Дс дс преобразователь своими руками – Повышающий/понижающий DC-DC преобразователь своими руками

Повышающий/понижающий DC-DC преобразователь своими руками

Приветствую, Самоделкины!
Если вы искали схему универсального dc-dc преобразователя, то эта статья для вас. Сегодня мы, вместе с Романом (автором YouTube канала «Open Frime TV»), соберем преобразователь по топологии Sepic.

Если воспользоваться поиском, то думаю первым в списке будет ролик известного видеоблогера-самодельщика АКА КАСЬЯНА (YouTube канал «AKA KASYAN») по сборке повышающего/понижающего dc-dc преобразователя.

Только там схема с одним дросселем и нет регулировки тока. Версия же Романа собрана по топологии Sepic, более детально ознакомимся чуть позже. А сейчас давайте разберемся для чего нужен такой преобразователь.

Начнем с характеристик:
Входное напряжение от 10В до 25В;
Выходное напряжение от 0 до 30В;
Выходной ток до 2А (тут есть некоторые особенности, их затронем при расчете дросселя).

Как видим из характеристик, такой преобразователь можно использовать в автомобиле для повышения или понижения напряжения 12В. Также можно подключить такой самодельный dc-dc преобразователь на выход компьютерного блока питания и без переделки получать с него разные напряжения.


Ну или же можно взять блок питания от ноутбука и опять же получать на выходе любое напряжение. Это очень удобно, не нужно заботиться о питающем напряжении.

Теперь переходим непосредственно к схеме устройства.

Тут у нас всеми знакомая tl494, ей уже много лет, но она до сих пор не сдает свои позиции.

С самого начала автор хотел делать dc-dc преобразователь на UС3843, но толи они оказались бракованные, толи еще что-то, но нормальной работы автору добиться не удалось.

Плюс если делать регулировку по току, то нужно ставить второй шунт, а это снижает итоговый КПД устройства.

Роман (автор сегодняшней самоделки) пришел к данной схеме не сразу, а после общения с автором YouTube канала «RED Shade», который подсказал в каком направлении думать. И вот перед вами итоговая схема устройства:

В ней есть регулировка напряжения, тока, а также установлен драйвер полевика. С ним немного уменьшился нагрев.

Также можно увидеть, что ограничена максимальная ширина выходного импульса, так как при максимальном заполнении схема уходила в непонятный режим, жрала много тока, но на выходе напряжение падало.

Максимальное выходное напряжение равняется 30В.

Если нужно больше, то придется пересчитать номинал вот этих резисторов:

Причем с таким расчетом, чтобы при нужном выходном напряжении в точке делителя было 5В.

Также у нас ограничен ток, он составляет 2А. Если нужно больше, то необходимо пересчитать вот этот резистор:

Тут уже немного сложнее. Для начала необходимо выяснить сколько вольт упадет на шунте.

К примеру, нам нужен ток 4А. Тогда смотрим, при таком токе на резисторе упадет 0,4В.

Хорошо, теперь пересчитываем резистор. Нам нужно чтобы в точке деления переменного резистора и постоянного, напряжение было 0,4В.

Для этого идем в онлайн калькулятор и начинаем подбирать резистор.

Как видим, это несложно. Теперь давайте поговорим о том, как же это все работает. Точка отсчета - устройство выключено.

Итак, подаем питание. Ключ разомкнут, а значит ток течет через катушку индуктивности, конденсатор и диод прямо в нагрузку и выходной конденсатор.

Дальше происходит замыкание ключа.


В этот момент в катушке L1 накапливается энергия. Проходной конденсатор был заряжен напряжением питания, и так как после замыкания ключа он оказывается включенным параллельно индуктивности L2, то он ее заряжает.
Напряжение с L2 не может уйти в нагрузку, так как там стоит диод и у него на катоде напряжение выше, чем на аноде.

Теперь ключ снова размыкаем, и напряжение на L1 складывается с напряжением самоиндукции.

Таким образом, на проходной конденсатор и нагрузку идет уже повышенное напряжение.

Изменяя коэффициент заполнения ШИМ, мы изменяем выходное напряжение.

Если ширина импульса достаточно маленькая, то и величина самоиндукции меньше, а, следовательно, и выходное напряжение уменьшается. Преимущество такой схемы перед обыкновенным повышающим dc-dc преобразователем в том, что здесь установлен проходной конденсатор, который в случае короткого замыкания не даст выйти из строя схеме.

Теперь идем дальше. Как уже говорилось выше, некоторые компоненты схемы необходимо рассчитать, благо уже есть сайт с готовым онлайн калькулятором, он нереально облегчает жизнь.

Как видим, сюда необходимо ввести свои данные.

Автор же попытался рассчитать в максимально широком диапазоне и вот что получилось:

В расчете мы получили некоторые индуктивности катушек.

Но как же в реальной жизни их намотать с нужной индуктивностью? Обладатели ESR метра скажут, что тут нет ничего сложного, мотаешь и смотришь параметры.

Но этот ESR метр показывает с очень большой погрешностью, поэтому автор предлагает воспользоваться программой Старичка.

В ней вводим все необходимые параметры, а также указываем какой у нас сердечник. Если никаких нет под рукой, то достаем 2 одинаковых желтых кольца из компьютерного блока питания.


Ну и осталось намотать наши дроссели, это уже не составит особого труда.

Получилось довольно-таки неплохо. Казалось бы, все сложности уже позади, но нет, впереди еще разводка печатной платы. На нее автор потратил ни один вечер, чтобы максимально компактно расположить все элементы.

Для крепления можно сделать плату немного больше и добавить по бокам отверстия, но это уже на ваше усмотрение.

Плата готова, просверлены отверстия, настала очередь запайки. Тут есть один важный момент, необходимо поднять силовые элементы выше над платой, так как потом невозможно будет достать отверткой.

Теперь необходимо установить транзистор и диод на радиатор. Автор будет использовать вот такой алюминиевый профиль, он имеет неплохие габариты и сможет нормально охлаждать схему.


Ну и в конце традиционно у нас тесты. Подаём на схему сначала напряжение равное 12В. На выход подключена нагрузка в виде лампы накаливания мощностью 100Вт, рассчитанная на напряжение 36В. Мультиметр следит за выходным напряжением.


Как видим, мы спокойно можем выставить любое напряжение начиная от 0 и заканчивая практически 30 вольтами, тут сказывается большая индуктивность, которую, по словам автора, ему лень было перематывать.
Теперь посмотрим ограничение тока.

Как видим, наша схема отлично справляется. Теперь произведем короткое замыкание.

Это вообще без проблем, идёт просто ограничение заранее выставленного тока. Ну и самый важный тест - выставляем на выходе среднее значение в 15В и начинаем изменять входное напряжение.


Как видим, сначала мы его уменьшали, а теперь начали увеличивать, но выходное напряжение держится на заданном уровне.
Ну вот и все, надеюсь вам понравилось. Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Мощный DC-DC преобразователь | Поделки своими руками для автолюбителей

Сегодня рассмотрим очередной DC-DC преобразователь напряжения который позволит заряжать или питать ноутбук от автомобильной бортовой сети 12 вольт.  Схем похожих преобразователей в сети очень много, мы рассмотрим на мой взгляд один из лучших вариантов.  Ещё инверторы такого планы часто применяются для питания мощных светодиодов от пониженного источника поэтому некоторые образцы имеют функцию ограничения тока.

Зачем делать то, что можно купить, ещё и за несколько долларов, такие вопросы задают многие люди…, отвечу просто,  во-первых, собрать своими руками гораздо быстрее, чем ждать пару месяцев посылку из Китая и, во-вторых ничто не сравнится с той радостью, которую приносит работа конструкции которою ты создал собственными руками.  Плюс ко всему наша конструкция будет надёжная.

Давайте рассмотрим схему и принцип её работы.

Это однотактный, повышающий стабилизатор напряжения с защитой от коротких замыканий, в просто народи — Бустер. Принцип работы схож с обратно — ходовым преобразователем,

но у последнего дроссель состоит минимум из двух обмоток и между ними имеется гальваническая развязка.

Основой схемы является популярнейший однотактный ШИМ-контроллер из семейства UC38, в данном случае это UC3843.  На вход схемы подаем напряжение, скажем 12 Вольт, а на выходе получаем 19, которые необходимо для зарядки почти любого ноутбука.

Вообще диапазон входных и выходных напряжений для этой схемы довольно широк, вращением подстроечного многооборотного резистора R8 с лёгкостью можно получить иные напряжения на выходе. Я выставил чуть меньше 18, так как данный преобразователь мне нужен для иных целей.

Микросхема генерирует прямоугольные импульсы с частотой около 120-125 килогерц, этот сигнал поступает на затвор ключа и тот срабатывает. Когда открыт транзистор в дросселе накапливается некоторая энергия, после закрытия ключа дроссель отдаёт накопленную энергию, это явление называют самоиндукцией, которая свойственна индуктивным нагрузкам.

Важно заметить, что напряжение самоиндукции может быть в разы, а то и в десятки раз больше напряжения питания, всё зависит от индуктивности конкретного дросселя.  На выходе схемы установлен однополупериодный выпрямитель для выпрямления всплесков самоиндукции в постоянный ток , который накапливается в выходных конденсаторах.

Питание нагрузки осуществляется запасенной в конденсаторах энергией, такой инвертор очень экономичен благодаря ШИМ управлению, потребление холостого хода всего 15-20 миллиампер.

Используя осциллограф мы можем увидеть, как меняется скважность импульсов на затворе полевого транзистора в зависимости от выходной нагрузки, чем больше выходная мощность, тем больше длиться рабочий цикл транзистора, то есть в дроссель поступает больше энергии, а следовательно больше и энергия самоиндукции.

Теперь о конструкции…  Микросхема — ШИМ установлена на панельку для без паечного монтажа, если собираетесь использовать такой преобразователь в автомобиле, то советую микросхему запаять непосредственно на плату, так как в машине всегда есть вибрация.

Полевой транзистор… Тут большой выбор, использовать можно ключи с током от 20 ампер напряжением не менее 50 вольт. Я просто воткнул мой любимый IRFZ44, которого с головой хватит.

Кстати о мощности…, В принципе схема может отдать 150 вт без проблем, но естественно для этого нужен более мощный транзистор скажем irf3205 и соответствующий дроссель, в моём варианте схема будет под нагрузкой не более 50 Ватт, хотя с таким раскладом компонентов 100 Ватт снять можно.

Далее по счёту идёт накопительный дроссель, его индуктивность 40 мкГн, ничего не мотал, просто взял один из дросселей выходного фильтра компьютерного блока питания. Диаметр провода 0,9 мм. Количество витков 25. В принципе он особо не критичен, индуктивность может отличаться, размеры кольца и количество витков тоже.

Введите электронную почту и получайте письма с новыми поделками.

Выходной выпрямитель — это сдвоенный Диод шоттки, подойдут сборки с током от 10 ампер с обратным напряжением не менее 40-45 Вольт.
Схема имеет защиту от коротких замыканий, она построена на базе датчика тока в лице низкоомного резистора подключённого в цепь истока полевого ключа, в моём случае это 2-х ваттный резистор сопротивлением 0,1 Ом.После окончательной сборки транзистор и выпрямитель устанавливают на общий теплоотвод не забываем и про изоляцию между ними. Печатная плата довольно компактная, монтаж плотный.

Печатную плату в формате lay. можно скачать здесь.

Автор; АКА Касьян.

xn--100--j4dau4ec0ao.xn--p1ai

Простенький регулируемый DC-DC преобразователь, или лабораторный блок питания своими руками V2.

Наверное многие помнят мою эпопею с самодельным лабораторным блоком питания.
Но меня неоднократно спрашивали что нибудь похожее, только попроще и подешевле.
В этом обзоре я решил показать альтернативный вариант простого регулируемого блока питания.
Заходите, надеюсь, что будет интересно.

Я долго откладывал этот обзор, то времени не было, что настроения, но вот дошли у меня руки и до него.
Данный блок питания имеет несколько другие характеристики чем предыдущий.
Основой блока питания будет плата DC-DC понижающего преобразователя с цифровым управлением.
Но всему свое время, а сейчас собственно немного стандартных фотографий.
Пришла платка в небольшой коробочке, ненамного больше пачки сигарет.

Внутри, в двух пакетиках (пупырчатом и антистатическом) была собственно героиня данного обзора, плата преобразователя.

Плата имеет довольно простую конструкцию, силовая часть и небольшая плата с процессором (данная плата похожа на плату из другого, менее мощного преобразователя), кнопками управления и индикатором.

Характеристики данной платы
Входное напряжение — 6-32 Вольта
Выходное напряжение — 0-30 Вольт
Выходной ток — 0-8 Ампер
Минимальная дискретность установки\отображения напряжения — 0.01 Вольта
Минимальная дискретность установки\отображения тока — 0.001 Ампера
Так же данная плата умеет измерять емкость, которая отдана в нагрузку и мощность.
Частота преобразования, указанная в инструкции — 150КГц, по даташиту контроллера — 300КГц, измеренная — около 270КГц, что заметно ближе к параметру указанному в даташите.

На основной плате размещены силовые элементы, ШИМ контроллер, силовой диод и дроссель, конденсаторы фильтра (470мкФ х 50 Вольт), ШИМ контроллер питания логики и операционных усилителей, операционные усилители, токовый шунт, а так же входные и выходные клеммники.

Сзади ничего практически и нет, только несколько силовых дорожек.

На дополнительной плате установлен процессор, микросхемы логики, стабилизатор 3.3 Вольта для питания платы, индикатор и кнопки управления.
Процессор — 8s003f3p6
Логика — 2 штуки 74hc595d
Стабилизатор питания — 1117-3.3

На силовой плате установлены операционные усилители mcp6002i 2 штуки (такие же операционники стоит и в ZXY60xx)
ШИМ контроллер питания самой платы xl1509 adj

В качестве силового ШИМ контроллера выступает микросхема xl4012e1. По даташиту это 12 Ампер ШИМ контроллер, так что здесь он работает не в полную силу, что не может не радовать. Однако стоит учесть, что входное напряжение лучше не превышать, это так же может быть опасно.
В описании на плату указано максимальное входное напряжение 32 Вольта, предельное для контроллера — 35 Вольт.
В более мощных преобразователях применяют слаботочный контроллер, управляющий мощным полевым транзистором, здесь все это делает один мощный ШИМ контроллер.
Приношу извинения за фотографии, никак не получалось добиться хорошего качества.

Силовая диодная сборка mbr1060

При осмотре платы увидел восстановленную дорожку, не думаю, что это страшно.
Но говорит о том, что изготовитель как минимум включает платы для проверки.

При первом включении плата отображает установленное по умолчанию напряжение 5 Вольт.

А так же ток, 1 Ампер. Эти установки можно изменять.
Для этого в этом режиме надо выставить необходимый ток, нажать SET, на индикаторе отобразятся четыре прочерка, потом повторить операцию для напряжения.
после включения плата будет запускаться с этими установками.
Так же можно настроить автоматическое включение выхода и автоматический попеременный режим отображения тока\напряжения.

Выходное напряжение устанавливается довольно точно…

С током картина несколько хуже, но не думаю, что это так критично.

При повышении напряжения погрешность растет.

А вот точность установки тока практически неизменна.

В качестве проверки подключил автомобильную лампу, выставил 13.5 Вольт

В описании платы сказано, что при токе нагрузки до 6 Ампер достаточно естественного охлаждения, при токах более 6 Ампер уже необходимо применять активное охлаждение.
Я проверил нагрев при токе 6 Ампер и напряжении на нагрузке около 12 Вольт.
После 20 минутного прогрева температуры были такие — ШИМ контроллер — 82 градуса.
Выходная диодная сборка — 72 градуса
Силовой дроссель — 60 градусов.

В принципе, вполне верится в 6 Ампер с пассивным охлаждением, но плата тестировалась на столе, при установке в корпусе лучше применять либо активное охлаждение, либо ограничивать ток хотя бы на уровне 5 Ампер.

Плавно мы перешли к практической части обзора 🙂

Собственно применение данной платы

На базе этой платы я решил сделать небольшой вспомогательный блок питания, а так же была мысль использовать его как зарядное устройство. Более мощный лабораторный блок питания у меня обычно стоит на столе и довольно часто используется. А так как процесс зарядки может занимать длительное время, то и было решено изготовить еще один, но попроще.

Сначала я откопал дома плату от одного из компьютерных блоков питания, она уже успела послужить донором, но чудом избежала полной распайки. Видно, что части компонентов уже нет.

Дальше берем в руки паяльник, выпаиваем все лишнее и впаиваем на место недостающее.
На фото выпаяна часть компонентов, после того как было сделано фото, я выпаял еще некоторые детали, но это были уже мелочи.
Описания переделки приводить не буду по двум причинам.
1. Описаний такой переделки в интернете очень много.
2. Блоки питания хоть и собраны в основном на похожей элементной базе, но могут иметь отличия, потому лучше разбираться с каждым в отдельности.
А еще лучше просто купить БП на 24 или лучше 27 Вольт, соответствующей мощности и не заморачиваться с переделками. 🙂

После выпаивания ненужных компонентов я взял в руки маникюрные ножницы и отрезал кусок платы, предварительно очертив кусок, где нет используемых дорожек.

Так же пришлось сходить на радиорынок и купить то, чего у меня дома не было.

В общем блок питания я переделал. Переделка заключалась в удалении элементов, которые отвечают за работу узлов выдающих сигналы Power good, выпрямителей и фильтров 12, 5 и 3.3 Вольта, ну и тому подобных.
Трансформатор перематывать было лень, потому к выходной диодной сборке добавились еще две, образуя диодный мост. Я добавил две сборки потому, что сборки с общим анодом у меня в наличии нет, и каждая сборка работает как просто одиночный диод.
Настроил 27.5 Вольт на выходе, больше мне не надо было, да и БП и плата будут работать в безопасном режиме.
Первая проверка после переделки.

Так выглядит плата после всех моих манипуляций.

Из своих домашних запасов выбрал подходящий корпус для будущего блока питания.

Примерил всю начинку внутри, собственно теперь стало понятно, зачем я делал вырез в печатной плате блока питания. 🙂

Дальше пошел процесс установки всего этого в корпус.
Прикинул как лучше и удобнее будет разместить элементы управления и индикации на передней панели и вырезал отверстия под светофильтр и кнопку.

После этого немного обработал грани небольшим канцелярским ножом.

Примерил как это будет выглядеть, под клеммники пришлось сделать отверстия немного овальными, так как на клеммниках есть выступы, защищающие от прокручивания.
Начинает что-то вырисовываться.

Разметил и просверлил отверстия под кнопки, светодиоды, установил плату управления.
Спереди вроде красиво даже вышло 🙂

А вот сзади лучше не смотреть. Прошу не пугаться.
Кнопки на плате преобразователя установлены слишком близко друг к другу, потому вырезал небольшой кусочек текстолита, прорезал ножовкой медь, просверлил отверстия под кнопки.
После всех манипуляций приклеил все термоклеем.
Так же пришлось вынести светодиоды за пределы светофильтра и немного изменить их расположение. Я сделал так же, как сделано у меня на основном блоке, что бы не путаться.

Вот и все собрано в кучку.
Сейчас, набирая текст, думаю, как то все быстро получается.
Когда паял, сверлил, пилил, мне так не казалось.
В процессе я допустил ошибку, ниже в комментариях подсказали. Между диодным мостом и конденсатором фильтра должен быть дроссель, это важная часть БП. Дроссель можно использовать от старого БП, тот, который большой с кучей обмоток. Я смотал все обмотки кроме 12 Вольт.

Сзади установлен разъем питания и вентилятор. На всякий случай я закрыл вентилятор решеткой. Вентилятор размером 50х15мм, довольно мощный, но очень шумный, надо будет допилить к нему термоконтроль, пока он запитан постоянно от КРЕН8В (15 Вольт, боялся, что будет мало).

Осталось свинтить корпус и можно сказать, что все готово. В комплекте к корпусу даже были ножки и шурупы (это через лет 7 и переезд с одной квартиры на другую).

Первое включение в уже полностью собранном состоянии, оно работает :))).

Ну и небольшая проверка, напряжение 12 Вольт

Ток более 7 Ампер.

Остались косметические мелочи.
Сделать регулировку оборотов вентилятор в зависимости от температуры.
Оформить переднюю панель, а то хоть все и интуитивно понятно, но создает ощущение незавершенности.


Описания на используемые компоненты, а так же инструкцию, я выложил в виде архива.

В инструкции, найденной мною в интернете, описан вход в сервисный режим, где можно изменить некоторые параметры. Для входа в сервисный режим надо подать питания при нажатой кнопке ОК, на экране будут последовательно переключаться цифры 0-2, что бы переключить настройку, надо отпустить кнопку во время отображения соответствующей цифры.
0 — Включение автоматической подачи напряжения на выход при подаче питания на плату.
1 — Включение расширенного режима, отображающего не только ток и напряжение, а и емкость, отданную в нагрузку и выходную мощность.
2 — Автоматический перебор отображения измерений на экране или ручной.

Так же в инструкции есть и пример запоминания настроек, так как у платы можно настроить лимит по установке тока и напряжения и есть память установок, но в эти дебри я уже не лез.
Так же я не трогал контактны для разъема UART, находящиеся на плате, так как даже если там что-то и есть, то программы для этой платы я все равно не нашел.

Резюме.
Плюсы.
1. Довольно богатые возможности — установка и измерение тока и напряжения, измерение емкости и мощности, а так же наличие режима автоматической подачи напряжения на выход.
2. Диапазон выходного напряжения и тока вполне достаточен для большинства любительских применений.
3. Качество изготовления не то что бы хорошее, но без явных огрехов.
4. Компоненты установлены с запасом, ШИМ на 12 Ампер при 8 заявленных, конденсаторы на 50 Вольт по входу и выходу, при заявленных 32 Вольта.

Минусы
1. Очень неудобно сделан экран, он может отображать только 1 параметр, например —
0.000 — Ток
00.00 — Напряжение
Р00.0 — Мощность
С00.0 — Емкость.
В случае последних двух параметров точка плавающая.
2. Исходя из первого пункта, довольно неудобное управление, валкодер бы очень не помешал.

Мое мнение.
Вполне достойная плата для построения простенького регулируемого блока питания, но блок питания лучше и проще использовать какой нибудь готовый.

Данная плата, для тестирования и обзора, была мне бесплатно предоставлена магазином gearbest.

Это мой пятидесятый обзор, почти юбилейный (когда только столько набралось), надеюсь, что он будет полезен и интересен, пишите в комментариях свои вопросы, попробую ответить.

Купон на скидку

По моей просьбе магазин предоставил купон на скидку, с ним цена на плату будет 20.93, купон — B3008DH
Разница конечно маленькая, но хоть что-то.

Вместо котика

Я давно не выкладывал разные интересные рекламы.
Это не реклама инструмента, но она мне просто нравится и даже немного подходит под тему обзора.


mysku.ru

Высоковольтный DC-DC преобразователь своими руками


Импульсные DC-DC преобразователи предназначены для как для повышения, так и для понижения напряжения. С их помощью можно с минимальными потерями преобразовать 5 вольт, например, в 12, или 24, либо и наоборот. Также существуют высоковольтные DC-DC преобразователи, они способны из относительно малого напряжения (5-12 вольт) получить весьма существенную разность потенциалов в сотни вольт. В этой статье рассмотрим сборку именно такого преобразователя, напряжение на выходе которого можно регулировать в пределах 60-250 вольт.

Схема преобразователя



В её основе лежит распространённый интегральный таймер NE555. Q1 на схеме – полевой транзистор, можно использовать IRF630, IRF730, IRF740 или любые другие, рассчитанные на работу с напряжением выше 300 вольт. Q2 – маломощный биполярный транзистор, смело можно ставить BC547, BC337, КТ315, 2SC828. Дроссель L1 должен иметь индуктивность 100 мкГн, однако, если такого под рукой нет, можно ставить дроссели в пределах 50-150 мкГн, это не скажется на работе схемы. Легко изготовить дроссель самому – намотать 50-100 витков медного провода на ферритовое колечко. Диод D1 по схеме FR105, вместо него можно ставить UF4007 или любой другой быстродействующий диод на напряжение не меньше 300 вольт. Конденсатор С4 обязательно должен быть высоковольтным, как минимум 250 вольт, можно больше. Чем больше будет его ёмкость – тем лучше. Также желательно параллельно ему поставить плёночный конденсатор небольшой ёмкости для качественной фильтрации высокочастотных помех на выходе преобразователя. VR1 – подстроечный резистор, с помощью которого регулируется напряжение на выходе. Минимальное напряжение питания схемы – 5 вольт, самое оптимальное 9-12 вольт.

Изготовление преобразователя


Схема собирается на печатной плате размерами 65х25 мм, файл с рисунком платы к статье прилагается. Можно взять текстолит размером больше, чем сам рисунок, чтобы по краям осталось место для крепления платы в корпусе. Несколько фотографий процесса изготовления:



После травления плату обязательно нужно залудить и проверить на замыкание дорожки. Т.к. на плате присутствует высокое напряжение, между дорожками не должно быть никаких металлических заусенцев, иначе возможен пробой. В первую очередь на плату впаиваются мелкие детали – резисторы, диод, конденсаторы. Затем микросхема (её лучше установить в панельку), транзисторы, подстроечный резистор, дроссель. Для удобства подключения к плате проводов я рекомендую поставить винтовые клеммники, места для них на плате предусмотрены.


Скачать плату:

Первый запуск и настройка


Перед запуском обязательно нужно проверить правильность монтажа, прозвонить дорожки. Подстроечный резистор установить в минимальное положение (движок должен быть на стороне резистора R4). После этого можно подавать на плату напряжение, включив последовательно с ней амперметр. На холостом ходу ток потребления схемы не должен превышать 50 мА. Если он укладывается в норму, можно аккуратно поворачивать подстроечный резистор, контролируя напряжение на выходе. Если всё нормально – подключить к высоковольтному выходу нагрузку, например, резистор 10-20 кОм и ещё раз протестировать работу схемы, уже под нагрузкой.
Максимальный ток, который может выдать такой преобразователь составляет примерно 10-15 мА. Использовать его можно, например, в составе ламповой техники для питания анодов ламп, либо же зажигать газоразрядные или люминесцентные индикаторы. Основной вариант применения – миниатюрный электрошокер, ведь напряжение 250 вольт на выходе ощутимо для человека. Удачной сборки!

Работа преобразователя наглядно продемонстрирована на видео:

sdelaysam-svoimirukami.ru

DC-DC преобразователь своими руками. Простая схема



Приветствую любителей смастерить своими руками в гостях у самоделкина.
Понадобилось зарядное устройство для АКБ автомобиля. В наличии АТХ от ПК, но ШИМ не тл494, а 6105, что в отличии от 494 для переделки в регулируемый геморойно… Выход – нужен DC –DC преобразователь. Заказать с Китая долго и «кот в мешке».

Выбор пал на схему dc –dc повышающий на базе UC 3843.


Был собран в кротчайшие сроки (все элементы доступны и бюджетно) и испытан.
Получился не плохой преобразователь, но что то не устраивало. Что? Не знаю…

И вот наткнулся на похожею схему на этой же микросхеме, но понижающий и повышающий преобразователь. Поменять нужно было только дроссель на трансформатор, (который то же нашелся в старом АТХ), и пересчитать некоторые сопротивления.


Думаю расписывать работу схемы нет надобности, все описано давно за нас…

Скажу лишь трансформатор на ферритовом колечке намотан проводом 1,2 мм двумя проводами в одну сторону 24 витка, начало обмоток отмечена на схеме точками, важно соблюсти. То есть схема имеет гальваническую развязку, с входным напряжением 9-18 вольт. Возможно и входное напряжение уменьшить, если подавать на 7 пин микросхемы от 9 – 18 вольт автономно, но мне это не нужно. И немного напряг подбор R9 в результате экспериментов были установлены три резистора по 0,1 Ома 5 Ватт в параллель получилось что то типа 0,03 Ома 5 Ватт. Думаю до 10 ампер осилит с данным АТХ… Хотя…

Получилась вот такая пирамидка ( первый вариант без вольтамперметра).

Ключ (irf 3205), диод Шотки (из АТХ sbl 3040) и 7809 установил на радиатор с кулером от старого ПК




С верху кулер от бп АТХ, в первом варианте он был с низу.

Вот второй вариант с вольтамперметром:


Заряжаем АКБ

Заряжает без проблем, нагревается только дроссель в пределах нормы.
Параметры выходного напряжения:
минимальное 2,7 вольта

максимальное 31 вольт, выходное напряжение зависит от расчета резисторов R2, R3, R4, необходимо что бы на 2 пине микросхемы было 2,5 вольта и менее,( на 2 пине, происходит регулировка скважности (ширины) импульсов и соответственно напряжения на выходе). в противном случае 6 пин микросхемы не будет генерировать ШИМ сигнал. В моем случае R2- 550 Om, R3- 5 KOm, R4- 550 Om.

Вот теперь душа лежит к преобразователю, можно и как лабораторник использовать на природе от авто или ноут подключить и т д…
Всем удачи! Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

usamodelkina.ru

Простые повышающие DC/DC преобразователи своими руками, схемы

Устройствами с батарейным питанием сейчас уже никого не удивишь, всевозможных игрушек и гаджетов питающихся от аккумулятора или батарейки найдется с десяток в каждом доме. Между тем, мало кто задумывался над количеством разнообразных преобразователей, которые используются для получения необходимых напряжений или токов от стандартных батарей. Эти самые преобразователи делятся на несколько десятков различных групп, каждая со своими особенностями, однако в данный момент времени мы говорим про понижающие и повышающие преобразователи напряжения, которые чаще всего называются AC/DC и DC/DC преобразователями. В большинстве случаев для построения таких конвертеров используются специализированные микросхемы, позволяющие с минимальным количеством обвязки построить преобразователь определенной топологии, благо микросхем питания на рынке сейчас великое множество.

Рассматривать особенности применения данных микросхем можно бесконечно долго, особенно с учетом целой библиотеки даташитов и аппноутов от производителей, а также бесчисленного числа условно-рекламных обзоров от представителей конкурирующих фирм, каждая из которых старается представить свой продукт наиболее качественным и универсальным. В этот раз мы будем использовать дискретные элементы, на которых соберем несколько простейших повышающих DC/DC преобразователей, служащих для того, чтобы запитать небольшое маломощное устройство, к примеру, светодиод, от 1 батарейки с напряжением 1,5 вольт. Данные преобразователи напряжения можно смело считать проектом выходного дня и рекомендовать для сборки тем, кто делает свои первые шаги в удивительный мир электроники.

Итак, схема первая:


Схема простого DC/DC
преобразователя №1

На данной схеме представлен релаксационный автогенератор, представляющий собой блокинг-генератор со встречным включением обмоток трансформатора. Принцип работы данного преобразователя следующий: при включении , ток протекающий через одну из обмоток трансформатора и эмиттерный переход транзистора – открывает его, в результате чего он открывается и больший ток начинает течь через вторую обмотку трансформатора и открытый транзистор. В результате в обмотке, подключенной к базе транзистора наводится ЭДС, запирающая транзистор и ток через него обрывается. В этот момент энергия, запасенная в магнитном поле трансформатора, в результате явления самоиндукции, высвобождается и через светодиод начинает протекать ток, заставляющий его светиться. Затем процесс повторяется.

Компоненты, из которых можно собрать этот простой повышающий преобразователь напряжения, могут быть совершенно различными. Схема, собранная без ошибок, с огромной долей вероятности будет корректно работать. Мы пробовали использовать даже транзистор МП37Б – преобразователь отлично функционирует! Самым сложным является изготовление трансформатора – его надо намотать сдвоенным проводом на ферритовом колечке, при этом количество витков не играет особой роли и находится в диапазоне от 15 до 30. Меньше – не всегда работает, больше – не имеет смысла. Феррит - любой, брать N87 от Epcos не имеет особого смысла, также как и разыскивать M6000НН отечественного производства. Токи в цепи протекают мизерные, поэтому размер колечка может быть очень небольшим, внешнего диаметра в 10 мм будет более чем достаточно. Резистор сопротивлением около 1 килоома (никакой разницы между резисторами номиналом в 750 Ом и 1,5 КОм обнаружено не было). Транзистор желательно выбрать с минимальным напряжением насыщения, чем оно меньше – тем более разряженную батарейку можно использовать. Экспериментально были проверены: МП 37Б, BC337, 2N3904, MPSh20. Светодиод – любой имеющийся, с оговоркой, что мощный многокристальный будет светиться не в полную силу.

Собранное устройство выглядит следующим образом:

Размер платы 15 х 30 мм, и может быть уменьшен до менее чем 1 квадратного сантиметра при использовании SMD-компонентов и достаточно маленького трансформатора. Без нагрузки данная схема не работает.

Вторая схема - это типовой степ-ап преобразователь, выполненный на двух транзисторах. Плюсом данной схемы является то, что при её изготовлении не надо мотать трансформатор, а достаточно взять готовый дроссель, но она содержит больше деталей, чем предыдущая.


Схема простого DC/DC преобразователя №2

Принцип работы сводится к тому, что ток через дроссель периодически прерывается транзистором VT2, а энергия самоиндукции направляется через диод в конденсатор C1 и отдается в нагрузку. Опять же, схема работоспособна с совершенно различными компонентами и номиналами элементов. Транзистор VT1 может быть BC556 или BC327, а VT2 BC546 или BC337, диод VD1 – любой диод Шоттки, например, 1N5818. Конденсатор C1 – любого типа, емкостью от 1 до 33 мкФ, больше не имеет смысла, тем более, что можно и вовсе обойтись без него. Резисторы – мощностью 0,125 или 0,25 Вт (хотя можно поставить и мощные проволочные, ватт эдак на 10, но это скорее расточительство чем необходимость) следующих номиналов: R1 - 750 Ом, R2 - 220 КОм, R3 – 100 КОм. При этом, все номиналы резисторов могут быть совершенно свободно заменены на имеющие в наличии в пределах 10-15% от указанных, на работоспособности правильно собранной схемы это не сказывается, однако влияет на минимальное напряжение, при котором может работать наш преобразователь.

Самая важная деталь - дроссель L1, его номинал также может отличаться от 100 до 470 мкГн (экспериментально проверены номиналы до 1 мГн – схема работает стабильно ), а ток на который он должен быть рассчитан не превышает 100 мА. Светодиод – любой, опять же с учетом того, что выходная мощность схемы весьма невелика.Правильно собранное устройство сразу же начинает работать и не нуждается в настройке.

Напряжение на выходе можно стабилизировать, установив стабилитрон необходимого номинала параллельно конденсатору C1, однако следует помнить, что при подключении потребителя напряжение может проседать и становиться недостаточным. ВНИМАНИЕ! Без нагрузки данная схема может вырабатывать напряжение в десятки или даже сотни вольт! В случае использования без стабилизируещего элемента на выходе, конденсатор C1 окажется заряжен до максимального напряжения, что в случае последующего подключения нагрузки может привести к её выходу из строя!

Преобразователь также выполнен на плате размером 30 х 15 мм, что позволяет прикрепить его на батарейный отсек типа размера AA. Разводка печатной платы выглядит следующим образом:

Обе простые схемы повышающих преобразователей можно сделать своими руками и с успехом применять в походных условиях, например в фонаре или светильнике для освещения палатки, а также в различных электронных самоделках, для которых критично использование минимального количества элементов питания.

 

oao-sozvezdie.ru

СХЕМА DC-DC ПРЕОБРАЗОВАТЕЛЯ

   Это DC-DC преобразователь напряжения с 5-13 В на входе, до 12 В выходного постоянного тока 1,5 А. Преобразователь получает меньшее напряжение и дает более высокое на  выходе, чтобы использовать там где есть напряжение меньшее требуемых 12 вольт. Часто он используется для увеличения напряжения имеющихся батареек. Это по сути интегральный DC-DC конвертер. Для примера: есть литий-ионный аккумулятор 3,7 В, и его напряжение с помощью данной схемы можно изменить, чтобы обеспечить необходимые 12 В на 1,5 А.

Схема DC-DC преобразователя на MC34063A

   Преобразователь легко построить самостоятельно. Основным компонентом является микросхема MC34063, которая состоит из источника опорного напряжения (температурно-компенсированного), компаратора, генератора с активным контуром ограничения пикового тока, вентиля (элемент "И"), триггера и мощного выходного ключа с драйвером и требуется только несколько дополнительных электронных компонентов в обвязку для того чтобы он был готов. Эта серия микросхем была специально разработана, чтобы включены их в состав различных преобразователей.

Достоинства микросхемы MC34063A 

  • Работа от 3 до 40 В входа
  • Низкий ток в режиме ожидания
  • Ограничение тока
  • Выходной ток до 1,5 A
  • Выходное напряжение регулируемое
  • Работа в диапазоне частот до 100 кГц
  • Точность 2%

Описание радиоэлементов

  • R - Все резисторы 0,25 Вт.
  • T - TIP31-NPN силовой транзистор. Весь выходной ток проходит через него.
  • L1 - 100 мкГн ферритовые катушки. Если придётся делать самостоятельно, нужно  приобрести тороидальные ферритовые кольца наружным диаметром  20 мм и внутренним диаметром 10 мм, тоже 10 мм высотой и проволоку 1 - 1,5 мм толщиной на 0,5 метра, и сделать 5 витков на равных расстояниях. Размеры ферритового кольца не слишком критичны. Разница в несколько (1-3 мм) приемлема. 
  • D - диод Шоттки должен быть использован обязательно
  • TR - многовитковый переменный резистор, который используется здесь для точной настройки выходного напряжения 12 В. 
  • C - C1 и C3 полярные конденсаторы, поэтому обратите внимание на это при размещении их на печатной плате.

   

Список деталей для сборки

  1. Резисторы: R1 = 0.22 ом x1, R2 = 180 ом x1, R3 = 1,5 K x1, R4 = 12K x1
  2. Регулятор: TR1 = 1 кОм, многооборотный 
  3. Транзистор: T1 = TIP31A или TIP31C
  4. Дроссель: L1 = 100 мкГн на ферритовом кольце
  5. Диод: D1 - шоттки 1N5821 (21V - 3A), 1N5822 (28V - 3A) или MBR340 (40В - 3A) 
  6. Конденсаторы: C1 = 100 мкФ / 25V, C2 = 0.001 мкФ , C3 = 2200 мкФ / 25V
  7. Микросхема: MC34063 
  8. Печатная плата 55 x 40 мм  

   Заметим, что необходимо установить небольшой алюминиевый радиатор на транзистор T1 - TIP31, в противном случае этот транзистор может быть поврежден из-за повышенного нагрева, особенно на больших токах нагрузки. Даташит и рисунок печатной платы прилагается.

   Схемы блоков питания

elwo.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о