Lc генератор на транзисторе – УНИВЕРСАЛЬНЫЙ L/C ГЕНЕРАТОР

УНИВЕРСАЛЬНЫЙ L/C ГЕНЕРАТОР

Универсальный LC генератор своими руками на транзисторах.

Генератор, схема которого приведена на рисунке, предназначен для измерительной аппаратуры. Важным преимуществом этого генератора является возможность использовать резонансные контуры практически с любым отношением L/C. Так, он одинаково устойчиво работает, если индуктивность катушки L1 изменяется в пределах от 50 мкГн до 100 мГн, а емкость конденсатора C1 – от 50 пф до 5 мкФ. Например при индуктивность L1 = 50 мкГн и емкости С1 = 5 мкФ генерируемая частота будет около 10 кГц, а при той же индуктивности и С1 = 50 пф – 3.2 МГц. Кроме того к числу достоинств данного генератора следует отнести малое напряжение на LC-контуре- примерно 100 мв. В некоторых случаях это существенно, например, при измерении параметров варикапов.

Рис.1 — Универсальный LC генератор схема.

Генератор выполнен на транзисторах V1 и V2. Каскад на транзисторе V3 – предварительный усилитель, сигнал с которого поступает на выходной усилитель (транзистор V8) и на узел автоматической регулировки уровня выходного сигнала генератора. Поскольку на предварительный усилитель сигнал поступает непосредственно с колебательного контура генератора, то узел АРУ поддерживает постоянным напряжение и на этом контуре. Узел автоматической регулировки уровня состоит и з выпрямителя на диодах V4 и V5, выполненного по схеме удвоения, усилителя постоянного тока на транзисторе V7 и регулирующего транзистора V6. Как только по каким-нибудь причинам напряжение на выходе генератора изменится, например повысится, то возрастет смещение на баpе транзистора V7. Это в свою очередь, приведет к уменьшению тока через транзистор V6 (следовательно, и через транзисторы генератора V1 и V2), и напряжение на выходе генератора уменьшится до первоначального значения. Выходное напряжение практически остается постоянным при изменении напряжения питания от 3.5 до 15 В. Его удобно выбрать равным 5 В. В этом случае, уровень сигнала на выходе генератора будет совместим с устройствами ТТЛ (транзисторно-транзисторной логики).

В генераторе можно использовать любые кремниевые высокочастотные транзисторы, причем транзисторы V1-V3 должны иметь достаточно большой коэффициент передачи тока (не меньше 150). В том случае, если имеют место паразитные высокочастотные колебания, то следует несколько увеличить сопротивление резистора.

В генераторе можно применить транзисторы КТ 361Б,Г (V1, V2, V3) и КТ 315Б,Г (V6, V7, V8), диоды (V4, V5) могут быть типа КД503А.

«Funkshau» (ФРГ), 1978, №18.

Немного изменена схема на следующем рисунке. Однако следует заметить, что особых отличий нет. Описание и функциональные возможности сохранены. Я собирал генератор для проверки катушек , при изготовлении металлоискателя,  по следующей схеме:

Рис. 2  — Универсальный резонансный генератор для проверки частоты резонанса катушки металлоискателя.

[tip] Очень хорошо зарекомендовал себя генератор, как устройство для проверки резонансной частоты работы поисковых катушек металлоискателя. [/tip]

Печатная плата готового генератора:

Ну и как описывал в статье- » Как изготовить хороший корпус для плат своими руками» в этом корпусе он и сидит по сей день:

[tip]

Расположение элементов на печатной плате и сама печатка.

Обсудить статью на — ФОРУМЕ

Успехов вам!

С наилучшими пожеланиями!

[/tip]

www.radioingener.ru

Схема генератора синусоидальных колебаний на транзисторе. LC-генераторы

Отметим три варианта распространённых схем автогенераторов:

– с трансформаторной (или индуктивной) обратной связью;

– с автотрансформаторной обратной связью;

– с емкостной обратной связью.

Ниже представлены некоторые практические схемы транзисторных автогенераторов.

Рис. 3.7. Автогенератор на биполярном транзисторе с трансформаторной обратной связью

На рис. 3.7, 3.8, 3.9 потенциометр R 1 R 2 служит для подачи на базу небольшого смещения, которое обеспечивает достаточно высокую крутизну характеристики триода в исходном режиме и легкость возбуждения колебаний. Ток базыI б0 , протекающий через сопротивлениеR 3 , создает положительное автоматическое смещение, обеспечивающее получение необходимого угла отсечки коллекторного тока в автоколебательном режиме АГ.

Рис. 3.8. Автогенератор с автотрансформаторной обратной связью на биполярном транзисторе

Рис. 3.9. Автогенератор с ёмкостной обратной связью на

Биполярном транзисторе

На рис. 3.10, 3.11, 3.12 напряжение смещения Е б =I б0 R б на базу подается с сопротивленияR б.

На рис. 3.10 питание базы последовательное. На рис. 3.11, 3.12 питание цепи базы параллельное.

В схему автогенератора (рис. 3.13) входит активный элемент - полевой транзистор. Для того чтобы получить на выходе автогенератора незатухающие гармонические колебания, необходимо правильно выбрать режим работы полевого транзисто-

Рис. 3.10. Автогенератор с трансформаторной

обратной связью на биполярном транзисторе

Рис.3.11. Автогенератор с автотрансформаторной обратной связью на биполярном транзисторе

ра. При этом можно руководствоваться методикой компьютерного анализа резисторных каскадов усиления на полевых транзисторах (раздел 3.4). Автогенератор на полевом транзисторе (рис. 2.13) собран по схеме емкостной трехточки. Колебательный контур, образованный катушкой индуктивности l k и конденсатором С к, включен в стоковую цепь транзистора.

Рис.3.12. Автогенератор с ёмкостной обратной связью на

биполярном транзисторе

На частоте генерации он эквивалентен индуктивности. Положительная обратная связь осуществлена через делитель, образованный конденсаторами С 1 иC 2 . Начальное смещение, обеспечивающее первоначальное положение рабочей точки, задается резисторамиR 1 ,R 2 иR 3 . РезисторR 1 позволяет осуществить истоковую стабилизацию рабочей точки полевого транзистора за счёт использования отрицательной обратной связи (ООС) по постоянному току истока. КонденсаторC 2 устраняет при этом ООС по переменной составляющей тока истока.

Конденсатор Сз необходим для того, чтобы напряжение положительной обратной связи без потерь было приложено ко входу транзистора.

Необходимым условием для получения гармонических незатухающих колебаний является обеспечение баланса амплитуд и баланс фаз.


Рис. 3.13. Автогенератор с ёмкостной обратной связью на

полевом транзисторе

Рис. 3.14. Автогенератор с автотрансформаторной обратной связью на полевом транзисторе

Автогенератор на полевом транзисторе (рис. 3.14) собран по схеме индуктивной трехточки (с автотрансформаторной обратной связью). Колебательный контур, образованный индуктивностями L 1 +L 2 и конденсатором С 3 , включен в стоковую цепь транзистора. Автотрансформаторная обратная связь осуществлена с помощью обмотки катушки индуктивности L 2 , подключенной к затвору полевого транзистора через емкость блокировочного конденсатора источника питания (на схеме конденсатор не показан) и емкость конденсатора С 2 . Начальное смещение, обеспечивающее первоначальное положение рабочей точки, задается резисторами R1 и R2. Конденсатор С 1 необходим для того, чтобы напряжение положительной обратной связи без потерь было приложено к входу каскада.


Рис.3.15. Автогенератор на полевом транзисторе

с трансформаторной обратной связью

Схема измерения LС-автогенера- с трансформаторной обратной свя зью представлена на рис. 3.15. Колебательный контур, образованный ин дуктивностью L K и конденсатором С к, включен в стоковую цепь транзистора. Обратная связь трансформаторного типа, осуществлена с помощью обмотки L 1 , подключенной ко входу транзистора. Начальное смещение, обеспечивающее первоначальные положения рабочей точки, задается резисторами R 1 , R 2 и R 3 . Резистор R 3 обеспечивает истоковую стабилизацию рабочей точки транзистора. Конденсаторы C 2 и C 3 обеспечивают подведение напряжения положительной обратной связи на вход тра

barmintea.ru

Примеры схем транзисторных автогенераторов

Отметим три варианта распространённых схем автогенераторов:

– с трансформаторной (или индуктивной) обратной связью;

– с автотрансформаторной обратной связью;

– с емкостной обратной связью.

Ниже представлены некоторые практические схемы транзисторных автогенераторов.

Рис. 3.7. Автогенератор на биполярном транзисторе с трансформаторной обратной связью

На рис. 3.7, 3.8, 3.9 потенциометр R1R2служит для подачи на базу небольшого смещения, которое обеспечивает достаточно высокую крутизну характеристики триода в исходном режиме и легкость возбуждения колебаний. Ток базыIб0, протекающий через сопротивлениеR3, создает положительное автоматическое смещение, обеспечивающее получение необходимого угла отсечки коллекторного тока в автоколебательном режиме АГ.

Рис. 3.8. Автогенератор с автотрансформаторной обратной связью на биполярном транзисторе

Рис. 3.9. Автогенератор с ёмкостной обратной связью на

Биполярном транзисторе

На рис. 3.10, 3.11, 3.12 напряжение смещения Еб=Iб0Rбна базу подается с сопротивленияRб.

На рис. 3.10 питание базы последовательное. На рис. 3.11, 3.12 питание цепи базы параллельное.

В схему автогенератора (рис. 3.13) входит активный элемент - полевой транзистор. Для того чтобы получить на выходе автогенератора незатухающие гармонические колебания, необходимо правильно выбрать режим работы полевого транзисто-

Рис. 3.10. Автогенератор с трансформаторной

обратной связью на биполярном транзисторе

Рис.3.11. Автогенератор с автотрансформаторной обратной связью на биполярном транзисторе

ра. При этом можно руководствоваться методикой компьютерного анализа резисторных каскадов усиления на полевых транзисторах (раздел 3.4). Автогенератор на полевом транзисторе (рис. 2.13) собран по схеме емкостной трехточки. Колебательный контур, образованный катушкой индуктивности lk и конденсатором Ск,включен в стоковую цепь транзистора.

Рис .3.12. Автогенератор с ёмкостной обратной связью на

биполярном транзисторе

На частоте генерации он эквивалентен индуктивности. Положительная обратная связь осуществлена через делитель, образованный конденсаторами С1иC2. Начальное смещение, обеспечивающее первоначальное положение рабочей точки, задается резисторамиR

1,R2иR3. РезисторR1 позволяет осуществить истоковую стабилизацию рабочей точки полевого транзистора за счёт использования отрицательной обратной связи (ООС) по постоянному току истока. КонденсаторC2устраняет при этом ООС по переменной составляющей тока истока.

Конденсатор Сз необходим для того, чтобы напряжение положительной обратной связи без потерь было приложено ко входу транзистора.

Необходимым условием для получения гармонических незатухающих колебаний является обеспечение баланса амплитуд и баланс фаз.

Рис. 3.13. Автогенератор с ёмкостной обратной связью на

полевом транзисторе

Рис. 3.14. Автогенератор с автотрансформаторной обратной связью на полевом транзисторе

Автогенератор на полевом транзисторе (рис. 3.14) собран по схеме индуктивной трехточки (с автотрансформаторной обратной связью). Колебательный контур, образованный индуктивностями L

1+L2 и конденсатором С3, включен в стоковую цепь транзистора. Автотрансформаторная обратная связь осуществлена с помощью обмотки катушки индуктивности L2, подключенной к затвору полевого транзистора через емкость блокировочного конденсатора источника питания (на схеме конденсатор не показан) и емкость конденсатора С2. Начальное смещение, обеспечивающее первоначальное положение рабочей точки, задается резисторами R1 и R2. Конденсатор С1 необходим для того, чтобы напряжение положительной обратной связи без потерь было приложено к входу каскада.

Рис.3.15. Автогенератор на полевом транзисторе

с трансформаторной обратной связью

Схема измерения LС-автогенера- с трансформаторной обратной свя зью представлена на рис. 3.15. Колебательный контур, образованный ин дуктивностью LKи конденсатором Ск, включен в стоковую цепь транзистора. Обратная связь трансформаторного типа, осуществлена с помощью обмотки L1, подключенной ко входу транзистора. Начальное смещение, обеспечивающее первоначальные положения рабочей точки, задается резисторами R1, R2 и R3. Резистор R3 обеспечивает истоковую стабилизацию рабочей точки транзистора. Конденсаторы C2и C3обеспечивают подведение напряжения положительной обратной связи на вход транзистора без потерь. Конденсатор Clявляется блокировочным для источника питания. Он предотвращает прохождение переменной составляющей выходного тока через источник питания.

Автогенераторы низкочастотных колебаний рассмотрены в разделе 4.

studfile.net

Простой LC-генератор на транзисторах | Кое-что из радиотехники

  Данный генератор можно использовать в измерительной аппаратуре. Преимуществом такого генератора ( на рис. ) является возможность использования контуров практически с любым отношением L/C. При L1 = 50 мкГн и С1 = 5 мкФ генерируемая частота равна 10 кГц. При работе на LC контуре имеется малое рабочее напряжение ( около 100 мВ ). Собственно генератор собран на транзисторах VT1, VT2, транзистор VT3 используется как предварительный усилитель, выходной усилитель собран на транзисторе VT6.

  Остальные активные элементы использованы в элементах АРУ. Этот узел состоит из выпрямителя на диодах VD1, VD2 по схеме удвоения, усилителя постоянного тока на транзисторе VT5, и регулирующего транзистора VT4, включённого в цепь питания задающего генератора. В такой системе АРУ выходное напряжение остаётся практически постоянным при изменении напряжения питания от 3,5 до 15 В. В генераторе можно применить любые кремниевые транзисторы, важно только, чтобы VT1-VT3 имели коэффициент передачи по току h21Э ≥ 150.

Э. П. Борноволоков, В. В. Фролов. «РАДИОЛЮБИТЕЛЬСКИЕ СХЕМЫ». Киев, «ТЕХНИКА» 1985г, стр. 210

 

Поделиться ссылкой:

Понравилось это:

Нравится Загрузка...

Похожее

Автор: Андрей Маркелов

Родился и вырос в Тульской области. После окончания средней школы поступил и закончил "Донской Техникум Механизации учёта" по специальности "техник-электромеханик", потом учился в МИРЭА. С детства увлекаюсь радиотехникой. В данный момент работаю в одном ООО, выпускающей импульсные источники питания различного применения. Посмотреть все записи автора Андрей Маркелов

admarkelov.ru

Примеры схем транзисторных автогенераторов. Генераторы электрических колебаний

Генераторы гармонических колебаний представляют собой устройства из частотно-избирательной цепи и активного элемента. По типу частотно-избирательной цепи они делятся на LC- и RC-генераторы.

Генераторы LC-типа имеют сравнительно высокую стабильность частоты колебаний, устойчиво работают при значительных изменениях параметров транзисторов, обеспечивают получение колебаний, имеющих малый коэффициент гармоник. В генераторах LC-типа форма выходного напряжения весьма близка к гармонической. Это обусловлено достаточно хорошими фильтрующими свойствами колебательного контура. К недостаткам LC-генераторов относятся трудности изготовления высоко-стабильных температурно-независимых катушек индуктивности, а также высокая стоимость и громоздкость последних. Это особенно проявляется при создании низкочастотных автогенераторов, в которых даже при применении ферромагнитных сердечников габаритные размеры, масса и стоимость получаются значительными.

Базовые схемы LC-генераторов показаны на рис. 8.1 . Схему на рис. 8.1, a называют индуктивной трехточкой или схемой Хартлея, на рис. 8.1,6 - емкостной трехточкой или схемой Колпитца. Для обеих схем с помощью резисторов Rl, R2 и Re устанавливается необходимый режим по постоянному току. Конденсаторы СЬ и Се - блокировочные, конденсатор С называют конденсатором связи. Частота автоколебаний для обеих схем в первом приближении определяется известной формулой

(8.1)

Для схемы Колпитца

(8.2)

Для всех автогенераторов условиями возникновения автоколебаний является наличие положительной обратной связи при коэффициенте усиления равном или большим 1. Для схемы Хартлея эти условия обеспечиваются за счет транзисторного каскада, выбора коэффициента трансформации и соответствующего включения обмотки связи. Положительная обратная связь в генераторе Колпитца обеспечивается за счет того, что сигнал обратной связи поступает с такого зажима колебательного контура, при котором сигнал обратной связи на базе транзистора совпадает по фазе с переменным сигналом на коллекторе. Коэффициент передачи цепи обратной связи при этом определяется коэффициентом передачи емкостного делителя, образованного конденсаторами С1 и С2. При выполнении указанных условий устройство самовозбуждается. Процесс самовозбуждения происходит следующим образом. При включении источника питания конденсатор колебательного контура, включенного в коллекторную цепь, заряжается. В контуре возникают затухающие колебания, которые одновременно передаются на управляющие электроды транзистора по цепи положительной обратной связи. Это приводит к пополнению энергией LC-контура и колебания превращаются в незатухающие.

Выполним моделирование автогенератора Колпитца (рис. 8.2), схема которого заимствована из каталога программы EWB 4.1 (схемный файл 2m-oscil.ca4). В отличие от базовой схемы (рис. 8.1, б) она выполнена на эмиттерном повторителе.


Рис. 8.2. Генератор Колпитца

Расчеты по формулам (8.1) и (8.2) для схемы на рис. 8.2 дают: С2=1мкФ;

Из осциллограмм на рис. 8.3 видно, что результаты моделирования крайне неутешительны. Во-первых, период колебаний, отсчитывемый с помощью визирных линеек и равный Т2-Т1=7,34 мс, заметно больше теоретического - 6,28 мс. Во-вторых, форма колебаний далеко не синусоидальная. Такие результаты можно объяснить слишком сильной связью колебательного контура с усилительным каскадом. В пользу этого утверждения свидетельствует и тот факт, что двойная амплитуда выходного сигнала практически равна напряжению источника питания 6 В. Для возможности управления взаимодействием колебательного контура с транзисторным каскадом введем конденсатор связи С (рис. 8.4).

Результаты моделирования схемы на рис. 8.4 приведены на рис. 8.5, из которого видно, что форма колебаний существенно улучшилась и действительно стала синусоидальной. При этом период колебаний 6,144 мс практически равен теоретическому значению.

Из проведенных экспериментов ви

autokresla-isofix.ru

3. Основные схемы lc- автогенераторов

3.1 Одноконтурные схемы автогенераторов на транзисторах

Маломощные автогенераторы, используемые в современной аппаратуре передачи сигналов электросвязи, выполняют обычно на транзисторах, имеющих по сравнению с электронными лампами большую экономичность, долговечность, надежность и компактность.

1. Автогенератор с трансформаторной обратной связью.

Принципиальная схема генератора показана на рис № 4а.

Рис. №4 а,б. Генератор с цепью автосмещения: а-схема; б- диаграммы, поясняющие регулирующие действие цепи автосмещения

Включение источника коллекторного напряжения Ек сопровождается первоначальным зарядом конденсатора контура С2 и последующим его разрядом через катушку L2. Так как катушки L2 иL1 представляют собой трансформатор высокой частоты, возникающий даже самый слабый ток в контуре наводит в катушке связи L1 переменную ЭДС взаимоиндукции. Эта ЭДС создает переменное возбуждающее напряжение между базой и эмиттером транзистора, которое управляет коллекторным током в такт с колебаниями, возникшими в контуре. Благодаря усилительным свойствам транзистора возникшие колебания нарастают и неустойчивый процесс первоначальной генерации переходит в стационарный, при котором амплитуды колебательных токов и напряжений, а также их частота устанавливаются неизменными.

Периодически меняющийся коллекторный ток может иметь различную форму в зависимости от угла отсечки 0. Однако первая гармоника этого тока всегда совпадает по фазе с напряжением возбуждения и напряжением на контуре. В режимах с отсечкой из-за частотной избирательности контура действие высших гармоник импульса коллекторного тока проявляется слабо и основным током, питающим колебательный контур, является ток первой гармоники. Таким образом, при наличии в контуре гармонических колебаний в коллекторной цепи автогенератора создается периодически меняющийся ток, способный поддержать эти колебания и сделать их незатухающими. Для получения незатухающих колебаний требуется, чтобы энергия, расходуемая коллекторным источником Ек, полностью компенсировала потери в контуре, включая и энергию, отдаваемую автогенератором во внешнюю цепь- нагрузку.

Основные количественные соотношения в схеме автогенератора с трансформаторной обратной связью: амплитуда выходного напряжения

Umвых=Im1ωавтL2,

где Im1- амплитуда первой гармоники коллекторного тока,

ωавт=– частота автоколебаний; амплитуда напряжения обратной связи Umвх=Im1ωавтМ, где М – взаимная индуктивность между катушками L1 и L2; коэффициент передачи цепи обратной связи

Ко.с.=.

2. Генератор с автотрансформаторной обратной связью.

Принципиальная схема приведена на рис. №5а.

Рис.№5а. Принципиальная схема автогенератора с обратной автотрансформаторной связью

Схема содержит колебательный контур второго вида L1C4, к трем точкам которого к, э, б соответственно подключены коллектор, эмиттер (через блокировочные конденсаторы большой емкости C2, C3) и база (через разделительный конденсатор C1) транзистора VT. Начальное смещение на базе транзистора задается делителем напряжения R1, R2. Элементы R3, C4 образуют цепь смещения, создаваемого падения на резисторе R3при протекании по нему постоянной составляющей эмиттерного тока.

Напряжение обратной связи Umвх=Uбэ снимаетсяс части витков катушки L1, которая одновременно служит делителем напряжения Uкб, действующего на контуре. Как видно из схемы, условие баланса фаз выполняется потому, что напряжение Uбэ всегда изменяется в противофазе с переменным напряжением на коллекторе Umвых= Uкэ. В этом можно убедиться, рассмотрев направление токов в ветвях контура L1C4. Индуктивность катушки L1 в точке э делится на Lкэ, образующую левую (индуктивность) ветвь контура, и на Lбэ, которая с конденсатором C4 образует первую (емкостную) ветвь. Так как точки iLиiC в ветвях параллельного контура в любой момент времени противоположны по направлению, напряжения Uбэ и Uкэ противофазны.

3.Автогенератор с емкостной обратной связью.

Схема такого генератора представлена на рис. № 5б.

Рис.№5 б. Принципиальная схема автогенератора с обратной емкостной связью

В этой схеме применен колебательный контур третьего вида L1C4C5, соединенный точками к, э, б соответственно через конденсаторы C3, C2 и C1с коллектором, эмиттером и базой транзистора VT. В автогенераторе применена схема параллельного коллекторного питания, колебательный контур и транзистор включены параллельно друг другу (схемах на рис. № 4а, 5а эти элементы включены последовательно, т.е. использовались схемы последовательного коллекторного питания). Для ослабления шунтирующего действия высокочастотные дросселя L2 на контур индуктивность дросселя выбирают исходя из соотношения L2=(10…20) L1.

Общую емкость контура составляют емкости двух конденсаторов: C4 и C5, причем C4 образует емкостную ветвь контура, а C5 и L1- индуктивную ветвь. Так как соответствующие токи iLиiC в любой момент времени направлены противоположно друг другу, напряжения Uкэ иUбэ противофазны. Следовательно, условие баланса фаз выполняется, поскольку напряжение Uбэ= Umвх, снимаемое с конденсатора C5, является напряжением обратной связи, а Uкэ= Umвых, снимаемое с C4, - выходным напряжением генератора.

studfile.net

Высокочастотный двухтактный LC генератор на биполярных транзисторах

Электрические генераторы высокочастотных колебаний применяются например для создания радиоволн. Радиоволны это электромагнитные волны и источником их являются электроны движущиеся с ускорением (положительным или отрицательным). Высокочастотные генераторы создают изменяющееся во времени ЭДС под воздействием которого электроны ускоряются и замедляются (ускоряются со знаком минус) в результате чего и создаются радиоволны. Чем с большей частотой работает генератор тем более высокочастотные радио волны создаются. Но для того чтобы создать радиоволны, мало одного генератора, для него нужна ещё и антенна. Для того чтобы антенна эффективно излучала радиоволны определенной частоты её размеры ограничены в меньшую сторону до половины длинны волны излучаемого ей излучения. Т.е. например если антенной является диполь (вибратор Герца) то его длина не должна быть меньше половины длины волны иначе излучать он будет плохо. Это ограничение можно обойти если использовать специальные согласующие устройства, но проще сделать антенну нужного размера. Связь частоты и длинны волны можно выразить формулой:

Рассчитать длину электромагнитной волны по частоте или частоту по длине электромагнитной волне можно в программе:

Немного поигравшись с данной программой можно понять что например для частоты 1 МГц (один мегагерц (единица с шестью нулями в герцах)) длина волны будет примерно 300 м следовательно диполь нужен длиной 150 м. Ну хорошо! Давайте тогда повысим частоту до 100 МГц, длина волны тогда будет 3 м а длина диполя 1.5 м что уже вполне приемлемо. А если частота будет 1ГГц (один гигагерц т.е. 1000 МГц) то длину можно сделать 0.15 м т.е 150 мм что вполне даже можно считать весьма компактным! Но не стоит забывать о том что такую частоту способен генерировать далеко не каждый транзистор, скорее даже редкий транзистор, и тем не менее они есть и продолжают появляться новые. У любого транзистора есть такой параметр как "граничная частота" эта частота должна быть больше той на которой будет работать данный транзистор, желательно с хорошим запасом. Высокочастотные генераторы бывают однотактные и двухтактные. Двухтактные, при прочих равных условиях, мощнее поэтому лучше использовать их. Главной составной частью генератора является усилитель (или усилители как например в случае двухтактного генератора). Для того чтобы "превратить" усилитель в генератор ему надо создать положительную обратную связь с LC контуром. Если в обратной связи не будет LC контура а будут только конденсаторы или только катушки то вероятно что генератор будет генерировать но создавать несинусоидальные колебания, например это происходит во всем известном мультивибраторе:

Рисунок 1 - Мультивибратор


Обратная связь в мультивибраторе осуществляется через конденсаторы C1 и C2. Транзистор VT1 включен по схеме с общим эмиттером т.е. на этом транзисторе сделан инвертирующий усилитель т.е. такой который инвертирует сигнал на выходе по сравнению с сигналов на входе или также можно сказать что он как бы усиливает сигнал потом смещает его по фазе на 180 градусов и выдает на выход:

Рисунок 2 - Инвертирующий усилитель

Вместо усилителя на биполярном транзисторе может быть усилитель на полевом MOSFETе в схеме с общем истоком:

Рисунок 3 - Усилитель на MOSFETе


Такой усилитель тоже будет инвертирующим. Через конденсатор C1 выход первого усилителя (назовём первым усилителем усилитель на транзисторе VT1) соединен со входом второго (на VT2), через конденсатор C2 выход второго транзистора соединен со входом первого т.о. получается как бы кольцо и в этом "кольце" из двух инвертирующих усилителей сигнал дважды сдвигается на 180 градусов что в целом даёт сдвиг на 360 что создаёт положительную обратную связь - т.е. одно из необходимых условий для возникновения генерации. Резисторы R2 и R3 задают рабочие точки транзисторов, R3 для транзистора VT1, R2 для транзистора VT2. Если в цепях обратных связей не будет ни конденсаторов ни катушек то получиться прото бистабильная ячейка которая имеет два состояния как RS триггер:

Рисунок 4 - Бистабильная ячейка


Такая ячейка или триггер не будет сама по себе генерировать. Если вместо биполярных транзисторов использовать MOSFETы и немного изменить схему то получиться, так называемый, ZVS генератор который часто используют самодельщики для создания индукционных нагревателей, повышающих преобразователей для получения красивой дуги или электрошокеров и ещё много других интересных вещей.

Рисунок 5 - ZVS генератор


Этот генератор работает по такому же принципу, у него есть два инвертирующих усилителя, обратные связи и LC контур для генерации синусоидальных колебаний. Схема для генерации синусоидальных колебаний высокой частоты на биполярных транзисторах будет выглядеть примерно так:

Рисунок 6 - Двухтактный LC генератор на биполярных транзисторах


Для того чтобы такой генератор был высокочастотным ему нужны высокочастотные транзисторы, например КТ904А. КТ904А - это не самые высокочастотные и не самые мощные транзисторы но и они кое что могут.

Рисунок 7 - Транзистор КТ904А


Этот транзистор с виду напоминает странный наполовину золотой болт, но на самом деле он просто немного позолочен для лучшего отвода тепла т.к. золото очень слабо окисляется.
Со схемой на рисунке 6 можно даже немного аккуратно поэксперементировать. Желательно чтобы у источника питания было ограничение по току. Если его нет и например используются батарейки то можно использовать резистор по питанию например на 10 Ом  или больше. Проверена на практике например такая схема:

Рисунок 8 - Двухтактный ВЧ генератор с номиналами


Катушки L1 и L2 - это, на самом деле, одна катушка с отводом от середины который подключен к "+" питания (с учётом резистора для ограничения тока). Эта катушка например может иметь 4 витка диаметром 3.5 См и некоторой длинной которую можно изменять в широких пределах для подстройки частоты. В более удобном, для начинающих, виде схему можно представить так:

Рисунок 9 - Удобная схема


Схему можно запитать от 4х пальчиковых батареек с напряжением каждой 1.5В. Можно подать и большее напряжение но не слишком чтобы транзисторы не сгорели и при этом желательно следить за током потребляемым данным генератором.
Видео по данной теме или видеовариант данной статьи с тестами собранной схемы:

Проверка с индуктивными антеннами:


 О том как рассчитать резонансную частоту LC контура можно прочитать в статье http://electe.blogspot.ru/2011/02/blog-post_13.html. Для рассчёта этой частоты надо знать ёмкость конденсатора C2 и индуктивность самодельной катушки. С ёмкостью всё просто т.к. она обычно пишется на корпусе конденсатора или же приобретается конденсатор с заранее известной емкостью а вот определить индуктивность самодельной катушки не так просто. Но всё таки существуют эмпирические формулы для примерного расчёта емкости однослойной катушки без сердечника. Для примерного расчёта резонансной частоты LC контура, а следовательно и частоты основной гармоники генерации данного генератора, можно воспользоваться программой ниже:

Рисунок 10 - Вспомогательная картинка для использования программы ниже

КАРТА БЛОГА (содержание)

electe.blogspot.com

Оставить комментарий

avatar
  Подписаться  
Уведомление о