Измерение емкости и индуктивности – Измерение реактивного сопротивления индуктивности и емкости

Измерение реактивного сопротивления индуктивности и емкости

В жизни радиолюбителя, инженера, монтажника, наладчика или студента иногда возникают ситуации когда нужно измерить не только активное сопротивление элемента, но и реактивное (индуктивность или емкость). Измерения эти проводят косвенным методом (вольтметр, ваттметр, амперметр) и чтобы получить более точные результаты применяют мостовой метод.

Косвенный метод (ваттметр, вольтметр, амперметр)

Этот метод наиболее прост по своей реализации, так как не требует специальных схем включения, а требует всего лишь трех приборов – амперметра, ваттметра и вольтметра. Измерив действующие значения напряжения U и тока I, мы можем получить полное сопротивление . Измерив активную мощность Р получим активное сопротивление элемента:

Соответственно реактивное будет равно:

Если искомое сопротивление индуктивное:

Емкостное:

Где ω – циклическая частота сети  .

Схема установки ниже:

Этот метод проще мостового, но для его применения необходимо три измерительных прибора, что не всегда удобно.

Мостовой метод

Данная схема обычно применяется в лабораториях, где есть образцовые элементы. Схемы приведены ниже – для измерения индуктивности (R1  и L1):

Плечи моста имеют сопротивления в комплексных числах:

Выразив это через общее уравнение моста мы получим:

Приравняв мнимые и вещественные составляющие мы сможем получить формулы для определения R1  и L1, а именно:

Ниже показана схема для измерения емкости:

Проведя те же действия что и для индуктивности получим:

Современные методы измерения индуктивности и емкости

Методы указанные выше были актуальны ранее, когда электронные устройства еще не получили такого развития. На видео ниже показаны измерения индуктивности и емкости с помощью современных измерительных приборов. Но к сожалению такие устройства имеют довольно большую погрешность, поэтому для более точного измерения, как правило применяют мостовой метод.

elenergi.ru

Измерение электрического сопротивления, емкости, индуктивности с помощью обычного ПK

В левых верхних окнах пользователем задаются значения генерируемых для измерения частот и сопротивление установленного дополнительного резистора R serial. Эти параметры могут быть разными для различных режимов и величин измерений, что будет уточнено ниже. В левых нижних окнах выводятся числовые значения для измеряемых величин: сопротивление (Ом), емкость (микрофарад), индуктивность (миллигенри). Теоретически каждый электрический элемент может обладать заметными величинами одновременно сопротивления, емкости и индуктивности, что и будет отображаться во всех трех окнах программы. Однако действительным будет только то значение, которое соответствует роду измеряемой величины.

Значения частот Multi Meter могут лежать в интервале 50…1000 Гц. При измерении сопротивления обычного резистора подбор частоты не так важен. Обе частоты применяются в режиме «Measure 2nd mtd», при этом разница между ними (левом/правом окне), согласно рекомендациям разработчика, не должна быть меньше 10% и больше 200%. Хотя последнее условие и не является обязательным. Сопротивление резистора R serial может находиться в пределах 20…1000 Ом (чаще 20…100 Ом), в зависимости от режима и диапазона измерений. Величина сопротивления R serial должна указываться в окне программы с большой точностью. Как показывает практика, при погрешности указанного значения от действительного сопротивления более чем на 1% резко возрастет конечная погрешность измерений Multi Meter. Надо учитывать, что маркировка резисторов обычно наносится с погрешностью 5; 10%, поэтому реальные сопротивления для набора резисторов R serial нужно определить с помощью другого точного прибора или использовать высокоточные детали.

Автор программы дает следующие рекомендации по подбору сопротивления R serial и частот сигнала (Yamaha 724) для Multi Meter v.0.03:

  • При измерении емкости конденсаторов номиналом 0,22мкф и выше рекомендуется R serial 20 Ом и частоты 100/1000 Гц. Для измерения конденсаторов меньших номиналов рекомендуется увеличивать частоты и сопротивление R serial, но не более чем 1000 Ом.

  • Для измерения резисторов номиналом от 1 Ом до 10 кОм рекомендуется R serial 20 Ом, частоты не оговариваются. Насчет измерения индуктивности никаких рекомендаций нет.

  • Уровень сигнала на линейном входе и выходе в микшере Windows рекомендуется поставить на середину, но не выше 3/4. Хотя может оказаться, что эти уровни нуждаются в более скрупулезной настройке.

Я со своей стороны провел всесторонние практические испытания Multi Meter 0.03, перемерив огромное количество радиоэлементов. На основе собственного опыта были определены оптимальные значения R serial и наборы частот для тех или иных режимов и диапазонов. Так же на практике были установлены возможности Multi Meter в связке с саундкартой Yamaha 724 производства Genius. Определялись диапазоны значений, в которых программа еще могла нормально работать, а так же погрешности измерений. При этом для соединения использовались не экранированные провода длиной около 80 см с зажимами типа «крокодил» на концах. Уровни микшера Line-Out, Line-In были выставлены на 50%.

Начнем с резисторов. Измерения проводились в режиме «Measure 1st mtd». Частоты 300/500, хотя в данном случае их значения не имеют большого значения. Измерение резисторов проводились при различных сопротивлениях R serial: 20…500 Ом. При установке R serial 20 Ом оптимальный интервал для измерения сопротивлений соответствовал 1…20000 Ом. В этом диапазоне максимальная погрешность была не хуже 5%. Данные сверялись с показаниями аппаратного цифрового мультиметра. Этот результат можно считать хорошим, учитывая, что резисторы для ширпотреба маркируются с 5% и 10% точностью. Увеличить верхний предел измерений удается увеличением R serial. При значении R serial 100 Ом верхний предел можно поднять уже до 150 кОм. Еще выше поднять верхний предел – до 500 кОм удается с помощью R serial 300 Ом. Хотя в последнем случае уже начинает расти погрешность низкоомных резисторов, этот режим рекомендуется применять для резисторов номиналом не ниже 200 Ом. Дальнейшее увеличение сопротивления R serial уже ник чему не приводило.

Емкость конденсаторов с помощью Multi Meter удавалось измерять в диапазоне от 1 нф до 1000 мкф независимо от типа. Режим программы – «Measure 2nd mtd». Для диапазона от 10 нф и выше рекомендуется использовать R serial 20 Ом и частоты 100/1000. К сожалению я не располагал каким либо другим точным прибором для измерения емкости, по которому можно было бы сверять результаты для определения погрешности измерений Multi Meter’ом. По моему субъективному заключению погрешность измерения емкости в этом режиме не хуже 5…6%. Для конденсаторов меньшей емкости лучше использовать R serial 100 Ом и частоты 500/1000: погрешность здесь в интервале 1…10 нф – около 10%; а от 10 нф до 200 мкф – те же 5…6%; для более высоких номиналов этот режим не рекомендуется. Таким образом Multi Meter охватывает большую часть диапазона наиболее часто используемых конденсаторов, причем, с хорошей точностью измерений, учитывая, что обычные конденсаторы маркируются с 10% и 20% точностью, а электролиты чаще с 20%. В случае конденсаторов с емкостью более 1000 мкф, начиная с 2000 мкф, у меня программа давала завышенные показания примерно на 20…25%. Так же показания Multi Meter плохо согласуются с параллельными соединениями конденсаторов.

Индуктивность дросселей мне удавалось довольно точно измерять в диапазоне от 4 мкГн до 120мГн (выше просто не было чего измерять). Опять же не было точного прибора, с помощью которого можно было бы сравнивать показания. Для тех трех десятков дросселей, что были у меня, я думаю, максимальная погрешность была не хуже 5%. При этом был установлен R serial 20 Ом и частоты 700/1000. При индуктивности ниже 4 мкГн Multi Meter давал сначала заниженные показания, а потом и вовсе нули. Нижний предел можно еще попробовать опустить где-то до 2 мкГн, установив частоты 900/1000, однако здесь падает общая стабильность.

Недостатком Multi Meter является зависимость результатов измерений от уровней Line-Out, Line-In сигнала. Сказываются слишком завышенные или заниженные уровни. Надо учитывать, что у разных звуковых карт уровни могут существенно отличаться. Предусмотренная в программе калибровка по короткозамкнутой и разомкнутой измерительной цепи в этом случае ничего не дает. Поэтому калибровать Multi Meter приходится вручную, выставляя в микшере уровни Line-Out, Line-In, сверяясь по известным номиналам измеряемых элементов. В моем случае, практика показала, что, выставив уровни сигнала входа/выхода по резисторам, программа давала действительные результаты и в случае емкостей и индуктивности. Все полученные результаты относятся к системе со звуковой картой на чипе Yamaha 724 производства Genius, под Windows 98SE на довольно мощной машине. Я не могу обещать, что на других платах, ввиду индивидуальных особенностей их схемных решений, результаты в точности повторятся. Наверное, придется поэкспериментировать и подобрать другие параметры уровней Line-Out, Line-In, возможно, частот и сопротивлений R serial.

Выводы. Программа Multi Meter может стать чрезвычайно полезным приобретением для радиолюбителей и людей связанных с радиоэлектроникой. Мои первые сомнения о том, можно ли с помощью обычной звуковой карты ПК добиться высокой точности измерений, постепенно рассеялись во время многочисленных экспериментов. Оригинальный подход Multi Meter вполне оправдывает себя. Нужно только знать в каких граничных диапазонах измерений реально может работать та или иная звуковая карта. Конечно, точность Multi Meter не прецизионная, но достаточно хорошая – это, еще смотря, с чем сравнивать. Если для сопротивления резисторов можно купить достаточно точный цифровой прибор (порядка 10$), то с емкостью и индуктивностью не так все просто. Такие приборы либо очень дороги, либо дают диапазон и погрешность еще хуже программы Multi Meter и тоже стоят денег. Так обстоят дела с дешевыми стрелочными тестерами, у которых имеются шкалы для L и C. Кроме того, последние берут сигнал переменного тока с розетки 220 В, что небезопасно для человека и самого прибора. Я остался очень доволен тем результатом, который был получен. Стоит отдать должное автору Multi Meter за оригинальность подхода.

www.ferra.ru

Правила измерения индуктивности с помощью мультиметра, подключение приставки

При работе с любыми электроприборами или токопроводящими деталями, наличие измерительной аппаратуры является необходимым, будь то амперметр, вольтметр или омметр. Но для того чтобы не покупать все эти устройства, лучше обзавестись мультиметром.

Мультиметр является универсальным измерительным аппаратом, который позволяет измерить любую характеристику электричества. Мультиметры бывают аналоговые и цифровые.

Аналоговый мультиметр

Данный тип мультеметров отображает показания измерений при помощи стрелки, под которой установлено табло с различными шкалами значений. Каждая шкала отображает показания того или иного измерения, которые подписаны непосредственно на табло.

Но для новичков такой мультиметр будет не самым лучшим выбором, поскольку разобраться во всех обозначениях, которые находятся на табло довольно трудно. Это может привести к не правильному пониманию результатов измерения.

Цифровой мультиметр

В отличие от аналоговых, этот мультиметр позволяет с легкостью определять интересуемые величины, при этом его точность измерений гораздо выше по сравнению со стрелочными аппаратами.

Также наличие переключателя между различными характеристиками электричества исключает возможность перепутать то или иное значение, поскольку пользователю не нужно разбираться в градации шкалы показаний.

Результаты измерений отображаются на дисплее (в более ранних моделях – светодиодных, а в современных – жидкокристаллических). За счет этого цифровой мультиметр комфортен для профессионалов и прост и понятен в использовании для новичков.

Измеритель индуктивности для мультиметра

Несмотря на то, что определять индуктивность при работе с электроникой приходится редко, это все же иногда необходимо, а мультиметры с измерением индуктивности найти достаточно трудно. В данной ситуации поможет специальная приставка к мультиметру, позволяющая измерить индуктивность.

Зачастую для подобной приставки используется цифровой мультиметр установленный на измерение напряжения с порогом точности измерения в 200 мВ, который можно приобрести в любом магазине электро и радиоаппаратуры в готовом виде. Это позволит сделать простую приставку к цифровому мультиметру.

Сборка платы приставки

Собрать приставку-тестер к мультиметру для измерения индуктивности можно без особых проблем в домашних условиях, обладая базовыми знаниями и навыками в области радиотехники и пайки микросхем.

В схеме платы можно применять транзисторы КТ361Б, КТ361Г и КТ3701 с любыми буквенными маркерами, но для получения более точных измерений лучше использовать транзисторы с маркировкой КТ362Б и КТ363.

Эти транзисторы устанавливаются на плате в позициях VT1 и VT2. На позиции VT3 необходимо установить кремневый транзистор со структурой p-n-p, например, КТ209В с любой буквенной маркировкой. Позиции VT4 и VT5 предназначены для буферных усилителей.

Подойдет большинство высокочастотных транзисторов, с параметрами h31Э для одного не меньше 150, а для другого более 50.

Для позиций VD и VD2 подойдут любые высокочастотные кремневые диоды.

Резистор можно выбрать МЛТ 0,125 или аналогичный ему. Конденсатор С1 берется с номинальной емкостью 25330 пФ, поскольку он отвечает за точность измерений и ее значение стоит подбирать с отклонением не более 1%.

Такой конденсатор можно сделать объединив термостабильные конденсаторы разной емкости (например, 2 на 10000 пФ, 1 на 5100 пФ и 1 на 220 пФ). Для остальных позиций подойдут любые малогабаритные электролитические и керамические конденсаторы с допустимым разбросом в 1,5-2 раза.

Контактные провода к плате (позиция Х1) можно припаять или подключать при помощи пружинящих зажимов для «акустических» проводов. Разъем Х3 предназначен для подключения приставки к мультиметру (частотомеру).

Проводу к «бананам» и «крокодилам» лучше взять короче, что бы уменьшить влияние их собственной индуктивности на показания замеров. В месте припаивания проводов к плате, соединение стоит дополнительно зафиксировать каплей термоклея.

При необходимости регулирования диапазона измерений на плату можно добавить разъем для переключателя (например, на три диапазона).

Корпус приставки к мультиметру

Корпус можно сделать из уже готового короба подходящего размера или сделать короб самостоятельно. Материал можно выбрать любой, например, пластик или тонкий стеклотекстолит. Короб делается под размер платы, и в нем подготавливаются отверстия для ее крепления. Также делаются отверстия для подключения проводки. Все фиксируется небольшими шурупами.

Питание приставки осуществляется от сети при помощи блока питания с напряжением в 12 В.

Настройка измерителя индуктивности

Для того чтобы откалибровать приставку для измерения индуктивности понадобятся несколько индукционных катушек с известной индуктивность (например, 100 мкГн и 15 мкГн).

Катушки по очереди подключаются к приставке и, в зависимости от индуктивности, движком подстроечного резистора на экране мультиметра выставляется значение 100,0 для катушки на 100 мкГн и 15 для катушки на 15 мкГн с точностью 5%.

По такому же методу устройство настраивается и в других диапазонах. Важным фактором является то, что для точной калибровки приставки необходимы точные значение тестовых катушек индуктивности.

Альтернативным методом определения индуктивности является программа LIMP. Но этот способ требует некоторой подготовки и понимания работы программы.

Но как в первом, так и во втором случае точность подобных измерений индуктивности будет не очень высока. Для работы с высокоточным оборудованием данный измеритель индуктивности подходит плохо, а для домашних нужд или для радиолюбителей будет отличным помощником.

Проведение замеров индуктивности

После сборки приставку к мультиметру необходимо протестировать. Есть несколько способов, как проверить устройство:

  1. Определение индуктивности измерительной приставки. Для этого необходимо замкнуть два провода, предназначенных для подключения к индуктивной катушке. Например, при длине каждого провода и перемычки 3 см образуется один виток индукционной катушки. Этот виток обладает индуктивностью 0,1 – 0,2 мкГн. При определении индуктивности свыше 5 мкГн данная погрешность не учитывается в расчетах. В диапазоне 0,5 – 5 мкГн при измерении необходимо брать в расчет индуктивность устройства. Показания менее 0,5 мкГн являются примерными.
  2. Измерение неизвестной величины индуктивности. Зная частоту катушки, при помощи упрощенной формулы расчета индуктивности можно определить это значение.
  3. В случае, когда порог срабатывания кремниевых p-n переходов выше амплитуды измеряемой электрической цепи (от 70 до 80 мВ), можно измерить индуктивность катушек непосредственно в самой схеме (предварительно обесточив ее). Поскольку собственная емкость приставки имеет большое значение (25330 пФ), погрешность подобных измерений будет составлять не более 5% при условии, что емкость измеряемой цепи не превышает 1200 пФ.

При подключении приставки непосредственно к катушкам расположенным на плате применяется проводка длиной 30 сантиметров с зажимами для фиксации или щупами. Провода скручиваются с расчетом один виток на сантиметр длины. В таком случае образуется индуктивность приставки в диапазоне 0,5 – 0,6 мкГн, которую также необходимо учитывать при измерениях индуктивности.

evosnab.ru

Как измерить ёмкость и индуктивность с помощью генератора и осциллографа + online-калькулятор

Для многих любителей электроники актуальной является задача измерения емкостей конденсаторов и индуктивностей дросселей, поскольку, в отличие от резисторов, эти компоненты нередко бывают не промаркированы (особенно SMD). Между тем, имея генератор синусоидальных колебаний и осциллограф (приборы, которые должны быть в любой радиолюбительской лаборатории), эта задача довольно просто решается. Всё, что для этого нужно — это вспомнить начальный курс электротехники.

Рассмотрим простейшую схему — последовательно соединённые резистор и конденсатор. Пусть эта схема подключена к источнику синусоидальных колебаний. Запишем уравнения для напряжений на элементах нашей схемы в операторной форме: UR = I * R, UC = -j * I / ωC. Из этих уравнений очевидно, что амплитудные значения напряжений будут относится следующим образом: UR / UC = R * ωC (конечно, напряжения будут сдвинуты по фазе, но нас это в данном случае не волнует, нас волнуют
только амплитуды).

Думаю, что многие уже догадались к чему я клоню. Да-да, из последнего уравнения довольно просто вычисляется ёмкость:

C = UR/UC * 1/ωR или, с учетом того, что ω= 2πf, получим C = UR/UC * 1/2πfR ; (1)

Итак, алгоритм простой: подключаем последовательно с измеряемой ёмкостью резистор, подключаем к этой схеме генератор синусоидальных колебаний и осциллографом измеряем амплитуды напряжений на нашем конденсаторе и резисторе. Изменяя частоту, добиваемся, чтобы амплитуда напряжений на обоих элементах была примерно одинаковой (так измерение получится точнее). Далее, подставляя измеренные значения амплитуд в формулу (1), находим искомую ёмкость конденсатора.

Аналогично можно вывести формулу для подсчета индуктивности:

L = UL/UR * R/ω или, с учётом того, что ω= 2πf, получим L = UL/UR * R/2πf ; (2)

Таким образом, имея генератор синусоидальных колебаний и осциллограф, с помощью формул (1) и (2) оказывается довольно просто вычислить неизвестную ёмкость или индуктивность (благо резисторы практически всегда имеют маркировку).

Алгоритм действий следующий:

1) Собираем схему из последовательно соединённых резистора известного номинала и исследуемой ёмкости (индуктивности).

2) Подключаем эту схему к генератору синусоидальных колебаний и изменением частоты добиваемся того, чтобы амплитуды напряжений на обоих элементах схемы были примерно одинаковы.

3) По формуле (1) или (2) вычисляем номинал исследуемой ёмкости или индуктивности.

Несмотря на то, что наши элементы не идеальные, есть допуск на номинал резистора и всегда есть некоторые погрешности измерений, результат получается довольно точным (по крайней мере можно без труда идентифицировать ёмкость в стандартном ряду). Пусть у меня при измерении ёмкости получилась величина 1,036 нФ. Очевидно, что на исследуемом конденсаторе должна была быть нанесена маркировка 1 нФ.

Для того, чтобы вам легче было сориентироваться с номиналами резисторов, приведу некоторые примеры:

— для ёмкости 15 пФ в схеме с резистором 200 кОм амплитуды напряжений будут примерно равны на частоте 53 кГц;

— для ёмкости 1 нФ в схеме с резистором 10 кОм амплитуды напряжений будут примерно равны на частоте 15,9 кГц;

— для ёмкости 0,1 мкФ в схеме с резистором 680 Ом амплитуды напряжений будут примерно равны на частоте 2,34 кГц;

— для индуктивности 3 мкГн в схеме с резистором 120 Ом амплитуды напряжений будут примерно равны на частоте 6,3 МГц;

— для индуктивности 100 мкГн в схеме с резистором 120 Ом амплитуды напряжений будут примерно равны на частоте 190 кГц.

Таким образом, диапазон измеряемых емкостей и индуктивностей зависит только от диапазона частот, с которыми могут работать ваши генератор и осциллограф.

На основе этого метода можно изготовить прибор для автоматического измерения емкостей и индуктивностей.

Online-калькулятор для расчёта емкостей и индуктивностей:

(для правильности расчётов используйте в качестве десятичной точки точку, а не запятую)

1) Расчёт емкостей:

2) Расчёт индуктивностей:

radiohlam.ru

Измерение индуктивности подручными средствами.: 0jihad0 — LiveJournal


Подавляющее большинство любительских измерителей индуктивности на контроллерах измеряет частоту генератора работающего на частотах около 100кГц, и хотя они якобы имеют разрешение 0.01мкГн, но на деле при индуктивностях 0.5 и ниже представляют из себя хороший генератор случайных чисел, а не прибор.У разработчика радиочастотных устройств есть три пути:

  1. обломаться

  2. купить промышленный измеритель импеданса и некоторое время поголодать

  3. сделать что-то более высокочастотное и широкополосное.


Наличие множества онлайн калькуляторов кардинально упрощают задачу, можно обойтись одним лишь генератором, подключаемым к частотомеру, не сильно потеряв в удобстве, зато выиграв в функционале.

Приставка может измерять индуктивности от 0,05мкГн. Выходное напряжение около 0.5В. Собственная индуктивность выводов 0,04мкГн. Диапазон выходных частот: хз...77МГц.

Широкополосный генератор выполнен по известной двухточечной схеме и мало чувствителен к добротности частотозадающего контура.

Для измерения наименьших индуктивностей емкость выбрана 82пф, вместе с входной ёмкостью расчётная(для калькулятора) получается около 100пф(круглые числа более удобны), а макс. частота генерации около 80МГц. С контура напряжение подаётся на повторитель vt2 а с него на эмиттер vt1, таким образом реализована ПОС. Применяемая иногда непосредственная связь затвора с контуром приводит к неустойчивой работе генератора на частотах 20-30Мгц, потому применён разделительный конденсатор с1. Полевой транзистор должен иметь начальный ток стока не менее 5мА, иначе транзистор нужно приоткрыть сопротивлением несколько сотен кОм с плюса на затвор. Лучше применить транзистор в высокой крутизной, это увеличит выходное напряжение снимаемое с истока. Хотя сам по себе генератор практически не чувствителен к типам транзисторов.

Для расчёта применяются онлайн калькуляторы
наиболее удобный
наиболее неудобный
гламурный, но с характером

Задающая ёмкость в приборе может быть любой, даже китайская глина. Лучше иметь эталонные катушки, а измеренную ёмкость уже подставлять в калькулятор, хотя на деле это и  не обязательно.

Фольга с обратной стороны используется в качестве экрана.
Выводы на катушку выполняются в виде гибких плоских поводков из оплётки длиной 2см. с крокодилами.


http://edisk.ukr.net/get/377203737/%D0%B8%D0%BD%D0%B4.lay6

Особенности использования.


Для питания лучше предусмотреть соответствующую клемму на частотомере.

Выводы на катушку должны быть максимально прямыми если измеряются сверхмалые индуктивности. От результата нужно отнять собственную индуктивность выводов 0.04мкГн. Минимально измеряемая индуктивность примерно такая же.

Для измерения индуктивностей до 100мкГн годится штатная ёмкость, выше лучше использовть дополнительные ёмкости от 1н, иначе будет погрешность от межвитковой ёмкости катушки.

Для измерения межвитковой ёмкости нужно измерить истинное значение индуктивности с С 10-100н, потом измеряется частота с штатной ёмкостью(100пф), вносится в калькулятор, далее считается суммарная емкость, от которой нужно отнять 100пф.
Пример. аксиальный дроссель 3.8 мГн, со штатной ёмкостью частота 228 кГц, суммарная ёмкость 128пф, межвитковая 28.
Таким же образом вычисляются ёмкости в контурах.

Для измерений дросселей на низкочастотных магнитопроводах НН они должны иметь достаточно большое количество витков, например на кольцах 2000НН не менее 20, иначе частота может быть выше рабочей для них(до 400кГц), и генерация будет в лучшем случае срываться, а в худшем импульсная, как в блокинг генераторе, с частотой в килогерцы. Для маловитковых нужна дополнительная ёмкость.

Для расчёта магнитной проницаемости удобен калькулятор, но можно и дедовским способом, даже оформление сайта аутентичное.


0jihad0.livejournal.com

LC100-A — весьма точный L/C-измеритель

Измеритель ёмкости и индуктивности — как раз того, что стандартный мультиметр измерять не умеет.
Минимальный функционал, но зато отменная точность и скорость измерений. Даже калибровать не надо!

Приехал измеритель в пакте, обмотанный мягким материалом.
Комплектация спартанская: девайс и mini-USB шнурок.


Крокодилы в комплекте и установлены.

Кнопки:
Zero — если дошевелились щупами до появления паразитной ёмкости, можно обнулить показания.
Hi.C — второй, бóльший диапазон измерений ёмкости (по умолчанию малый)
Hi.L — второй, бóльший диапазон измерений индуктивностей (по умолчанию малый)
L/C — выбор ёмкость/индуктивность
Пятая кнопка Func ничего не делает. В инструкции написано, что зарезервирована на будущие обновления.

Частота измерений 500kHz у первого диапазона и 500Hz у второго.

Итак, что оно умеет:
Ёмкость, диапазоны (0.01pF-10uF) и (1uF-100mF)
Индуктивность, диапазоны (0.001uH-100mH) и (0.001mH-100H)
Измерение ESR, к сожалению, не завезли.
Сразу прилагаю ссылку на инструкцию: тут
Из инструкции можно почерпнуть сведения о точности измерений:


Оптимистично? Достаточно.
Как оно на деле, проверим.

Для начала, поглядим на железо.
Справа включатель питания:

Сзади разъемы питания USB и 5,5/2,1mm. Только 5 вольт.

Производитель решил не быть ноунеймом, молодец:

Разбирается девайс просто: откручиваем 4 винта сверху и снимаем дисплей. Дисплей самый стандартный 1602, можно без проблем заменить.

К качеству платы и разводки нареканий не имею.

Разве что несколько забавно запаян пленочный конденсатор:

И катушка индуктивности:

Болтающаяся тяжелая катушка мне не по нраву, сразу посадил на каплю термоклея:

Измеритель базируется на микроконтроллере STM8S003. Да-да, это НЕ клон Транзистор Тестера!

Рядом компараторы LM311.

…и LM393:

Активной электроники, управляющей питанием, я не углядел. Так что превышать рекомендованные 5 вольт не советую.
Крокодилы в комплекте нормально пропаяны. Провода короткие, но для измерений ёмкостей-индуктивностей это оправдано.

Установлена последняя прошивка 4.8 (хотя на плате надпись 4.7):

Красивые железки это, конечно, хорошо, но как проверить точность?
Конечно же, практически! Специально для Муськи, купил ворох деталек с минимальными найденными допусками. Мне даже немного жалко человека, который собирал для меня этот заказ по одному конденсатору-катушке. =)

Измерения электрической ёмкости

Много фото, прячу под спойлер.

Дополнительная информация

1. Керамика 10p, допуск 5%:

2. Керамика 12p, допуск 5%:

3. Керамика 18p, допуск 5%:

4. Плёночный 100p, допуск 5%:

5. Керамика 680p, допуск 5%:

6. Плёночный 1n (1000p), допуск 5%:

7. Плёночный 6n8, допуск 5%:

8. Плёночный 12n, допуск 5%:

9. Плёночный 100n, допуск 5%:

10. Керамика 330n, допуск 20%:

11. Плёночный 680n, допуск 5%:

12. Плёночный 1u, допуск 5%:

13. Электролит 1u, допуск 20%:


Тут переключился на диапазон больших ёмкостей:

14. Электролит 10u, допуск 20%:

«Малый» диапазон превышен:

«Большой»:

15. Электролит 100u, допуск 20%:

16. Электролит 1000u Low ESR, допуск 20%:

17. Электролит 3300u, допуск 20%:

18. Электролит 10000u, допуск 20%:

19. Бонус, повторяемость измерений. 5Х электролит 1000u, допуск 20%:




20. Бонус, советские «красные флажки»: И чего на них все гонят, дескать, никуда не годятся? Нормальные же.




Точность измерений ёмкости меня приятно порадовала. Везде укладывается в допуск самих конденсаторов.
Однозначно зачёт.

Со скоростью всё тоже в порядке, когда я переводил взгляд с крокодилов на дисплей, всегда видел устоявшееся значение, даже у «толстых» электролитов.
Диапазон отображается понятно, разве что 1,15mF я бы таки выводил как 11500 uF, как и пишут на конденсаторах. Впрочем, не думаю, что у кого-то проблемы с системой СИ. =)

Измерения индуктивности

Дополнительная информация

Тут точность тоже не подкачала.
Скорость такая же, как с конденсаторами (
Кстати, приятно удивили SMD катушки с Алиэкспресса. Точность случайно выбранных не хуже 5%, что достаточно круто.
А вот силовые 100 uH как-то не впечатлили — хотя для фильтра питания это не критично.

Вердикт

Девайс годный.
Точность не вызывает нареканий, она точно не хуже 5%, а в соответствующих диапазонах измерений реально приближается к заявленному 1%.
Скорость измерений высокая, абсолютно не раздражает. В обзорах мультиметров часто писали, что, дескать, жирные конденсаторы измеряет долго — тут всегда примерно одна секунда.

Минусы:
— мало чего умеет

Плюсы:
+ то, что умеет, делает отлично

Ну а если серьезно, из минусов бы отметил, во-первых, отсутствие измерения ESR конденсаторов.
Во-вторых, отсутствие корпуса. Если это не позиционируется как кит для самостоятельной сборки, то почему бы не дать простейший корпус в комплекте? Самому идеально подогнать достаточно сложно.
Также устройство узкоспециализированное и недешёвое — тут уж решайте для себя сами.

Благодарю за внимание.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Как измерить емкость и индуктивность с помощью осциллографа. » Хабстаб

Сегодня на рынке продается множество приборов, измеряющих емкость и индуктивность, только стоят они в несколько раз дороже китайского мультиметра. Тот кому каждый день необходимо производить замеры емкости или индуктивности непременно купит себе такой, а что делать если такая необходимость возникает крайне редко? В таком случае можно применить описанный ниже метод.
Известно, что если на интегрирующую RC цепочку подать прямоугольный импульс, то форма импульса изменится и будет такой как на картинке.

Время, за которое напряжение на конденсаторе достигнет 63% от подаваемого, называется тау. Формула по которой считается тау изображена на рисунке.

В таком случае говорят, что интегрирующая цепочка сгладила фронты прямоугольного импульса.
Так же известно, что если на параллельный LC контур подать прямоугольный импульс, в контуре возникнут затухающие колебания, частота, которых равна резонансной частоте контура. Резонансная частота контура находится по формуле Томсона, из которой можно выразить индуктивность.

Подключается контур через конденсатор малой емкости, чем меньше тем лучше, который ограничивает ток, поступающий в контур. Давайте рассмотрим, как конденсатор малой емкости ограничивает ток.
Для того, чтобы конденсатор зарядился до номинального напряжения ему надо передать определенный заряд. Чем меньше емкость конденсатора, тем меньший заряд ему необходим, чтобы напряжение на обкладках достигло напряжения импульса. Когда мы подаем импульс, конденсатор, малой емкости, очень быстро заряжается и напряжение на обкладках конденсатора становится равно напряжению импульса. Так как напряжение конденсатора и импульса равны, нет разности потенциалов, следовательно ток не течет. При чем ток может перестать течь через конденсатор спустя некоторое время от начала импульса, а оставшуюся часть времени импульса энергия к контуру подводится не будет.
Для проведения эксперимента нам потребуется генератор импульсов прямоугольной формы с частотой 5-6KHz.
Можно собрать его по схеме на рисунке ниже или воспользоваться генератором сигналов, я делал обоими способами.

Теперь, вспомнив, как ведет себя при подаче прямоугольного импульса интегрирующая RC цепочка и параллельный LC контур, соберем простую схему изображенную на картинке.

Сначала измерим емкость конденсатора, место его подключения на схеме обозначено С?. Резистора 1K под рукой не нашлось, поэтому я использовал 100 Ohm и вместо конденсатора 10pF использовал конденсатор 22pF. В принципе номинал резистора можно выбрать любой, но не ниже 50 Ohm, иначе сильно просядет напряжение генератора.
В данном эксперименте я буду использовать генератор сигналов, выходное сопротивление которого равно 50 Ohm. Включим генератор и установим амплитуду 4V, если собирать генератор по схеме то регулировать амплитуду можно, изменяя напряжение питания.

Подключим щупы осциллографа параллельно конденсатору. На осциллографе должна появиться следующая картинка.

Немного увеличим её.

Измерим время, за которое напряжение на конденсаторе достигает 63% от напряжения импульса или 2,52V.

Оно равно 14,8uS. Так как сопротивление генератора включено последовательно с нашей цепочкой его необходимо учесть, в итоге активное сопротивление равно 150 Ohm. Разделим значение тау(14,8 uS) на сопротивления(150 Om) и найдем емкость, она равна 98,7 nF . На конденсаторе написано, что емкость равна 100nF.

Теперь измерим индуктивность. На схеме место подключения катушки индуктивности обозначено L?. Подключаем катушку, включаем генератор и подключаем щуп осциллографа параллельно контуру. На осциллографе увидим такую картинку.


Увеличиваем развертку.

Видим, что период колебаний равен 260KHz.
Ёмкость щупа равна 100pF и в данном случае её необходимо учесть потому, что она составляет 10% от емкости контура. Суммарная емкость контура равна 1,1nF. Теперь подставим в форму для нахождения индуктивности, емкость конденсатора(1,1nF) и частоту колебаний(260KHz). Для таких вычислений я пользуюсь программой Coil32.

Получилось 340,6uH, судя по маркировке индуктивность равна 347uH и это отличный результат. Этот способ позволяет измерять индуктивность с погрешность до 10% .
Теперь мы знаем как измерить емкость конденсатора и индуктивность катушки, используя осциллограф.

hubstub.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о