Обозначение компонентов на плате – Условные графические и буквенные обозначения электрорадиоэлементов

Обозначение на схемах радиодеталей

Содержание:
  1. Резисторы
  2. Полупроводники
  3. Конденсаторы
  4. Диоды и стабилитроны
  5. Транзисторы
  6. Буквенные обозначение на схемах радиодеталей
  7. Видеоурок: условные обозначения на схемах

Начинающие радиолюбители нередко сталкиваются с такой проблемой, как обозначение на схемах радиодеталей и правильное прочтение их маркировки. Основная трудность заключается в большом количестве наименований элементов, которые представлены транзисторами, резисторами, конденсаторами, диодами и другими деталями. От того, насколько правильно прочитана схема, во многом зависит ее практическое воплощение и нормальная работа готового изделия. 


Резисторы

К резисторам относятся радиодетали, обладающие строго определенным сопротивление протекающему через них электрическому току. Данная функция предназначена для понижения тока в цепи. Например, чтобы лампа светила менее ярко, питание на нее подается через резистор. Чем выше сопротивление резистора, тем меньше будет свечение лампы. У постоянных резисторов сопротивление остается неизменным, а переменные резисторы могут изменять свое сопротивление от нулевого значения до максимально возможной величины.

Каждый постоянный резистор обладает двумя основными параметрами – мощностью и сопротивлением. Значение мощности указывается на схеме не буквенными или цифровыми символами, а с помощью специальных линий. Сама мощность определяется по формуле: P = U x I, то есть равна произведению напряжения и силы тока. Данный параметр имеет важное значение, поскольку тот или иной резистор может выдержать лишь определенное значение мощности. Если это значение будет превышено, элемент просто сгорит, так как во время прохождения тока по сопротивлению происходит выделение тепла. Поэтому на рисунке каждые линии, нанесенные на резистор, соответствуют определенной мощности.

Существуют и другие способы обозначения резисторов на схемах:

  1. На принципиальных схемах обозначается порядковый номер в соответствии с расположением (R1) и значение сопротивления, равное 12К. Буква «К» является кратной приставкой и обозначает 1000. То есть, 12К соответствует 12000 Ом или 12 килоом. Если в маркировке присутствует буква «М», это указывает на 12000000 Ом или 12 мегаом.
  2. В маркировке с помощью букв и цифр, буквенные символы Е, К и М соответствуют определенным кратным приставкам. Так буква Е = 1, К = 1000, М = 1000000. Расшифровка обозначений будет выглядеть следующим образом: 15Е – 15 Ом; К15 – 0,15 Ом – 150 Ом; 1К5 – 1,5 кОм; 15К – 15 кОм; М15 – 0,15М – 150 кОм; 1М2 – 1,5 мОм; 15М – 15мОм.
  3. В данном случае используются только цифровые обозначения. Каждое включает в себя три цифры. Первые две из них соответствуют значению, а третья – множителю. Таким образом, к множителям относятся: 0, 1, 2, 3 и 4. Они означают количество нулей, добавляемых к основному значению. Например, 150 – 15 Ом; 151 – 150 Ом; 152 – 1500 Ом; 153 – 15000 Ом; 154 – 120000 Ом.

Постоянные резисторы

Название постоянных резисторов связано с их номинальным сопротивлением, которое остается неизменным в течение всего периода эксплуатации. Они различаются между собой в зависимости от конструкции и материалов.

Проволочные элементы состоят из металлических проводов. В некоторых случаях могут использоваться сплавы с высоким удельным сопротивлением. Основой для намотки проволоки служит керамический каркас. Данные резисторы обладают высокой точностью номинала, а серьезным недостатком считается наличие большой собственной индуктивности. При изготовлении пленочных металлических резисторов, на керамическое основание напыляется металл, обладающий высоким удельным сопротивлением. Благодаря своим качествам, такие элементы получили наиболее широкое распространение.

Конструкция угольных постоянных резисторов может быть пленочной или объемной. В данном случае используются качества графита, как материала с высоким удельным сопротивлением. Существуют и другие резисторы, например, интегральные. Они применяются в специфических интегральных схемах, где использование других элементов не представляется возможным.

Переменные резисторы

Начинающие радиолюбители нередко путают переменный резистор с конденсатором переменной емкости, поскольку внешне они очень похожи друг на друга. Тем не менее, у них совершенно разные функции, а также имеются существенные отличия в отображении на принципиальных схемах.

В конструкцию переменного резистора входит ползунок, вращающийся по резистивной поверхности. Его основной функцией является подстройка параметров, заключающаяся в изменении внутреннего сопротивления до нужного значения. На этом принципе основана работа регулятора звука в аудиотехнике и других аналогичных устройствах. Все регулировки осуществляются за счет плавного изменения напряжения и тока в электронных устройствах.

Основным параметром переменного резистора является сопротивление, способное изменяться в определенных пределах. Кроме того, он обладает установленной мощностью, которую должен выдерживать. Этими качествами обладают все типы резисторов.

На отечественных принципиальных схемах элементы переменного типа обозначаются в виде прямоугольника, на котором отмечены два основных и один дополнительный вывод, располагающийся вертикально или проходящих сквозь значок по диагонали.

На зарубежных схемах прямоугольник заменен изогнутой линией с обозначением дополнительного вывода. Рядом с обозначением ставится английская буква R с порядковым номером того или иного элемента. Рядом проставляется значение номинального сопротивления.

Соединение резисторов

В электронике и электротехнике довольно часто используются соединения резисторов в различных комбинациях и конфигурациях. Для большей наглядности следует рассматривать отдельный участок цепи с последовательным, параллельным и смешанным соединением.

При последовательном соединении конец одного резистора соединяется с началом следующего элемента. Таким образом, все резисторы подключаются друг за другом, и по ним протекает общий ток одинакового значения. Между начальной и конечной точкой существует только один путь для протекания тока. С возрастанием количества резисторов, соединенных в общую цепь, происходит соответствующий рост общего сопротивления.

Параллельным считается такое соединение, когда начальные концы всех резисторов объединяются в одной точке, а конечные выходы – в другой точке. Течение тока происходит по каждому, отдельно взятому резистору. В результате параллельного соединения с увеличением числа подключенных резисторов, возрастает и количество путей для протекания тока. Общее сопротивление на таком участке уменьшается пропорционально количеству подключенных резисторов. Оно всегда будет меньше, чем сопротивление любого резистора, подключенного параллельно.

Чаще всего в радиоэлектронике используется смешанное соединение, представляющее собой комбинацию параллельного и последовательного вариантов.

На представленной схеме параллельно соединяются резисторы R2 и R3. Последовательное соединение включает в себя резистор R1, комбинацию R2 и R3 и резистор R4. Для того чтобы рассчитать сопротивление такого соединения, вся цепь разбивается на несколько простейших участков. После этого значения сопротивлений суммируются и получается общий результат.


Полупроводники

Стандартный полупроводниковый диод состоит из двух выводов и одного выпрямляющего электрического перехода. Все элементы системы объединяются в общем корпусе из керамики, стекла, металла или пластмассы. Одна часть кристалла называется эмиттером, в связи с высокой концентрацией примесей, а другая часть, с низкой концентрацией, именуется базой. Маркировка полупроводников на схемах отражает их конструктивные особенности и технические характеристики.

Для изготовления полупроводников используется германий или кремний. В первом случае удается добиться более высокого коэффициента передачи. Элементы из германия отличаются повышенной проводимостью, для которой достаточно даже невысокого напряжения.

В зависимости от конструкции, полупроводники могут быть точечными или плоскостными, а по технологическим признакам они бывают выпрямительными, импульсными или универсальными.


Конденсаторы

Конденсатор представляет собой систему, включающую два и более электродов, выполненных в виде пластин – обкладок. Они разделяются диэлектриком, который значительно тоньше, чем обкладки конденсатора. Все устройство имеет взаимную емкость и обладает способностью к сохранению электрического заряда. На простейшей схеме конденсатор представлен в виде двух параллельных металлических пластин, разделенных каким-либо диэлектрическим материалом.

На принципиальной схеме рядом с изображением конденсатора указывается его номинальная емкость в микрофарадах (мкФ) или пикофарадах (пФ). При обозначении электролитических и высоковольтных конденсаторов, после номинальной емкости указывается значение максимального рабочего напряжения, измеряемого в вольтах (В) или киловольтах (кВ).     

Переменные конденсаторы

Для обозначения конденсаторов с переменной емкостью используются два параллельных отрезка, которые пересекает наклонная стрелка. Подвижные пластины, подключаемые в определенной точке схемы, изображаются в виде короткой дуги. Возле нее проставляется обозначение минимальной и максимальной емкости. Блок конденсаторов, состоящий из нескольких секций, объединяется с помощью штриховой линии, пересекающей знаки регулировки (стрелки).

Обозначение подстроечного конденсатора включает в себя наклонную линию со штрихом на конце вместо стрелки. Ротор отображается в виде короткой дуги. Другие элементы – термоконденсаторы обозначаются буквами СК. В его графическом изображении возле знака нелинейной регулировки проставляется температурный символ.

Постоянные конденсаторы

В принципиальных электрических схемах широко используются графические обозначения конденсаторов с постоянной емкостью. Они изображаются в виде двух параллельных отрезков и выводов из середины каждого из них. Возле значка проставляется буква С, после нее – порядковый номер элемента и с небольшим интервалом – числовое обозначение номинальной емкости.

При использовании в схеме конденсатора с ориентировочной емкостью, вместо его порядкового номера наносится звездочка. Значение номинального напряжения указывается лишь для цепей с высоким напряжением. Это касается всех конденсаторов, кроме электролитических. Цифровой символ напряжения проставляется после обозначения емкости.

Соединение многих электролитических конденсаторов требует соблюдения полярности. На схемах для обозначения положительной обкладки используется значок «+» либо узкий прямоугольник. При отсутствии полярности узкими прямоугольниками помечаются обе обкладки.


Диоды и стабилитроны

Диоды относятся к простейшим полупроводниковым приборам, функционирующим на основе электронно-дырочного перехода, известного как p-n-переход. Свойство односторонней проводимости наглядно передается на графических обозначениях. Стандартный диод изображается в виде треугольника, символизирующего анод. Вершина треугольника указывает направление проводимости и упирается в поперечную черту, обозначающую катод. Все изображение пересекается по центру линией электрической цепи.

Для маркировки диодов используется буквенное обозначение VD. Оно отображает не только отдельные элементы, но и целые группы, например, диодные мосты. Тип того или иного диода указывается возле его позиционного обозначения.

Базовый символ применяется и для обозначения стабилитронов, представляющих собой полупроводниковые диоды с особыми свойствами. В катоде присутствует короткий штрих, направленный в сторону треугольника, символизирующего анод. Данный штрих располагается неизменно, независимо от положения значка стабилитрона на принципиальной схеме.


Транзисторы

У большинства радиоэлектронных компонентов имеется лишь два вывода. Однако такие элементы как транзисторы оборудованы тремя выводами. Их конструкции отличаются разнообразными типами, формами и размерами. Общие принципы работы у них одинаковые, а небольшие отличия связаны с техническими характеристиками конкретного элемента.

Транзисторы используются преимущественно в качестве электронных коммутаторов для включения и выключения различных устройств. Основное удобство таких приборов заключается в возможности коммутировать большое напряжение с помощью источника малого напряжения.

По своей сути каждый транзистор является полупроводниковым прибором, с помощью которого генерируются, усиливаются и преобразуются электрические колебания. Наибольшее распространение получили биполярные транзисторы с одинаковой электропроводностью эмиттера и коллектора.

На схемах они обозначаются буквенным кодом VT. Графическое изображение представляет собой короткую черточку, от середины которой отходит линия. Данный символ обозначает базу. К ее краям проводятся две наклонные линии под углом 600, отображающие эмиттер и коллектор.

Электропроводность базы зависит от направления стрелки эмиттера. Если она направлена в сторону базы, то электропроводность эмиттера – р, а у базы – n. При направлении стрелки в противоположную сторону, эмиттер и база меняют электропроводность на противоположное значение. Знание электропроводности необходимо для правильного подключения транзистора к источнику питания.

Для того чтобы обозначение на схемах радиодеталей транзистора было более наглядным, оно помещается в кружок, означающий корпус. В некоторых случаях выполняется соединение металлического корпуса с одним из выводов элемента. Такое место на схеме отображается в виде точки, проставляемой там, где вывод пересекается с символом корпуса. Если же на корпусе имеется отдельный вывод, то линия, обозначающая вывод, может подсоединяться к кружку без точки. Возле позиционного обозначения транзистора указывается его тип, что позволяет существенно повысить информативность схемы.


Буквенные обозначение на схемах радиодеталей

Основное обозначение

Наименование элемента

Дополнительное обозначение

Вид устройства

А

Устройство

АА

Регулятор тока

 

 

АК

Блок реле

 

 

AKS

Устройство

В

Преобразователи

ВА

Громкоговоритель

 

 

BF

Телефон

 

 

ВК

Датчик тепловой

 

 

BL

Фотоэлемент

 

 

ВМ

Микрофон

 

 

BS

Звукосниматель

С

Конденсаторы

СВ

Батарея конденсаторов силовая

 

 

CG

Блок конденсаторов зарядный

D

Интегральные схемы, микросборки

DA

ИС аналоговая

 

 

DD

ИС цифровая, логический элемент

Е

Элементы разные

ЕК

Теплоэлектронагреватель

 

 

EL

Лампа осветительная

F

Разрядники, предохранители, устройства защитные

FA

Дискретный элемент защиты по току мгновенного действия

 

 

FP

То же, по току инерционного действия

 

 

FU

Предохранитель плавкий

 

 

FV

Разрядник

G

Генераторы, источники питания

GB

Батарея аккумуляторов

 

 

GC

Синхронный компенсатор

 

 

Возбудитель генератора

Н

Устройства индикационные и сигнальные

НА

Прибор звуковой сигнализации

 

 

HG

Индикатор

 

 

HL

Прибор световой сигнализации

 

 

HLА

Табло сигнальное

 

 

HLG

Лампа сигнальная с зеленой линзой

 

 

HLR

Лампа сигнальная с красной линзой

 

 

HLW

Лампа сигнальная с белой линзой

 

 

HV

Индикаторы ионные и полупроводниковые

К

Реле, контакторы, пускатели

КА

Реле токовое

 

 

КН

Реле указательное

 

 

КК

Реле электротепловое

 

 

КМ

Контактор, магнитный пускатель

 

 

КТ

Реле времени

 

 

KV

Реле напряжения

 

 

КСС

Реле команды включения

 

 

КСТ

Реле команды отключения

 

 

KL

Реле промежуточное

L

Катушки индуктивности, дроссели

LL

Дроссель люминесцентного освещения

 

 

LR

Реактор

 

 

LM

Обмотка возбуждения электродвигателя

М

Двигатели

МА

Электродвигатели

Р

Приборы измерительные

РА

Амперметр

 

 

РС

Счетчик импульсов

 

 

PF

Частотомер

 

 

PI

Счетчик активной энергии

 

 

PK

Счетчик реактивной энергии

 

 

PR

Омметр

 

 

PT

Измеритель времени действия, часы

 

 

PV

Вольтметр

 

 

PW

Ваттметр

Q

Выключатели и разъединители силовые

QF

Выключатель автоматический

R

Резисторы

RK

Терморезистор

 

 

RP

Потенциометр

 

 

RS

Шунт измерительный

 

 

RU

Варистор

 

 

RR

Реостат

S

Устройство коммутации в цепях управления, сигнализации и измерительных цепях

SA

Выключатель или переключатель

 

 

SB

Выключатель кнопочный

 

 

SF

Выключатель автоматический

Т

Трансформаторы, автотрансформаторы

TA

Трансформатор тока

 

 

TV

Трансформаторы напряжения

U

Преобразователи

UB

Модулятор

 

 

UR

Демодулятор

 

 

UG

Блок питания

 

 

UF

Преобразователь частоты

V

Приборы электровакуумные и полупроводниковые

VD

Диод, стабилитрон

 

 

VL

Прибор электровакуумный

 

 

VT

Транзистор

 

 

VS

Тиристор

Х

Соединители контактные

ХА

Токосъемник

 

 

ХР

Штырь

 

 

XS

Гнездо

 

 

XW

Соединитель высокочастотный

Y

Устройства механические с электромагнитным приводом

YA

Электромагнит

 

 

YAB

Замок электромагнитный


electric-220.ru

ОБОЗНАЧЕНИЯ РАДИОДЕТАЛЕЙ

   При изготовлении радиоэлектронных устройств, у начинающих радиолюбителей могут возникнуть трудности с расшифровкой обозначений на схеме различных элементов. Для этого был составлен небольшой сборник самых часто встречающихся условных обозначений радиодеталей. Следует учесть, что здесь приводится исключительно зарубежный вариант обозначения и на отечественных схемах возможны отличия. Но так как большинство схем и деталей импортного происхождения - это вполне оправдано.


   Резистор на схеме обозначается латинской буквой "R", цифра - условный порядковый номер по схеме. В прямоугольнике резистора может быть обозначена номинальная мощность резистора - мощность, которую он может долговременно рассеивать без разрушения. При прохождении тока на резисторе рассеивается определенная мощность, которая приводит к нагреву последнего. Большинство зарубежных и современных отечественных резисторов маркируется цветными полосами. Ниже приведена таблица цветовых кодов.


   Далее приводится структура и цоколёвка с обозначением назначения выводов популярных импортных цифровых микросхем серии CD40xx и операционных усилителей LM.

   Наиболее часто встречающаяся система обозначений полупроводниковых радиодеталей - европейская. Основное обозначение по этой системе состоит из пяти знаков. Две буквы и три цифры - для широкого применения. Три буквы и две цифры - для специальной аппаратуры. Следующая за ними буква обозначает разные параметры для приборов одного типа. 

   Первая буква - код материала:

А - германий;
В - кремний;
С - арсенид галлия;
R - сульфид кадмия.

   Вторая буква - назначение:

А - маломощный диод;
В - варикап;
С - маломощный низкочастотный транзистор;
D - мощный низкочастотный транзистор;
Е - туннельный диод;
F - маломощный высокочастотный транзистор;
G - несколько приборов в одном корпусе;
Н - магнитодиод;
L - мощный высокочастотный транзистор;
М - датчик Холла;
Р - фотодиод, фототранзистор;
Q - светодиод;
R - маломощный регулирующий или переключающий прибор;
S - маломощный переключательный транзистор;
Т - мощный регулирующий или переключающий прибор;
U - мощный переключательный транзистор;
Х - умножительный диод;
Y - мощный выпрямительный диод;
Z - стабилитрон.

   Форум по радиодеталям

   Обсудить статью ОБОЗНАЧЕНИЯ РАДИОДЕТАЛЕЙ


radioskot.ru

Графическое обозначение радиоэлементов на схеме. Основные элементы.

Графическое обозначение (варианты)Наименование элементаКраткое описание элемента
Элемент питанияОдиночный источник электрического тока, в том числе: часовые батарейки; пальчиковые солевые батарейки; сухие аккумуляторные батарейки; батареи сотовых телефонов
Батарея элементов питанияНабор одиночных элементов, предназначенный для питания аппаратуры повышенным общим напряжением (отличным от напряжения одиночного элемента), в том числе: батареи сухих гальванических элементов питания; аккумуляторные батареи сухих, кислотных и щелочных элементов
УзелСоединение проводников. Отсутствие точки (кружочка) говорит о том, что проводники на схеме пересекаются, но не соединяются друг с другом – это разные проводники. Не имеет буквенно-цифрового обозначения
КонтактВывод радиосхемы, предназначенный для «жёсткого» (как правило — винтового) подсоединения к нему проводников. Чаще используется в больших системах управления и контроля электропитанием сложных многоблочных электросхем
ГнездоСоединительный легкоразъёмный контакт типа «разъём» (на радиолюбительском сленге — «мама»). Применяется преимущественно для кратковременного, легко разъединяемого подключения внешних приборов, перемычек и других элементов цепи, например в качестве контрольного гнезда
РозеткаПанель, состоящая из нескольких (не менее 2-х) контактов «гнездо». Предназначена для многоконтактного соединения радиоаппаратуры. Типичный пример – бытовая электророзетка «220В»
ШтекерКонтактный легкоразъёмный штыревой контакт (на сленге радиолюбителей — «папа»), предназначенный для кратковременного подключения к участку электрорадиоцепи
ВилкаМногоштеккерный разъем, с числом контактов не менее двух предназначенный для многоконтактного соединения радиоаппаратуры. Типичный пример — сетевая вилка бытового прибора «220В»
ВыключательДвухконтактный прибор, предназначенный для замыкания (размыкания) электрической цепи. Типичный пример – выключатель света «220В» в помещении
ПереключательТрёхконтактный прибор, предназначенный для переключения электрических цепей. Один контакт имеет два возможных положения
ТумблерДва «спаренных» переключателя — переключаемых одновременно одной общей рукояткой. Отдельные группы контактов могут изображаться в разных частях схемы, тогда они могут обозначаться как группа S1.1 и группа S1.2. Кроме того, при большом расстоянии на схеме они могут соединяться одной пунктирной линией
Галетный переключательПереключатель, в котором один контакт «ползункового» типа, может переключаться в несколько разных положений. Бывают спаренные галетные переключатели, в которых имеется несколько групп контактов
КнопкаДвухконтактный прибор, предназначенный для кратковременного замыкания (размыкания) электрической цепи путём нажатия на него. Типичный пример – кнопка дверного звонка квартиры
Общий провод (GND)Контакт радиосхемы, имеющий условный «нулевой» потенциал относительно остальных участков и соединений схемы. Обычно, это вывод схемы, потенциал которого либо самый отрицательный относительно остальных участков схемы (минус питания схемы), либо самый положительный (плюс питания схемы). Не имеет буквенно-цифрового обозначения
ЗаземлениеВывод схемы, подлежащий подключению к Земле. Позволяет исключить возможное появление вредоносного статического электричества, а также предотвращает поражение от электрического тока в случае возможного попадания опасного напряжения на поверхности радиоприборов и блоков, которых касается человек, стоящий на мокром грунте. Не имеет буквенно-цифрового обозначения
Лампа накаливанияЭлектрический прибор, применяемый для освещения. Под действием электрического тока происходит свечение вольфрамовой нити накала (её горение). Не сгорает нить потому, что внутри колбы лампы нет химического окислителя – кислорода
Сигнальная лампаЛампа, предназначенная для контроля (сигнализирования) состояния различных цепей устаревшей аппаратуры. В настоящее время, вместо сигнальных ламп используют светодиоды, потребляющие более слабый ток и более надёжные
Неоновая лампаГазоразрядная лампа, наполненная инертным газом. Цвет свечения зависит от вида газа-наполнителя : неон – красно-оранжевое, гелий – синее, аргон – сиреневое, криптон – сине-белое. Применяют и другие способы придать определённый цвет лампе наполненной неоном – использование люминесцентных покрытий (зелёного и красного свечения)
Лампа дневного света (ЛДС)Газоразрядная лампа, в том числе колба миниатюрной энергосберегающей лампы, использующая люминесцентное покрытие – химический состав с послесвечением. Применяется для освещения. При одинаковой потребляемой мощности, обладает более ярким светом, чем лампа накаливания
Электромагнитное релеЭлектрический прибор, предназначенный для переключения электрических цепей, путём подачи напряжения на электрическую обмотку (соленоид) реле. В реле может быть несколько групп контактов, тогда эти группы нумеруются (например Р1.1, Р1.2)
Амперметр, миллиамперметр, микроамперметрЭлектрический прибор, предназначенный для измерения силы электрического тока. В своём составе имеет неподвижный постоянный магнит и подвижную магнитную рамку (катушку), на которой крепится стрелка. Чем больше ток, протекающий через обмотку рамки, тем на больший угол стрелка отклоняется. Амперметры подразделяются по номинальному току полного отклонения стрелки, по классу точности и по области применения
Вольтметр, милливольтметр, микровольтметрЭлектрический прибор, предназначенный для измерения напряжения электрического тока. Фактически ничем не отличается от амперметра, так как делается из амперметра, путём последовательного включения в электрическую цепь через добавочный резистор. Вольтметры подразделяются по номинальному напряжению полного отклонения стрелки, по классу точности и по области применения
РезисторРадиоприбор, предназначенный для уменьшения тока, протекающего по электрической цепи. На схеме указывается значение сопротивления резистора. Рассеиваемая мощность резистора изображается специальными полосками, или римскими символами на графическом изображении корпуса в зависимости от мощности (0,125Вт – две косых линии «//», 0,25 – одна косая линия «/», 0,5 – одна линия вдоль резистора «-«, 1Вт – одна поперечная линия «I», 2Вт – две поперечных линии «II», 5Вт – галочка «V», 7Вт – галочка и две поперечных линии «VII», 10Вт – перекрестие «Х», и т.д.). У Американцев обозначение резистора – зигзагообразное, как показано на рисунке
Переменный резисторРезистор, сопротивление которого на его центральном выводе регулируется с помощью «ручки-регулятора». Номинальное сопротивление, указанное на схеме – это полное сопротивление резистора между его крайними выводами, которое не регулируется. Переменные резисторы бывают спаренные (2 на одном регуляторе)
Подстроечный резисторРезистор, сопротивление которого на его центральном выводе регулируется с помощью «шлица-регулятора» — отверстия под отвёртку. Как и у переменного резистора, номинальное сопротивление, указанное на схеме – это полное сопротивление резистора между его крайними выводами, которое не регулируется
ТерморезисторПолупроводниковый резистор, сопротивление которого изменяется в зависимости от окружающей температуры. При увеличении температуры, сопротивление терморезистора уменьшается, а при уменьшении температуры наоборот, увеличивается. Применяется для измерения температуры в качестве термодатчика, в цепях термостабилизации различных каскадов аппаратуры и т.д.
ФоторезисторРезистор, сопротивление которого изменяется в зависимости от освещённости. При увеличении освещённости, сопротивление терморезистора уменьшается, а при уменьшении освещённости наоборот – увеличивается. Применяется для измерения освещенности, регистрации колебаний света и т.д. Типичный пример – «световой барьер» турникета. В последнее время вместо фоторезисторов чаще используются фотодиоды и фототранзисторы
ВаристорПолупроводниковый резистор, резко уменьшающий своё сопротивление при достижении приложенного к нему напряжения определённого порога. Варистор предназначен для защиты электрических цепей и радиоприборов от случайных «скачков» напряжения
КонденсаторЭлемент радиосхемы, обладающий электрической ёмкостью, способный накапливать электрический заряд на своих обкладках. Применение в зависимости от величины ёмкости разнообразно, самый распространённый радиоэлемент после резистора
Конденсатор электролитическийКонденсатор, при изготовлении которого применяется электролит, за счет этого при сравнительно малых размерах обладает намного большей ёмкостью, чем обыкновенный «неполярный» конденсатор. При его применении необходимо соблюдать полярность, в противном случае электролитический конденсатор теряет свои накопительные свойства. Используется в фильтрах питания, в качестве проходных и накопительных конденсаторов низкочастотной и импульсной аппаратуры. Обычный электролитический конденсатор саморазряжается за время не более минуты, обладает свойством «терять» ёмкость вследствие высыхания электролита, для исключения эффектов саморазряда и потери ёмкости используют более дорогие конденсаторы – танталовые
Подстроечный конденсаторКонденсатор, у которого ёмкость регулируется с помощью «шлица-регулятора» — отверстия под отвёртку. Используется в высокочастотных контурах радиоаппаратуры
Переменный конденсаторКонденсатор, ёмкость которого регулируется с помощью выведенной наружу радиоприёмного устройства рукоятки (штурвала). Используется в высокочастотных контурах радиоаппаратуры в качестве элемента селективного контура, изменяющего частоту настройки радиопередатчика, или радиоприемника
Пьезоэлектрический резонаторВысокочастотный прибор, обладающий резонансными свойствами подобно колебательному контуру, но на определённой фиксированной частоте. Может применяться на «гармониках» — частотах, кратных резонансной частоте, указанной на корпусе прибора. Часто, в качестве резонирующего элемента используется кварцевое стекло, поэтому резонатор называют «кварцевый резонатор», или просто «кварц». Применяется в генераторах гармонических (синусоидальных) сигналов, тактовых генераторах, узкополосных частотных фильтрах и др.
Катушка индуктивностиОбмотка (катушка) из медного провода. Может быть бескаркасной, на каркасе, а может исполняться с использованием магнитопровода (сердечника из магнитного материала). Обладает свойством накопления энергии за счёт магнитного поля. Применяется в качестве элемента высокочастотных контуров, частотных фильтров и даже антенны приёмного устройства
Подстроечная катушка индуктивностиКатушка с регулируемой индуктивностью, у которой имеется подвижный сердечник из магнитного (ферромагнитного) материала. Как правило, мотается на цилиндрическом каркасе. При помощи немагнитной отвёртки регулируется глубина погружения сердечника в центр катушки, тем самым изменяется её индуктивность
ДроссельКатушка индуктивности, содержащая большое количество витков, которая исполняется с использованием магнитопровода (сердечника). Как и высокочастотная катушка индуктивности, дроссель обладает свойством накопления энергии. Применяется в качестве элементов низкочастотных фильтров звуковой частоты, схем фильтров питания и импульсного накопления
ТрансформаторИндуктивный элемент, состоящий из двух и более обмоток. Переменный (изменяющийся) электрический ток, прикладываемый к первичной обмотке, вызывает возникновение магнитного поля в сердечнике трансформатора, а оно в свою очередь наводит магнитную индукцию во вторичной обмотке. В результате на выходе вторичной обмотки появляется электрический ток. Точки на графическом обозначении у краёв обмоток трансформатора обозначают начала этих обмоток, римские цифры – номера обмоток (первичная, вторичная)
ДиодПолупроводниковый прибор, способный пропускать ток в одну сторону, а в другую нет. Направление тока можно определить по схематическому изображению – сходящиеся линии, подобно стрелке указывают направление тока. Выводы анода и катода буквами на схеме не обозначаются
Стабилитрон (стабистор)Специальный полупроводниковый диод, предназначенный для стабилизации приложенного к его выводам напряжения обратной полярности (у стабистора – прямой полярности)
ВарикапСпециальный полупроводниковый диод, обладающий внутренней ёмкостью и изменяющий её значение в зависимости от амплитуды приложенного к его выводам напряжения обратной полярности. Применяется для формирования частотно-модулированного радиосигнала, в схемах электронного регулирования частотными характеристиками радиоприемников
СветодиодСпециальный полупроводниковый диод, кристалл которого светится под действием приложенного прямого тока. Используется как сигнальный элемент наличия электрического тока в определённой цепи. Бывает различных цветов свечения

Фотодиод

ФотодиодСпециальный полупроводниковый диод, при освещении которого на выводах появляется слабый электрический ток. Применяется для измерения освещенности, регистрации колебаний света и т.д., подобно фоторезистору
Тиристор (тринистор)Полупроводниковый прибор, предназначенный для коммутации электрической цепи. При подаче небольшого положительного напряжения на управляющий электрод относительно катода, тиристор открывается и проводит ток в одном направлении (как диод). Закрывается тиристор только после пропадания протекающего от анода к катоду тока, или смены полярности этого тока. Выводы анода, катода и управляющего электрода буквами на схеме не обозначаются
СимисторСоставной тиристор, способный коммутировать токи как положительной полярности (от анода к катоду), так и отрицательной (от катода к аноду). Как и тиристор, симистор закрывается только после пропадания протекающего от анода к катоду тока, или смены полярности этого тока
ДинисторВид тиристора, который открывается (начинает пропускать ток) только при достижении определённого напряжения между его анодом и катодом, и запирается (прекращает пропускать ток) только при уменьшении тока до нуля, или смены полярности тока. Используется в схемах импульсного управления
n-p-n транзисторБиполярный транзистор, который управляется положительным потенциалом на базе относительно эмиттера (стрелка у эмиттера показывает условное направление тока). При этом при повышении входного напряжения база-эмиттер от нуля до 0,5 вольта, транзистор находится в закрытом состоянии. После дальнейшего повышения напряжения от 0,5 до 0,8 вольта транзистор работает как усилительный прибор. На конечном участке «линейной характеристики» (около 0,8 вольта) транзистор насыщается (полностью открывается). Дальнейшее повышение напряжения на базе транзистора опасно, транзистор может выйти из строя (происходит резкий рост тока базы). В соответствии с «учебниками», биполярный транзистор управляется током база-эмиттер. Направление коммутируемого тока в n-p-n транзисторе – от коллектора к эмиттеру. Выводы базы, эмиттера и коллектора буквами на схеме не обозначаются
p-n-p транзисторБиполярный транзистор, который управляется отрицательным потенциалом на базе относительно эмиттера (стрелка у эмиттера показывает условное направление тока). В соответствии с «учебниками», биполярный транзистор управляется током база-эмиттер. Направление коммутируемого тока в p-n-р транзисторе – от эмиттера к коллектору. Выводы базы, эмиттера и коллектора буквами на схеме не обозначаются
ФототранзисторТранзистор (как правило — n-p-n), сопротивление перехода «коллектор-эмиттер» которого уменьшается при его освещении. Чем выше освещённость, тем меньше сопротивление перехода. Применяется для измерения освещенности, регистрации колебаний света (световых импульсов) и т.д., подобно фоторезистору
Транзистор полевойТранзистор, сопротивление перехода «сток-исток» которого уменьшается при подаче напряжения на его затвор относительно истока. Обладает большим входным сопротивлением, что повышает чувствительность транзистора к малым входным токам. Имеет электроды: Затвор, Исток, Сток и Подложку (бывает не всегда). По принципу работы, можно сравнить с водопроводным краном. Чем больше напряжение на затворе (на больший угол повёрнута рукоятка вентиля), тем больший ток (больше воды) течёт между истоком и стоком. По сравнению с биполярным транзистором имеет больший диапазон регулирующего напряжения – от нуля, до десятков вольт. Выводы затвора, истока, стока и подложки буквами на схеме не обозначаются
Транзистор полевой со встроенным n-каналомПолевой транзистор, управляемый положительным потенциалом на затворе, относительно истока. Имеет изолированный затвор. Обладает большим входным сопротивлением, и очень малым выходным сопротивлением, что позволяет малыми входными токами управлять большими выходными токами. Чаще всего, технологически подложка соединена с истоком
Транзистор полевой со встроенным р-каналомПолевой транзистор, управляемый отрицательным потенциалом на затворе, относительно истока (для запоминания р-канал — позитив). Имеет изолированный затвор. Обладает большим входным сопротивлением, и очень малым выходным сопротивлением, что позволяет малыми входными токами управлять большими выходными токами. Чаще всего, технологически подложка соединена с истоком
Транзистор полевой с индуцированным n-каналомПолевой транзистор, обладающий теми же свойствами, что и «со встроенным n-каналом» с той разницей, что имеет ещё большее входное сопротивление. Чаще всего, технологически подложка соединена с истоком. По технологии изолированного затвора исполняются MOSFET транзисторы, управляемые входным напряжением от 3 до 12 вольт (в зависимости от типа), имеющие сопротивление открытого перехода сток-исток от 0,1 до 0,001 Ом (в зависимости от типа)
Транзистор полевой с индуцированным р-каналомПолевой транзистор, обладающий теми же свойствами, что и «со встроенным p-каналом» с той разницей, что имеет ещё большее входное сопротивление. Чаще всего, технологически подложка соединена с истоком

meanders.ru

Обозначение радиоэлементов. Фото и названия

Обозначение Название Фото Описание
Заземление Защитное заземление — обеспечивает защиту людей от поражений электрическим током в электроустановках.
Батарейка Батарейка — гальванический элемент в котором происходит преобразование химической энергии в электрическую энергию.
Солнечная батарейка Солнечная батарея служит для преобразования солнечной энергии в электрическую энергию.
Вольтметр Вольтметр — измерительный прибор для определения напряжения или ЭДС в электрических цепях.
Амперметр Амперметр — прибор для измерения силы тока, шкалу градуируют в микроамперах или в амперах.
Включатель Выключатель — коммутационный аппарат, предназначенный для включения и отключения отдельных цепей или электрооборудования.
Кнопка Тактовая кнопка — коммутационный механизм, замыкающий электрическую цепь пока есть давление на толкатель.
Лампа накаливания Лампы накаливания общего назначения, предназначены для внутреннего и наружного освещения.
Мотор Мотор (двигатель) — устройство, преобразующее электроэнергию в механическую работу (вращение).
Пьезодинамик Пьезодинамики (пьезоизлучатели) используют в технике для оповещения какого-либо происшествия или события.
Резистор Резистор — пассивный элемент электрических цепей, обладающий определенным значением электрического сопротивления.
Переменный резистор Переменный резистор предназначен для плавного изменения тока, посредством изменения собственного сопротивления.
Фоторезистор Фоторезистор – это резистор, электрическое сопротивление которого изменяется под влиянием световых лучей (освещения).
Термистор Терморезисторы или термисторы — полупроводниковые резисторы с отрицательным температурным коэффициентом сопротивления.
Предохранитель Предохранитель — электрический аппарат, предназначенный для отключения защищаемой цепи посредством разрушения.
Конденсатор Конденсатор служит для накопления заряда и энергии электрического поля. Конденсатор быстро заряжается и разряжается.
Диод Диод обладает различной проводимостью. Назначение диода — проводить электрический ток в одном направлении.
Светодиод Светодиод (LED) — полупроводниковый прибор, создающий оптическое излучение при пропускании электричества.
Фотодиод Фотодиод — приемник оптического излучения, преобразующий свет в электрический заряд за счет процесса в p-n-переходе.
Тиристор Тиристор — это полупроводниковый ключ, т.е. прибор, назначение которого состоит в замыкании и размыкании цепи.
Стабилитрон Назначение стабилитрона — стабилизация напряжения на нагрузке, при изменяющемся напряжении во внешней цепи.
Транзистор Транзистор — полупроводниковый прибор, предназначенный для усиления электрического тока и управления им.
Фототранзистор Фототранзистором называют полупроводниковый транзистор, чувствительный к облучающему его световому потоку (освещению).

xn--18-6kcdusowgbt1a4b.xn--p1ai

Радиодетали и электронные компоненты | Go-radio.ru

С чего начинается практическая электроника? Конечно с радиодеталей! Их разнообразие просто поражает. Здесь вы найдёте статьи о всевозможных радиодеталях, познакомитесь с их назначением, параметрами и свойствами. Узнаете, где и в каких устройствах применяются те или иные электронные компоненты.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Как купить радиодетали через интернет?

Как купить радиодетали через интернет? Этим вопросом задаются многие радиолюбители. В статье рассказывается о том, как можно заказать радиодетали в интернет-магазине радиодеталей с доставкой по почте.

Как покупать радиодетали на AliExpress.com?

В данной статье я расскажу о том, как покупать радиодетали и электронные модули в одном из крупнейших интернет-магазинов AliExpress.com за весьма небольшие деньги:)

Резисторная сборка.

Резисторная сборка (она же Resistor Array или Resistor Networks) активно применяется в цифровой электронике. Здесь вы узнаете, как устроена резисторная сборка, а также познакомитесь с её маркировкой и применением.

SMD резисторы (Surface Mount Chip Resistors).

Так ли много мы знаем об SMD-резисторах? Спешите узнать: устройство, конструкция и технология производства чип-резисторов разных типов.

MELF резисторы.

Кроме широко распространённых плоских SMD-резисторов в электронике применяются MELF-резисторы в корпусе цилиндрической формы. Каковы их достоинства и недостатки? Где они применяются и как определить их мощность?

Размеры SMD-резисторов. Таблица типоразмеров.

Размеры корпусов SMD-резисторов стандартизированы, и многим они, наверняка, известны. Но так ли всё просто? Здесь вы узнаете о двух системах кодирования размеров SMD-компонентов, научитесь определять реальный размер чип-резистора по его типоразмеру и наоборот. Познакомитесь с самыми маленькими представителями SMD-резисторов, которые сейчас существуют. Кроме этого представлена таблица типоразмеров SMD-резисторов и их сборок.

Мощность SMD резистора. Как узнать?

При конструировании и ремонте электроники довольно часто возникает вопрос, а как же узнать мощность SMD-резистора?

Здесь приводится методика определения мощности чип-резистора исходя из его размеров, приводится таблица соответствия типоразмера и мощности чип резистора. Кроме этого, вы научитесь определять мощность резисторов в составе чип-сборок, а также познакомитесь с высокомощными SMD-резисторами.

Приведённая информация является сжатой и компактной "выжимкой", полученной в результате изучения десятков даташитов, рекламных буклетов производителей и технических описаний на современные изделия для поверхностного монтажа.

ТКС резистора (TCR resistor).

Здесь вы узнаете, что такое температурный коэффициент сопротивления резистора (ТКС), а также каким ТКС обладают разные типы постоянных резисторов. Приводится формула расчёта ТКС, а также пояснения насчёт зарубежных обозначений вроде T.C.R и ppm/0С.

Какие бывают переменные резисторы?

Кроме постоянных резисторов в электронике активно применяются переменные и подстроечные резисторы. О том, как устроены переменные и подстроечные резисторы, об их разновидностях и пойдёт речь в предлагаемой статье. Материал подкреплён большим количеством фотографий разнообразных резисторов, что непременно понравится начинающим радиолюбителям, которые смогут легче ориентироваться во всём многообразии этих элементов.

Параметры переменных резисторов.

Как и у любой радиодетали, у переменных и подстроечных резисторов есть основные параметры. Оказывается их не так уж и мало, а начинающим радиолюбителям не помешает ознакомиться с такими интересными параметрами переменных резисторов, как ТКС, функциональная характеристика, износоустойчивость и др.

Терморезисторы.

Здесь вы узнаете о терморезисторах - электронных компонентах для измерения и контроля температуры. NTC-термисторы и позисторы. Применение термисторов в качестве устройств защиты.

Катушка индуктивности.

Что такое катушка индуктивности и зачем она используется в электронике? Здесь вы узнаете не только о том, какими параметрами обладает катушка индуктивности, но и узнаете, как обозначаются разные катушки индуктивности на схеме. Статья содержит множество фотографий и изображений.

Диод Шоттки. Особенности и обозначение на схеме.

В современной импульсной технике активно применяется диод Шоттки. Чем он отличается от обычных выпрямительных диодов? Как он обозначается на схемах? Каковы его положительные и отрицательные свойства? Обо всём этом вы узнаете в статье про диод Шоттки.

Стабилитрон.

Стабилитрон – один из самых важных элементов в современной электронике. Не секрет, что полупроводниковая электроника очень требовательна к качеству электропитания, а если быть точнее, к стабильности питающего напряжения. Тут на помощь приходит полупроводниковый диод – стабилитрон, который активно применяется для стабилизации напряжения в узлах электронной аппаратуры.

Варикап

Что такое варикап и где он применяется? Из этой статьи вы узнаете об удивительном диоде, который используется в качестве переменного конденсатора.

Устройство динамика.

Как устроен динамик? Здесь вы узнаете об устройстве динамической головки прямого излучения, а также о том, как обозначается динамик на принципиальных схемах, а также познакомитесь с основными параметрами динамиков.

Как соединять динамики?

Если вы занимаетесь электроникой, то наверняка сталкивались с задачей соединения нескольких динамиков или акустических колонок. Это может потребоваться, например, при самостоятельной сборке акустической колонки, подключении нескольких колонок к одноканальному усилителю и так далее. Рассмотрено 5 наглядных примеров. Много фото.

Транзистор.

Транзистор является основой современной электроники. Его изобретение произвело революцию в радиотехнике и послужило основой для миниатюризации электроники – создания микросхем. Как обозначается транзистор на принципиальной схеме? Как необходимо впаивать транзистор в печатную плату? Ответы на эти вопросы вы найдёте в этой статье.

Составной транзистор.

Составной транзистор или по-другому транзистор Дарлингтона является одной из модификаций биполярного транзистора. О том, где применяются составные транзисторы, об их особенностях и отличительных свойствах вы узнаете из этой статьи.

Параметры MOSFET транзисторов.

При подборе аналогов полевых МДП-транзисторов приходиться обращаться к технической документации с параметрами и характеристиками конкретного транзистора. Из данной статьи вы узнаете об основных параметрах мощных MOSFET транзисторов.

Обозначение полевого транзистора.

В настоящее время в электронике всё активнее применяются полевые транзисторы. На принципиальных схемах полевой транзистор обозначается по-разному. В статье рассказывается об условном графическом обозначении полевых транзисторов на принципиальных схемах.

IGBT транзистор.

Что такое IGBT-транзистор? Где применяется и как он устроен? Из данной статьи вы узнаете о преимуществах биполярных транзисторов с изолированным затвором, а также о том, как обозначается данный тип транзисторов на принципиальных схемах.

Динистор. Принцип работы и свойства.

Среди огромного количества полупроводниковых приборов существует динистор. Узнать о том, чем динистор отличается от полупроводникового диода, вы сможете, прочитав эту статью.

Варистор.

Что такое варистор и каковы его основные параметры? Здесь вы узнаете, как варистор обозначается на схеме, а также о том, где применяется варистор.

Супрессор.

Что такое супрессор? Защитные диоды или супрессоры всё активней применяются в радиоэлектронной аппаратуре для её защиты от высоковольтных импульсных помех. О назначении, параметрах и способах применения защитных диодов вы узнаете из этой статьи.

Самовосстанавливающийся предохранитель.

Самовосстанавливающиеся предохранители всё чаще применяются в электронной аппаратуре. Их можно обнаружить в приборах охранной автоматики, компьютерах, портативных устройствах… На зарубежный манер самовосстанавливающиеся предохранители называются PTC Resettable Fuses. Каковы свойства и параметры «бессмертного» предохранителя? Об этом вы узнаете из предложенной статьи.

Электромагнитное реле.

Электромагнитное реле. Устройство, принцип работы и основные параметры электромагнитного реле.

Твёрдотельное реле.

В настоящее время в электронике всё активней стали применяться твёрдотельные реле. В чём преимущество твёрдотельных реле перед электромагнитными и герконовыми реле? Устройство, особенности и типы твёрдотельных реле.

Кварцевый резонатор.

В литературе посвящённой электронике кварцевый резонатор незаслуженно лишён внимания, хотя данный электромеханический компонент чрезвычайно сильно повлиял на активное развитие техники радиосвязи, навигации и вычислительных систем.

Разновидности конденсаторов по типу диэлектрика. Электролитические конденсаторы.

Кроме всем известных алюминиевых электролитических конденсаторов в электронике используется большое количество всевозможных электролитических конденсаторов с разным типом диэлектрика. Среди них например танталовые smd конденсаторы, неполярные электролитические и танталовые выводные. Данная статья поможет начинающим радиолюбителям распознать различные электролитические конденсаторы среди всевозможных радиоэлементов.

Устройство танталового конденсатора.

Кроме алюминиевых электролитических конденсаторов в электронике активно используются конденсаторы с танталовым диэлектриком. Здесь вы познакомитесь с устройством танталового конденсатора, его отличительными особенностями и свойствами.

Свойства электролитических конденсаторов.

Наряду с другими конденсаторами, электролитические конденсаторы обладают некоторыми специфическими свойствами, которые необходимо учитывать при их применении в самодельных электронных устройствах, а также при проведении ремонта электроники.

Конденсаторы Low ESR и Low Impedance. В чём разница?

В настоящее время в продаже имеется огромный ассортимент электролитических конденсаторов, в том числе и низкоимпедансных или же с низким ЭПС. В чём отличие обычных конденсаторов от конденсаторов Low ESR и Low Impedance?

Химические источники тока.

Химические источники тока активно используются в электронике. По-другому химический источник тока называют батарейкой или аккумулятором. В чём разница между батарейкой и аккумулятором? Как обозначаются химические источники тока на принципиальной схеме? На эти и другие вопросы вы получите ответы, прочтя статью про химические источники тока.

Литиевые аккумуляторы.

Здесь вы узнаете о том, какие типы литиевых аккумуляторов нашли широкое применение. Рассказано об устройстве и особенностях аккумуляторов на основе лития, которые должен знать каждый пользователь данного класса вторичных источников тока.

Ионистор.

В последнее время в продаже появились ионисторы. Как устроен ионистор? Каковы его свойства и электрические характеристики? Подробнее об этом читайте здесь.

Электронный трансформатор.

Электромагнитные трансформаторы стали всё чаще заменяться электронными трансформаторами. В данной статье рассматривается устройство рядового электронного трансформатора для галогенных ламп. Представлена схема реального устройства.

Температурные датчики и реле KSD.

Термоуправляемые выключатели получили широкое применение в бытовой электронике. Их можно встретить практически в любом бытовом приборе, служащим для нагрева чего-либо. Также они встречаются и в довольно сложных приборах вроде СВЧ-печей. Знание о температурных датчиках и реле (в данном случае серии KSD) помогут в ремонте бытовых электронагревательных приборов и при конструировании самодельных электронных устройств.

ИК-приёмник.

Устройство и особенности приёмников инфракрасного излучения (ИК-модулей) для систем с дистанционным управлением.

 

 

 

go-radio.ru

Элементная база блоков питания | Ремонт торговой электронной техники

В блоках питания помимо использования обыкновенных резисторов используются два типа специализированных резисторов - Варистор и Термистор.
Также, кроме обыкновенных конденсаторов используются специализированные помехоподавляющие конденсаторы: конденсаторы типа Y и конденсаторы типа X (их еще называют конденсаторы класса защиты X/Y)

В качестве примера приведем кусок реальной схемы до выпрямительного мостика, хочется повторится – схема реальная, хотя впечатление такое, что этот шедевр - сборище пассивных элементов защиты от ВЧ помех со страниц какого то учебника по борьбе с помехами.

Рис. Пример реального участка схемы блока питания - фильтра от ВЧ помех.


 

Варистор

Варистор – полупроводниковый резистор, сопротивление которого изменяется при изменении приложенного напряжения. Основная задача варистора в блоках питания – защита цепей от перенапряжения.

Рис. Принцип работы варистора в блоках питания, увеличение скорости срабатывания предохранителя или защита от импульсных бросков напряжения.

Варистор включается параллельно входному напряжению 220В, и фактически постоянно находится под этим напряжением, однако ток в этом состоянии через варистор очень мал. В случае возникновения выброса по напряжению, сопротивление варистора резко падает и шунтирует защищаемые цепи, ток в этом состоянии может достигать нескольких тысяч ампер. Несмотря на свою эффективность варистор в блоках питания АТХ довольно редкий гость, чаще его можно увидеть в сетевых фильтрах или в некомпьютерных блоках питания.

Рис. Для увеличения скорости срабатывания защиты,  предохранитель и варистор объеденяют вместе.

Обозначение варистора на плате.

Обозначение варистора на схеме.

Рис. Условное обозначение варистора на схеме

Особенности применения варисторов.

  • Варисторы являются безинерционным элементом. Полностью восстанавливает свои свойства мгновенно, в результате чего чрезвычайно эффективен при борьбе с импульсными выбросами напряжения.
  • Количество импульсов прикладываемых к варистору ограничено, фактически это значит, что со временем варистор теряет свои свойства.

 

Терморезистор

Терморезистор – полупроводниковый резистор, сопротивление которого изменяется при изменении температуры.
Различают два вида терморезисторов
Термистор (NTC-термистор) - сопротивление терморезистора с повышением температуры уменьшается.
Позистор (PTC-позистор) - сопротивление терморезистора с повышением температуры увеличивается
Применение терморезисторов в блоках питания

Рис. Принцип работы NTC-термистора  в блоках питания, мягкий пуск.
Основная задача термистора в блоках питания - ограничение пускового тока. При включении блока питания термистор имеет температуру окружающей среды и сопротивление в несколько Ом. Конденсатор выпрямителя в момент включения представляет из себя короткозамкнутую нагрузку, в цепи происходит скачок тока, но термистор не даёт ему подняться выше предела, зависящего от сопротивления термистора. При прохождении тока через термистор, последний  разогревается и его сопротивление падает почти до десятых долей Ома, и  далее он не влияет на работу устройства. Происходит так называемый мягкий пуск.

Обозначение термистора на плате.

Обозначение термистора на схеме.

Рис. Условное обозначение терморезистора на схеме

На практике может встречаться комбинация состоящая, из двух или более приведенных обозначений.

Рис. Пример комбинации при обозначении терморезистора

Особенности применения термисторов.

  • Термисторы являются инерционным элементом. Полностью восстанавливает свои свойства только через 5-10 мин. Фактически при кратковременном отключении питания, при повторном пуске термистор не работает как элемент защиты.
  • Выводы термистора являются радиаторами, необходимо оставлять выводы как можно длиннее.
  • Температура термистора в состоянии сопротивления близкого к нулю может доходить до 250 градусов, нежелательно устанавливать корпус термистора в непосредственной близости от других элементов.

 

Помехоподавляющие конденсаторы

Помехоподавляющие конденсаторы делятся на два типа X и Y, для подавления синфазной и противофазной составляющей помехи. Каждый тип для своего типа помехи.

Как практик, могу сказать, название помехи не играет большой роли на принцип борьбы с помехой. Как теоретик, лично я, всегда путаю термины синфазной и противофазной помехи между собой, поэтому дальше обе помехи мы будем разделять по принципу возникновения.

Конденсатор X типа

Конденсатор X типа – конденсатор для подавления помехи возникающей между фазой и нулем (не путать с заземлением). Задача Х конденсатора не пропускать помеху из внешней сети в блок питания, а так же не выпускать помеху созданную блоком питания во внешнюю сеть.

Рис. Принцип работы Х конденсатора.

Обозначение X конденсатора на плате.

 
Cx С  

 

Обозначение X конденсатора на схеме.

Обосначается как обычный конденсатор, с суффиксом x, например Cx

Рис. Обозначение Х конденсатора на схеме .

Особенности применения Х конденсаторов.

  • Конденсатор невозгораемый при любых условиях
  • Неисправность конденсатора не приведет к поражению электрическим током.
  • Емкость Х конденсатора, чем больше - тем лучше.
  • X2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 2.5кВ.
  • Какая бы не была емкость Х конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.

Конденсатор Y типа

Конденсатор Y типа – конденсатор для подавления помехи возникающей между

  • фазой и землей (не путать с нулем)
  • нулем и землей.

Рис. Принцип работы Y конденсатора.

Обозначение Y конденсатора на плате.

Нет изображения Нет изображения  
CY С  

 

Обозначение Y конденсатора на схеме.

Обозначается как обычный конденсатор, с суффиксом Y, например Cy рядом с номиналом может стоять напряжение.

Рис. Обозначение Y конденсатора на схеме .

Особенности применения Y конденсаторов.

  • Конденсатор в случае пробоя уходит в обрыв
  • Неисправность конденсатора может привести к поражению электрическим током.
  • Емкость Y конденсатора, чем меньше - тем лучше.
  • Y2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 5кВ.
  • Y конденсатор можно применять вместо X конденсатора, наоборот нет.
  • Какая бы не была емкость Y конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.

Быстродействующие диоды.

В блоках питания используются два типа выпрямительных диодов – общего назначения и импульсные.  Импульсные диоды можно отнести к быстродействующим.

Iпр.макс., А Наименование Корпус Uобр., В Uпад., В tвосст., нс
1 1N4933...1N4937 DO-41 50 - 600 1,2 200
1 FR101...FR107 DO-41 50 - 1000 1,2 150-500

Например FR107 1000в, 1А 0,500мкс

zipstore.ru

обозначения на схеме. Как читать обозначения радиодеталей на схеме?

В статье вы узнаете о том, какие существуют радиодетали. Обозначения на схеме согласно ГОСТу будут рассмотрены. Начать нужно с самых распространенных - резисторов и конденсаторов.

Чтобы собрать какую-либо конструкцию, необходимо знать, как выглядят в реальности радиодетали, а также как они обозначаются на электрических схемах. Существует очень много радиодеталей – транзисторы, конденсаторы, резисторы, диоды и пр.

Конденсаторы

Конденсаторы ­– это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две пластины из металла. И в качестве диэлектрического компонента выступает воздух. Сразу вспоминаются уроки физики в школе, когда проходили тему о конденсаторах. В качестве модели выступали две огромные плоские железки круглой формы. Их приближали друг к другу, затем отдаляли. И в каждом положении проводили замеры. Стоит отметить, что вместо воздуха может использоваться слюда, а также любой материал, который не проводит электрический ток. Обозначения радиодеталей на импортных принципиальных схемах отличается от ГОСТов, принятых в нашей стране.

Обратите внимание на то, что через обычные конденсаторы не проходит постоянный ток. С другой же стороны, переменный ток через него проходит без особых трудностей. Учитывая это свойство, устанавливают конденсатор только там, где необходимо отделить переменную составляющую в постоянном токе. Следовательно, можно сделать схему замещения (по теореме Кирхгофа):

  1. При работе на переменном токе конденсатор замещается отрезком проводника с нулевым сопротивлением.
  2. При работе в цепи постоянного тока конденсатор замещается (нет, не емкостью!) сопротивлением.

Основной характеристикой конденсатора является электрическая емкость. Единица емкости – это Фарад. Она очень большая. На практике, как правило, используются конденсаторы, емкость которых измеряется в микрофарадах, нанофарадах, микрофарадах. На схемах конденсатор обозначается в виде двух параллельных черточек, от которых идут отводы.

Переменные конденсаторы

Существует и такой вид приборов, у которых емкость изменяется (в данном случае за счет того, что имеются подвижные пластины). Емкость зависит от размеров пластины (в формуле S – это ее площадь), а также от расстояния между электродами. В переменном конденсаторе с воздушным диэлектриком например, благодаря наличию подвижной части удается быстро менять площадь. Следовательно, будет меняться и емкость. А вот обозначение радиодеталей на зарубежных схемах несколько отличается. Резистор, например, на них изображается в виде ломаной кривой.

Одна из разновидностей переменных конденсаторов – подстроечные. Они активно применяются в схемах, в которых имеется сильная зависимость от паразитных емкостей. И если установить конденсатор с постоянным значением, то вся конструкция будет работать неправильно. Следовательно, нужно установить универсальный элемент, который после окончательного монтажа можно настроить и зафиксировать в оптимальном положении. На схемах обозначаются точно так же, как и постоянные, но только параллельные пластины перечеркнуты стрелкой.

Постоянные конденсаторы

Эти элементы имеют отличия в конструкции, а также в материалах, из которых они изготовлены. Можно выделить самые популярные типы диэлектриков:

  1. Воздух.
  2. Слюда.
  3. Керамика.

Но это касается исключительно неполярных элементов. Существуют еще электролитические конденсаторы (полярные). Именно у таких элементов очень большие емкости – начиная от десятых долей микрофарад и заканчивая несколькими тысячами. Кроме емкости у таких элементов существует еще один параметр – максимальное значение напряжения, при котором допускается его использование. Данные параметры прописываются на схемах и на корпусах конденсаторов.

Стоит заметить, что в случае использования подстроечных или переменных конденсаторов указывается два значения – минимальная и максимальная емкость. По факту на корпусе всегда можно найти некоторый диапазон, в котором изменится емкость, если провернуть ось прибора от одного крайнего положения в другое.

Допустим, имеется переменный конденсатор с емкостью 9-240 (измерение по умолчанию в пикофарадах). Это значит, что при минимальном перекрытии пластин емкость составит 9 пФ. А при максимальном – 240 пФ. Стоит рассмотреть более детально обозначение радиодеталей на схеме и их название, чтобы уметь правильно читать технические документации.

Соединение конденсаторов

Сразу можно выделить три типа (всего существует именно столько) соединений элементов:

  1. Последовательное – суммарная емкость всей цепочки вычислить достаточно просто. Она будет в этом случае равна произведению всех емкостей элементов, разделенному на их сумму.
  2. Параллельное – в этом случае вычислить суммарную емкость еще проще. Необходимо сложить емкости всех входящих в цепочку конденсаторов.
  3. Смешанное – в данном случае схема разбивается на несколько частей. Можно сказать, что упрощается – одна часть содержит только параллельно соединенные элементы, вторая – только последовательно.

И это только общие сведения о конденсаторах, на самом деле очень много о них можно рассказывать, приводить в пример занимательные эксперименты.

Резисторы: общие сведения

Эти элементы также можно встретить в любой конструкции – хоть в радиоприемнике, хоть в схеме управления на микроконтроллере. Это фарфоровая трубка, на которой с внешней стороны проведено напыление тонкой пленки металла (углерода – в частности, сажи). Впрочем, можно нанести даже графит – эффект будет аналогичный. Если резисторы имеют очень низкое сопротивление и высокую мощность, то используется в качестве проводящего слоя нихромовая проволока.

Основная характеристика резистора – это сопротивление. Используется в электрических схемах для установки необходимого значения тока в определенных цепях. На уроках физики проводили сравнение с бочкой, наполненной водой: если изменять диаметр трубы, то можно регулировать скорость струи. Стоит отметить, что от толщины токопроводящего слоя зависит сопротивление. Чем тоньше этот слой, тем выше сопротивление. При этом условные обозначения радиодеталей на схемах не зависят от размеров элемента.

Постоянные резисторы

Что касается таких элементов, то можно выделить наиболее распространенные типы:

  1. Металлизированные лакированные теплостойкие – сокращенно МЛТ.
  2. Влагостойкие сопротивления – ВС.
  3. Углеродистые лакированные малогабаритные – УЛМ.

У резисторов два основных параметра – мощность и сопротивление. Последний параметр измеряется в Омах. Но эта единица измерения крайне мала, поэтому на практике чаще встретите элементы, у которых сопротивление измеряется в мегаомах и килоомах. Мощность измеряется исключительно в Ваттах. Причем габариты элемента зависят от мощности. Чем она больше, тем крупнее элемент. А теперь о том, какое существует обозначение радиодеталей. На схемах импортных и отечественных устройств все элементы могут обозначаться по-разному.

На отечественных схемах резистор – это небольшой прямоугольник с соотношением сторон 1:3, его параметры прописываются либо сбоку (если расположен элемент вертикально), либо сверху (в случае горизонтального расположения). Сначала указывается латинская буква R, затем – порядковый номер резистора в схеме.

Переменный резистор (потенциометр)

Постоянные сопротивления имеют всего два вывода. А вот переменные – три. На электрических схемах и на корпусе элемента указывается сопротивление между двумя крайними контактами. А вот между средним и любым из крайних сопротивление будет меняться в зависимости от того, в каком положении находится ось резистора. При этом если подключить два омметра, то можно увидеть, как будет меняться показание одного в меньшую сторону, а второго - в большую. Нужно понять, как читать схемы радиоэлектронных устройств. Обозначения радиодеталей тоже не лишним окажется знать.

Суммарное сопротивление (между крайними выводами) останется неизменным. Переменные резисторы используются для регулирования усиления (с их помощью меняете вы громкость в радиоприемниках, телевизорах). Кроме того, переменные резисторы активно используются в автомобилях. Это датчики уровня топлива, регуляторы скорости вращения электродвигателей, яркости освещения.

Соединение резисторов

В данном случае картина полностью обратна той, которая была у конденсаторов:

  1. Последовательное соединение – сопротивление всех элементов в цепи складывается.
  2. Параллельное соединение – произведение сопротивлений делится на сумму.
  3. Смешанное – разбивается вся схема на более мелкие цепочки и вычисляется поэтапно.

На этом можно закрыть обзор резисторов и начать описывать самые интересные элементы – полупроводниковые (обозначения радиодеталей на схемах, ГОСТ для УГО, рассмотрены ниже).

Полупроводники

Это самая большая часть всех радиоэлементов, так как в число полупроводников входят не только стабилитроны, транзисторы, диоды, но и варикапы, вариконды, тиристоры, симисторы, микросхемы, и т. д. Да, микросхемы – это один кристалл, на котором может находиться великое множество радиоэлементов – и конденсаторов, и сопротивлений, и р-п-переходов.

Как вы знаете, есть проводники (металлы, например), диэлектрики (дерево, пластик, ткани). Могут быть различными обозначения радиодеталей на схеме (треугольник – это, скорее всего, диод или стабилитрон). Но стоит отметить, что треугольником без дополнительных элементов обозначается логическая земля в микропроцессорной технике.

Эти материалы либо проводят ток, либо нет, независимо от того, в каком агрегатном состоянии они находятся. Но существуют и полупроводники, свойства которых меняются в зависимости от конкретных условий. Это такие материалы, как кремний, германий. Кстати, стекло тоже можно отчасти отнести к полупроводникам – в нормальном состоянии оно не проводит ток, но вот при нагреве картина полностью обратная.

Диоды и стабилитроны

Полупроводниковый диод имеет всего два электрода: катод (отрицательный) и анод (положительный). Но какие же существуют особенности у этой радиодетали? Обозначения на схеме можете увидеть выше. Итак, вы подключаете источник питания плюсом к аноду и минусом к катоду. В этом случае электрический ток будет протекать от одного электрода к другому. Стоит отметить, что у элемента в этом случае крайне малое сопротивление. Теперь можно провести эксперимент и подключить батарею наоборот, тогда сопротивление току увеличивается в несколько раз, и он перестает идти. А если через диод направить переменный ток, то получится на выходе постоянный (правда, с небольшими пульсациями). При использовании мостовой схемы включения получается две полуволны (положительные).

Стабилитроны, как и диоды, имеют два электрода – катод и анод. В прямом включении этот элемент работает точно так же, как и рассмотренный выше диод. Но если пустить ток в обратном направлении, можно увидеть весьма интересную картину. Первоначально стабилитрон не пропускает через себя ток. Но когда напряжение достигает некоторого значения, происходит пробой, и элемент проводит ток. Это напряжение стабилизации. Очень хорошее свойство, благодаря которому получается добиться стабильного напряжения в цепях, полностью избавиться от колебаний, даже самых мелких. Обозначение радиодеталей на схемах - в виде треугольника, а у его вершины - черта, перпендикулярная высоте.

Транзисторы

Если диоды и стабилитроны можно иногда даже не встретить в конструкциях, то транзисторы вы найдете в любой (кроме детекторного приемника). У транзисторов три электрода:

  1. База (сокращенно буквой "Б" обозначается).
  2. Коллектор (К).
  3. Эмиттер (Э).

Транзисторы могут работать в нескольких режимах, но чаще всего их используют в усилительном и ключевом (как выключатель). Можно провести сравнение с рупором – в базу крикнули, из коллектора вылетел усиленный голос. А за эмиттер держитесь рукой – это корпус. Основная характеристика транзисторов – коэффициент усиления (отношение тока коллектора и базы). Именно данный параметр наряду с множеством иных является основным для этой радиодетали. Обозначения на схеме у транзистора – вертикальная черта и две линии, подходящие к ней под углом. Можно выделить несколько наиболее распространенных видов транзисторов:

  1. Полярные.
  2. Биполярные.
  3. Полевые.

Существуют также транзисторные сборки, состоящие из нескольких усилительных элементов. Вот такие самые распространенные существуют радиодетали. Обозначения на схеме были рассмотрены в статье.

fb.ru

0 comments on “Обозначение компонентов на плате – Условные графические и буквенные обозначения электрорадиоэлементов

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *