую дугу между электродами в колбе лампы необходима мощная подача импульса, то есть тока до 25000 В.

После того, как запустилось горение источника, для поддержания функционирования лампы необходима беспрерывная подача тока с напряжением 80-85 В, и следит за этим контроллер, который вмонтирован в балласт игнитора. Это стандартный принцип работы блоков розжига ксеноновых ламп. В AC блоках присутствует игнитор (инвертер) и стабильно работающий стабилизатор, в отличие от комплектов DC.

Комплекты блоков розжига DC: принцип розжига лампы

Адаптивные блоки розжига и ксеноновые лампы с постоянным током DC имеют значительно меньшую стоимость, легкий вес и небольшие габариты. Они обеспечивают единичный и нецикличный разряд, что и приводит, зачастую, к дрожанию электрической дуги и мерцанию света ксенонового источника. Чтобы правильно активизировать работу ксеноновой лампы необходим повторный импульс, что занимает дополнительные несколько секунд на ожидание повторной подачи тока. Отметим, что система DС по качеству намного лучше, чем галоген, но все же уступает комплектам AC c переменным током.

Комплекты блоков розжига AC: принцип розжига лампы

Ксеноновые блоки розжига и лампы с переменным током AC работают намного стабильнее и лучше, поскольку оснащены специальным стабилизатором, выравнивающим напряжение. АС блоки создают импульсы необходимой частоты и мощности, что и позволяет обеспечить бесперебойность и стабильность выдачи света лампами. Для того, чтобы создать амплитуду колебания в блоках и лампах АС используются специальные игниторы (иногда могут называться инверторами), которые обеспечивают преобразование низковольтного тока в высоковольтный импульс и наоборот. Таким образом из напряжения бортовой сети транспортного средства 12 В (иногда 24 В) обеспечивается генерация тока в 25000 В, что в считанные секунды гарантирует розжиг ксенонового излучателя. Стоит отметить, что у блоков АС есть двусторонняя связь с ксеноновыми лампами, таким образом, если свет начинает тухнуть, то блок обеспечивает подачу высоковольтного импульса, чтобы не привести к деактивации излучателя. Таким образом, комплекты адаптивного ксенона АС более стабильно работают, не наблюдается мерцаний ламп и скачков напряжения.

elektrokomplektnn.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о