Формула мощности в электрической цепи – Мощность электрического тока | Формулы и расчеты онлайн

Как найти мощность - формулы для расчета

Содержание:

  1. Понятие мощности электрического тока
  2. Активная и реактивная мощность
  3. Как вычислить электрическую мощность
  4. Видео

Работа электрической цепи определяется многими параметрами, в том числе и мощностью, играющей важную роль наряду с силой тока и напряжением. Данный показатель служит одной из характеристик электрических устройств и оборудования. Поэтому довольно часто возникает вопрос, как найти электрическую мощность того или иного прибора. Это необходимо для того, чтобы знать его энергопотребление и возможности совершения полезной работы.


Понятие мощности электрического тока

Понятие мощности тесно связано с количеством работы, которую может выполнить электрический ток в течение установленного периода времени. Работа тока заключается в преобразовании электричества в другие виды энергии – механическую, кинетическую, тепловую и другие. Следовательно, мощность, по своей сути, представляет собой скорость всех этих превращений.

Показатели – мощность и напряжение встречаются постоянно в повседневной жизни в тех областях, где используются электрические устройства. Все они потребляют определенное количество электротока, поэтому перед началом эксплуатации должны учитываться их потенциальные возможности, параметры и технические характеристики.

Значение мощности используемых приборов требуется для того, чтобы рассчитать сечения кабелей и проводов, номиналов автоматических выключателей и другой защитной аппаратуры. Кроме того, становится возможным заранее подсчитать, за какой срок может быть выполнена та или иная работа.

Для выполнения расчетов используется формула, представляющая собой P = A/t, где А является работой, а t – установленным отрезком времени. Существует два вида мощности – активная и реактивная.


Активная и реактивная мощность

Понятие активной мощности заключается в непосредственном преобразовании электрического тока в механическую, тепловую и другие виды энергии. Этот процесс носит необратимый характер и не может быть выполнен в обратном направлении. Для измерения активной мощности существует специальная единица – ватт (Вт). Формула определяет 1 Вт = 1 вольт х 1 ампер. В быту и на производстве применяются более высокие величины – киловатты и мегаватты.

В отличие от активной, реактивная мощность создается за счет нагрузки, возникающей в емкостных или индуктивных устройствах. Когда используется переменный ток для определения этого показателя существует формула Q = U x I x sin φ. В этом случае sin φ представляет собой сдвиг фаз, который образует сниженное напряжение и рабочий ток. Сам угол имеет значение в диапазоне 0-90 градусов или от 0 до минус 90 градусов. Для измерения реактивной мощности применяются вольт-амперы.

Индуктивные и емкостные элементы способствуют возвращению электроэнергии обратно в сеть. В результате смещений по параметрам напряжения и тока, в электрической сети могут возникнуть некоторые перегрузки и другие негативные явления. Особенно ярко это проявляется у конденсаторов, отдающих обратно весь накопленный заряд. В такие моменты происходит обратное перемещение напряжения и тока, сдвинутых относительно друг друга.

Энергия емкости и индуктивности, смещенных по фазе относительно собственных характеристик сети как раз и представляет собой реактивную мощность. Она компенсируется за счет обратного эффекта, предотвращая потери в эффективности подачи электроэнергии.


Как вычислить электрическую мощность

Составляя проект любой электрической цепи, сначала надо найти мощность и уже по ее результатам определять значение допустимой нагрузки. Для постоянного тока используется всем известная формула P = U x I, выведенная по закону Ома.

Гораздо сложнее узнать мощность если используется переменный ток. Это связано с потреблением реактивной энергии все используемой аппаратурой. Следовательно, формула, приведенная выше, соответствует полному количеству энергии, потребляемой данным устройством. Ее активная составляющая определяется с помощью cosφ, зная которую можно установить, какова часть активной энергии заключена во всей полной мощности.

Это будет выглядеть следующим образом: Ракт = Робщ х cosφ = U x I x cosφ. Следовательно, полная мощность электроприбора определяется Робщ = Ракт/cosφ. Ее показатели будут всегда выше, нежели у активной мощности.

Примерно такая же схема расчетов используется и для трехфазных сетей, каждая из которых условно состоит из трех однофазных. Разница между ними заключается в фазном и линейном напряжении. Первое применяется в однофазном варианте и замеряется между фазой и нулем. Линейное напряжение при трех фазах измеряется между каждым линейным проводом.

Таким образом, зная, что Uлин = Uфаз х √3, найдём активную нагрузку, как P = U x I x √3. Мощность агрегата, например, электродвигателя, инженеры нашли в виде формулы P = U x I x √3 x cosφ. Как правило, мощность того или иного устройства известна заранее, а в большинстве случаев требуется вычислить ток. В этом случае сила тока определяется: I = P/(U x √3 x cosφ).


electric-220.ru

Основные электрические законы. Базовые формулы и расчеты

В предыдущей статье мы познакомились с основными электрическими понятиями, такими как электрический ток, напряжение, сопротивление и мощность. Настал черед основных электрических законов, так сказать, базиса, без знания и понимания которых невозможно изучение и понимание электронных схем и устройств.

Закон Ома

Электрический ток, напряжение, сопротивление и мощность, безусловно, между собой связаны. А взаимосвязь между ними описывается, без сомнения, самым главным электрическим законом – законом Ома. В упрощенном виде этот закон называется: закон Ома для участка цепи. И звучит этот закон следующем образом:

«Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи».

Для практического применения формулу закона Ома можно представить в виде вот такого треугольника, который помимо основного представления формулы, поможет определить и остальные величины.

Работает треугольник следующим образом. Чтобы вычислить одну из величин, достаточно закрыть ее пальцем. Например:

В предыдущей статье мы проводили аналогию между электричеством и водой, и выявили взаимосвязь между напряжением, током и сопротивлением. Также хорошей интерпретацией закона Ома может послужить следующий рисунок, наглядно отображающий сущность закона:

На нем мы видим, что человечек «Вольт» (напряжение) проталкивает человечка «Ампера» (ток) через проводник, который стягивает человечек «Ом» (сопротивление). Вот и получается, что чем сильнее сопротивление сжимает проводник, тем тяжелее току через него проходить («сила тока обратно пропорциональна сопротивлению участка цепи» – или чем больше сопротивление, тем хуже приходится току и тем он меньше). Но напряжение не спит и толкает ток изо всех сил (чем выше напряжение, тем больше ток или – «сила тока в участке цепи прямо пропорциональна напряжению»).

Когда фонарик начинает слабо светить, мы говорим – «разрядилась батарейка». Что с ней произошло, что значит разрядилась? А значит это, что напряжение батарейки снизилось и оно больше не в состоянии «помогать» току преодолевать сопротивление цепей фонарика и лампочки. Вот и получается, что чем больше напряжение – тем больше ток.

Последовательное подключение – последовательная цепь

При последовательном подключении потребителей, например обычных лампочек, сила тока в каждом потребителе одинаковая, а вот напряжение будет отличаться. На каждом из потребителей напряжение будет падать (снижаться).

А закон Ома в последовательной цепи будет иметь вид:

При последовательном соединении сопротивления потребителей складываются. Формула для расчета общего сопротивления:

Параллельное подключение – параллельная цепь

При параллельном подключении, к каждому потребителю прикладывается одинаковое напряжение, а вот ток через каждый из потребителей, в случае, если их сопротивление отличается – будет отличаться.

Закон Ома для параллельной цепи, состоящей из трех потребителей, будет иметь вид:

При параллельном соединении общее сопротивление цепи всегда будет меньше значения самого маленького отдельного сопротивления. Или еще говорят, что «сопротивление будет меньше наименьшего».

Общее сопротивление цепи, состоящей из двух потребителей, при параллельном соединении:

Общее сопротивление цепи, состоящей из трех потребителей, при параллельном соединении:


Для большего числа потребителей расчет производится исходя из того, что при параллельном соединении проводимость (величина обратная сопротивлению) рассчитывается как сумма проводимостей каждого потребителя.

Электрическая мощность

Мощность – это физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Рассчитывается мощность по следующей формуле:

Таким образом зная, напряжение источника и измерив потребляемый ток, мы можем определить мощность потребляемую электроприбором. И наоборот, зная мощность электроприбора и напряжение сети, можем определить величину потребляемого тока. Такие вычисления порой необходимы. Например, для защиты электроприборов используются предохранители или автоматические выключатели. Чтобы правильно подобрать средство защиты нужно знать потребляемый ток. Предохранители, применяемые в бытовой технике, как правило подлежат ремонту и для их восстановления достаточно подобрать и заменить проволоку.

Применив закон Ома, можно рассчитать мощность и по другой формуле:

При расчетах надо учитывать, что часть потребляемой электроэнергии расходуется на нагрев и преобразуется в тепло. При работе греются не только электрообогреватели, но и телевизоры, и компьютеры и другая бытовая техника.

И в завершение, в качестве бонуса, вот такая шпаргалка, которая поможет определить любой из основных электрических параметров, по уже известным.

imolodec.com

Электрическая мощность формула и определение

Чтобы лучше представить себе электрическую мощность, электрический ток следует представить в виде жидкости, протекающей по трубке сверху вниз. При этом, разница уровней, на которых находится жидкость, может сравниться с разностью потенциалов. Падающий поток воды, обладает определенным количеством энергии. При свободном падении происходит бесполезная трата этой энергии. Однако, при направлении такого потока воды, например, к лопастям турбины, произойдет их вращение, направленное на производство полезной работы.

Электрический ток, таким же образом совершает работу, во время своего движения по цепи. Количество совершенной работы полностью зависит от величины разности потенциалов.

Как найти мощность

Электрическую мощность невозможно определить без такого понятия, как сила тока. Эта величина является количеством электричества, которое проходит за одну секунду через поперечное сечение цепи. Таким образом, мощность тока находится в прямой пропорциональной зависимости с напряжением и силой тока в электрической цепи.

Измерение мощности производится в единицах, получивших название ватта (Вт). Мощность в один ватт образуется при силе тока в 1 ампер и напряжении в 1 вольт. Чтобы вычислить ее значение, сила тока должна быть умножена на напряжение. Формула мощности электрического тока выглядит следующим образом: Р = IxU, где Р служит для обозначения мощности.

Мощность можно определить и другим способом, если известны только значения силы тока и сопротивления. Чтобы вычислить неизвестное нам напряжение, необходимо воспользоваться законом Ома: U=IR. Тогда, самая первая формула мощности тока будет иметь следующий вид: P = IxU =IxIR, или, по-другому: P = I2xR. В любом случае, чтобы могла быть вычислена мощность, формула должна содержать хотя-бы две величины из закона Ома.

Измерение электрической мощности

Измерение производится при помощи специального прибора, который называется ваттметром. Он состоит из последовательной и параллельной катушек, выполняющих функции обмоток. Катушка тока является последовательной, поэтому, производится ее последовательное включение с нагрузкой. Катушка напряжения, наоборот, включается параллельно этой же нагрузке.

Основным принципом работы ваттметра является взаимодействие магнитных потоков, создаваемых обеими катушками. Когда по их обмоткам проходит измеряемый ток, происходит образование двух магнитных полей. В результате их взаимодействия, подвижная катушка располагается таким образом, что ее магнитное поле направлено в ту же сторону, как и у неподвижной катушки. На подвижной катушке имеется стрелка, которая и показывает величину измеряемой мощности.

electric-220.ru

Закон Ома для участка цепи. Закон Джоуля - Ленца. Работа и мощность электрического тока. Виды соединения проводников.

Количество теплоты, выделившееся при прохождении электрического тока по проводнику, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого шел ток: 

Последовательное соединение.

1. Сила тока во всех последовательно соединенных участках цепи одинакова:

I1=I2=I3=...=In=...

2. Напряжение в цепи, состоящей из нескольких последовательно соединенных участков, равно сумме напряжений на каждом участке:

U=U1+U2+...+Un+...

3. Сопротивление цепи, состоящей из нескольких последовательно соединенных участков, равно сумме сопротивлений каждого участка:

R=R1+R2+...+Rn+...

Если все сопротивления в цепи одинаковы, то:

R=R1. N

При последовательном соединении общее сопротивление увеличивается (больше большего).

Параллельное соединение.

1. Сила тока в неразветвленном участке цепи равна сумме сил токов во всех параллельно соединенных участках.

I=I1+I2+...+In+...

2. Напряжение на всех параллельно соединенных участках цепи одинаково:    

U1=U2=U3=...=Un=...

 3. При параллельном соединении проводников проводимости складываются (складываются величины, обратные сопротивлению):

Если все сопротивления в цепи одинаковы, то: 

При параллельном соединении общее сопротивление уменьшается (меньше меньшего).

4. Работа электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме работ на отдельных участках:

A=A1+A2+...+An+...  

т.к.  A=I2Rt=I2(R1+R2+...+Rn+...)t.

5. Мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участках:

P=P1+P2+...+Pn+...  

6. Т.к. силы тока во всех участках одинаковы, то:       U1:U2:...:Un:...  = R1:R2:...:Rn:...

Для двух резисторов:  - чем больше сопротивление, тем больше напряжение.

4. Работа электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме работ на отдельных участках:

A=A1+A2+...+An+...   

т.к.     .

 

5. Мощность электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме мощностей на отдельных участках:

P=P1+P2+...+Pn+...  

6. Т.к. напряжения на всех участках одинаковы, то:

I1R1= I2R2=...= I3R3=...

Для двух резисторов:  - чем больше сопротивление, тем меньше сила тока.

www.eduspb.com

определение величины и выражения для расчёта энергии, единицы измерения

Электрическая мощность — это одна из главных физических величин, характеризующаяся преобразованием и передачей энергии. Её понятие непосредственно связывается с током и напряжением в сети. Этот параметр важен и учитывается не только при разработке электротехнического оборудования, но и при построении электрических цепей. Для определения её величины используется формула мощности, по которой выполнить расчёт совершенно несложно.

Суть понятия

При протекании через проводник электрического тока вокруг него возникает электромагнитное поле. Образуется оно из-за движущихся элементарных частиц, обладающих зарядом. Магнитное поле считается основным признаком присутствия электрического. При изменении одного происходит изменение и другого. Если ток в проводнике пропадёт, то электромагнитное поле всё равно никуда не исчезнет, разве что потеряет свою интенсивность.

Основоположником теории поля стал английский физик Джеймс Клерк Максвелл. Именно он доказал связь между этими двумя явлениями, описав их в своей работе, изданной в 1857 году. Учёный обосновал, что электрическое поле не может отдельно существовать от магнитного. Величина этих полей связана с энергией, заключённой в них. Она постоянно передаётся из одной формы в другую, но при этом не исчезает.

Электромагнитное поле распространяется в виде излучения, или как выражаются учёные — пространственного возмущения. Это испускание свободно распространяется в любой физической среде. Характеризуется оно частотой, длиной и поляризацией (направлением) волны. А также одним из параметров излучения является количество энергии, переносимой волной (интенсивность).

Численно интенсивность определяется как усреднённый период колебания волны, пронизывающей площадку, расположенную перпендикулярно ей. При этом она связана с плотностью энергии и скоростью распространения волны. Поток электромагнитной энергии находится с учётом вектора Пойтинга, который принимает во внимание плотность, интенсивность и напряжённость поля.

То есть математически, интенсивность описывается выражением: I (t) = 1/T ∫ {s (t)} dt, где S (t) — вектор Пойтинга. В простом понимании её смысл заключается в том, что количественная составляющая электроэнергии изменяется во времени, при этом скорость изменения зависит от напряжённости электрического поля и магнитной индукции.

Для обозначения именно электрической составляющей электромагнитного поля было введено понятие электрическая мощность. Под ней понимают физическую величину, характеризующую передачу или преобразование электрической энергии.

Физическое определение

Основной характеристикой любого электрического прибора является мощность. Передача электричества от источника питания к нагрузке сопровождается преобразованием энергии из одного вида в другую. Выработанное электричество передаётся по электрической цепи (например, линии передачи) при этом происходит её частичное рассеивание. Другими словами, часть электричества превращается в иную энергию: тепловую, световую, механическую.

Это преобразование характеризуется интенсивностью, обозначающей, какое её количество перейдёт в другой вид за единицу времени. Интенсивность, с которой происходит трансформирование, и называют мощностью.

Согласно Международной системе единиц (СИ) измеряется мощность тока в ваттах. Сокращённое его обозначение в русском языке имеет вид — Вт, а в международном — W. В технической литературе саму величину обозначают с помощью латинской буквы P.

Математическое определение, соответствующее сказанному, выглядит как P = dW / dt, то есть характеризует изменение энергии во времени. Будь то генерируемая источниками мощность или передающаяся по линиям электропередач, она имеет одинаковый физический смысл. Её значение рассчитывается в зависимости от формы сигнала, то есть постоянных и переменных составляющих.

Так как её изменение происходит во времени, то для удобства понимания процесса были введены понятия мгновенных значений. С их помощью можно провести вычисление энергии для любой точки во времени.

Мгновенные величины

Под мгновенной мощностью понимается величина энергии, соответствующая произведению значений разности потенциалов и силы тока на определённом участке цепи. Любое твёрдое физическое тело состоит из кристаллической решётки, в составе которой находятся носители заряда — электроны. Их мерой является кулон. Они могут быть как свободными, так и прикреплёнными к атомам. Свободные частички хаотично перемещаются в теле, компенсируя энергию своего движения различным направлением по отношению друг к другу.

Если же к телу, обладающему свободными электронами, приложить электромагнитное поле, то их движение станет упорядоченным. Такое их перемещение называется силой тока. Определяется ток отношением количества зарядов, прошедших через проводник, с единичным поперечным сечением за единицу времени: I = dQ/dT. Величиной его измерения считается ампер.

Чтобы переместить заряд в проводнике, необходимо затратить работу, которая называется напряжением. То есть это физическая величина, соответствующая затраченной энергии для передвижения заряда из одной точки в другую. Отличие значений энергий в этих точках называется разностью потенциалов. Измеряется напряжение в вольтах. А его значение может быть вычислено по формуле: U = A/q.

При перемещении в теле проводника электроны сталкиваются с различными примесями и дефектами кристаллической решётки. В результате их часть заряда передаётся этим структурам, то есть фактически происходит отбор мощности. Забранная энергия частично преобразуется в тепло и свет. Количество тех или иных флуктуаций (неоднородностей) на пути прохождения тока было названо сопротивлением, величиной обратной проводимости. В соответствии с СИ обозначается она буквой R, а измеряется в омах.

Мгновенная зависимость всех трёх величин между собой была установлена физиком-экспериментатором Симоном Омом. Согласно его закону, сила тока прямо пропорциональна разности потенциалов и обратно пропорциональна сопротивлению на участке цепи. То есть равна: I = U/R.

Формула для общего случая

Так как напряжение — это работа, то, умножив её на количество перенесённых зарядов, получится энергия, затраченная для перемещения частиц от одного края проводника к другому. Энергия, в общем понимании, это работа за единицу времени. Поэтому можно записать следующее выражение Pab = A/dt, где:

  • dt — интервал времени, за который все свободные заряды были перенесены;
  • A — непосредственно сама работа.

Формулу мощности тока для одного заряда можно записать P = U/dt, а исходя из неё для всех зарядов как Pab = q*U/dt, где q — количество зарядов прошедших из одной точки (a) в другую (b) за промежуток времени dt.

Исходя из определения, данного силе тока, она практически является зарядом. В случае изменения во времени ток можно описать выражением I = q/dt. Тогда, исходя из этой формулы, верным будет утверждение, что q = I*dt. Если подставить полученную формулу вместо q в выражение, описывающее мощность, получится Pab = U* (I*dt/dt) = U*I.

Если время изменения бесконечно мало, то можно принять, что напряжение и ток практически не изменяются. В результате мгновенная электрическая мощность будет равна P (t) = u (t)*i (t). Как видно из формулы, значение мощности для любой точки времени будет прямо пропорционально мгновенным значениям тока и разности потенциалов. При этом если цепь неидеальная, то она содержит определённое сопротивление. Используя закон Ома для участка цепи, формулу для нахождения мгновенной мощности можно переписать в виде P (t) = i (t)2*R = u (t)2/R.

Мощность одновременно связана сразу с несколькими величинами и соответствует полной работе, затрачиваемой на перемещение некоторого количества кулонов за единицу времени (одну секунду). Из определения следует, что одно и то же значение мощности можно получить разными способами, например, уменьшая силу тока, но увеличивая напряжение. Такой подход и используется при передаче энергии на большие расстояния. Для этого применяются трансформаторы, понижающие и повышающие ток.

Виды электрической мощности

Существующую в природе электрическую мощность делят на два вида: активную и реактивную. Первая характеризуется таким превращением, которое происходит безвозвратно. То есть электрическая энергия трансформируется в тепло, свет, кинематику и другие виды. Такое преобразование считается полезным, так как оно идёт на обогрев, приготовление еды, освещение помещений, превращается в механическую силу, например, работа дрели, насоса и тому подобное.

Реактивная же мощность связывается с потерями энергии, то есть с той частью, которая не выполняет полезную работу. Возникает она из-за индуктивной или ёмкостной составляющих электрической цепи. Эти параметры характеризуются сопротивлением, зависящим от частоты сигнала. Поэтому для электроцепей с постоянным током понятие реактивной мощности не применяется.

В цепи же переменного тока наблюдается сдвиг сигналов напряжения и тока относительно друг друга. Обозначается он греческой буквой φ (фи). Причём если преобладает ёмкостная составляющая, то ток опережает напряжение, а когда индуктивная, то наоборот.

Присутствие ёмкостного и индуктивного сопротивления считается паразитным, так как на нём происходит бесполезное нагревание (потеря энергии). Но, кроме сопротивления, эти паразитные величины обладают способностью накапливать мощность, конденсатор — электрическую, а индуктивность — магнитную. Как только эта энергия достигнет максимально возможного значения, они начинают отдавать её в цепь. Для учёта величины реактивной мощности вводится понятие sin φ.

Поэтому полная формула мощности для электрического тока переменного сигнала складывается из двух составляющих и находится из выражения S = (P2+Q2)½, где:

  • P — активная составляющая, Вт. P = U * I cos φ;
  • Q — реактивная часть, ВА (вольт-амперы). Q = U * I * sin φ.

При этом sin φ и cos φ являются коэффициентами мощности переменного сигнала. Типичным примером источника активной мощности является нагреватель. Он делается из материала с высоким внутренним сопротивлением току, поэтому сигнал, проходя через него, преобразовывает свою электрическую энергию полностью в тепловую. В качестве же устройств, обладающих реактивной мощностью, можно привести приборы содержащие трансформаторы, например, перфоратор, холодильник.

Реактивный коэффициент

По-другому он называется коэффициентом мощности и является безразмерной величиной, вводимой для вычисления реактивной составляющей. Говоря научным языком, он показывает, насколько сдвигается фаза переменного тока, протекающего через нагрузку, от возникшего на ней напряжения. Численно он принимается равным косинусу сдвига. Математически это сдвиг интерпретируется как косинус угла между векторными значениями тока и напряжения.

Простыми же словами, коэффициент мощности, обозначаемый φ, указывает на ту часть расходуемой электроэнергии, которая преобразуется в полезную работу. Например, при cos φ = 0,9 девяносто процентов от полной энергии уйдёт на совершение полезного действия, а остальные десять будут считаться потерями. Поэтому если в паспорте на какой-либо прибор указано, что мощность изделия составляет 500 Вт, а cos φ = 0,5, то полный расход его энергии будет составлять 500/0,5 = 250 ВА.

То есть коэффициент φ находится из отношения потребляемой устройством энергии к значению полной мощности. Нередко в паспорте оборудования указывается и составляющая φ (характер нагрузки). Она может быть резистивно-ёмкостной или резистивно-индуктивной. При этом сам коэффициент соответственно является опережающим или отстающим.

Если же напряжение в цепи изменяется по синусоидальному закону, а ток по несинусоидальному, то нагрузка никакой реактивной составляющей иметь не будет, а коэффициент принимается равным главной волне (первой гармонике). Под несинусоидальными понимаются искажения электрического сигнала, связанные с гармониками, преобладающими над основной частотой.

В математике формулой для нахождения коэффициента мощности является выражение: cos φ= P/S. Поэтому чем больше его значение, тем меньше потребляет устройство энергию из сети. Существуют различные способы поднятия значения cos φ, даже до максимального значения, равного единице, называемые коррекцией. Наиболее эффективным является добавление в схему сложного электронного узла, размещаемого на входе устройства.

Цепь переменного тока

В цепи переменного сигнала напряжение и ток описываются с помощью следующих формул: U = Um*sin w*t и I = Im**sin w*, где: Um и Im — мгновенные значения величин (измеренные в определённое значение времени), а w — циклическая частота. Подставляя эти формулы в выражение для нахождения мощности, можно получить следующее: P = Um*Im *sin2w*t = U*I — U*I *cos2w*t, где U*I = Um*Im/2.

Исходя из полученного выражения, видно, что активная мощность состоит из двух частей — постоянной U*I и переменной U*I *cos2w*t, при этом среднее её значение находится как P = I*U. В электрической цепи, содержащей реактивную составляющую (например, индуктивность), значение мгновенной мощности будет вычисляться по формуле: q = u*i. Соответственно: u = Um *sinw*t и i = Im*sin (w*t — p/2) = -Im*cosw*t.

Подставив эти выражения в главную формулу можно получить следующее реактивное обозначение мощности Q = Um*Im*sinw*t*cosw*t = Um*Im*sin2w*t/2 = U*I *sin2w*t. Проанализировав это математическое определение, можно установить, что реактивная энергия состоит только из переменной части, которая изменяется с удвоенной частотой, при этом её среднее значение равно нулю.

Так как полная мощность равна сумме активной и реактивной энергий, то с учётом фазового сдвига для цепи переменного тока, содержащей активное сопротивление R и реактивное L, C, она будет равна: S = u*i = Um*Im*sin w*t*sin (w*t- φ). Раскрыв скобки и заменив мгновенные величины на действующие, получится: S =U*I*cos φ — U*I*cosφ*cos2w*t-U*i*sinφ*sin2w*t. Полная мощность состоит из сумм мгновенной активной мощности P = U*I*cosφ — U*I*cosφ*cos2w*t и мгновенной реактивной Q = -U*i*sinφ*sin2w*t. Отрицательное значение возникает из-за сдвига фаз, приводящего в определённый момент времени к противофазе. Итоговые же значения для цепи переменного тока будут равны P = U*I*cosφ и Q = U*I*sinφ.

В электротехнике существует такое понятие, как треугольник мощности. Представляет он собой прямоугольную геометрическую фигуру, катетами которой являются Q и P, а гипотенузой S. Угол между катетом и гипотенузой обозначается φ. Исходя из того, мощность равна:

  • активная — P = Z*I2;
  • реактивная — Q = X*I2;
  • полная — S = R*I.

Применив теорему Пифагора, получится формула для нахождения полной мощности S = (P 2 + Q 2)½.

Измерение электрической энергии

Исходя из выражения P= U*I можно сделать вывод, что энергию можно измерить с помощью приборов, предназначенных для замера напряжения и тока. Понадобится, используя амперметр и вольтметр, получить данные, а после, подставив их в формулу, рассчитать значение мощности. Суть измерения заключается в том, что одновременно в цепь параллельно подключается вольтметр, а в разрыв цепи амперметр. Такой метод называется косвенным, а использование двух приборов снижает точность полученного результата.

Поэтому были разработаны специальные тестеры, предназначенные для прямого измерения энергии — ваттметры. Такого рода измерители могут использоваться в однофазных цепях как постоянного, так и переменного тока. Но при этом ваттметры разделяются на две категории:

  1. Цифровые — в основе их схемотехники используется микропроцессорный блок, анализирующий полученный сигнал и по сложным алгоритмам вычисляющий результат, который выводится на экран прибора в цифровом виде. Их погрешность измерения составляет не более 0,1.
  2. Аналоговые — использующие в работе электродинамические и ферродинамические измерительные головки. Выполняются они в виде катушек, отклоняющих стрелку. Шкала отклонения проградуирована в ваттах. В зависимости от влияния поля, стрелка отклоняется на измеренную величину. Первого типа устройства имеют класс точности около 0,1−0,5, а второго — 1,5−2.

Аналоговые приборы практически уже мало где используются, в основном для нахождения мощности устройств, подключённых к промышленной сети с частотой 50 Гц. На постоянном токе их результаты посредственные, так как на измерительные катушки влияет гистерезис сердечников (эффект насыщения).

Отдельную подгруппу тестеров составляют варметры. Это специальные измерители, предназначенные для вычисления реактивной мощности. А также для косвенного метода используется электроизмерительный прибор, получивший название фазометр. С помощью его можно найти угол сдвига фаз сигнала, то есть фактически определить коэффициент мощности.

Пример расчёта

Необходимо рассчитать параметр двигателя, подключённого к трёхфазной сети. Номинальное напряжение его работы (Uн) составляет 0,25 кВ. Паспортная мощность (Pн) равняется 5 кВт, а коэффициент мощности (cos φ) 0,6. КПД двигателя (ηн) 0,93.

Полная расчётная мощность определяется по формуле: S = Pн/cosφ* ηн. Если подставить в неё исходные значения, то получится: S = 5/0,6*0,93 = 8,9 кВ*А. Активная энергия P находится с помощью выражения P = Pн/ ηн и равна 5,37 кВт. При желании можно вычислить и ток. Для трёхфазной сети он будет: I = S / *Uн = 8,9/ *0,25 = 20,6 А.

Таким образом, мощность в цепи постоянного тока может быть только активной, зависящей от тока и напряжения. Но для цепи изменяемого тока она складывается из двух частей — активной и реактивной. Причём активная энергия характеризуется полезной работой, а реактивная — паразитной, снижающей КПД.

rusenergetics.ru

Формула мощности тока в физике

Электрический ток, на каком угодно участке цепи совершает некоторую работу (А). Допустим, что у нас есть произвольный участок цепи (рис.1) между концами которого имеется напряжение U.

Работа, которая выполняется при перемещении заряда равного 1 Кл между точками A и B (рис.1) будет равна U. В том случае, если через проводник протекает ток силой I за время равное по указанному выше участку пройдет заряд (q) равный:

Следовательно, работа, которую совершает электрический ток на данном участке, равна:

Надо отметить, что выражение (2) является справедливым при I=const для любого участка цепи (в таком участке могут содержаться проводники 1–го и 2–го рода).

Определение и формула мощности тока

Определение

Мощность тока – есть работа тока в единицу времени:

Формулой для вычисления мощности можно считать выражение:

В том случае, если участок цепи содержит источник тока, то формулу мощности можно представить в виде:

где – разность потенциалов, – ЭДС источника, который включен в цепь.

Выражение (5) является интегральной записью. Это выражение можно представить в дифференциальной форме, если использовать понятие удельной мощности ( – мощность, развиваемая током в единице объема проводника):

где j – плотность тока, – удельное сопротивление.

Единицы измерения мощности тока

Основной единицей измерения мощности тока (как и мощности вообще) в систе

www.webmath.ru

Зависимость мощности от силы тока, формула мощности, физический смысл

Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил, что предметы при трении притягиваются. Одноименный термин был введен в начале 17-го века английским физиком Гилбертом, после опытов, проведенных с магнитами. Отцом же науки об электричестве считается французский ученый Кулон – именно после открытия закона, получившего его имя, электротехника начала свою победную поступь, которая продолжается до сих пор. Этот закон утверждает, что два точечных заряда в безвоздушной среде взаимодействуют с силой, прямо пропорциональной их модулям и обратно – расстоянию между ними, возведенному в квадрат.

Выясним, что же представляет собой понятие электричество?

Если коротко, то это – направленное движение потока заряженных частиц. Тела, через которые они проходят, называются проводниками. Каждый проводник имеет определенное сопротивление электрическому току, которое раз

И, перед тем, как перейти к основным законам, несколько слов о заряженных частицах: они бывают, условно говоря, положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные – притягиваются.

А теперь, перейдем к главному.

Основа-основ науки об электричестве – закон Ома.

Эксперимент, который провел этот немецкий физик, привел его к следующему убеждению: сила тока I, проходящего через металлический проводник, пропорциональна напряжению на его концах, или I = U/R

Здесь напряжением называется разность, образно говоря, «давлений», созданных двумя точками электрической цепи. Измеряют его в вольтах. Электрический ток представляет собой число электронов, которые пропускает участок электрической цепи и измеряется в амперах. Сопротивлением считается свойство цепи помешать этому движению. В честь упомянутого физика, его измеряют в омах. Иначе говоря, проводник, через который проходит ток в 1 ампер при напряжении в 1 вольт, обладает сопротивлением в 1 ом.

Вся остальная электротехника «пляшет» от этого.

О мощности электрического тока

В физике мощностью считают скорость выполнения работы. Неважно, какой. Чем эта операция проводится быстрее, тем большей считается мощность того, кто ее исполняет, будь то человек, механическое устройство или что-то еще.

Так же и в случае с электрическим током: ее мощность представляет собой отношение работы, произведенной движущимися электрическими зарядами к промежутку времени, которое для этого понадобилось.

Проще говоря, для того, чтобы получить электрическую мощность в 1 ватт, когда источник тока имеет напряжение 1 вольт, необходимо пропустить через проводник ток в 1 ампер. Другими словами, мощность (P) можно посчитать, перемножив друг на друга электрическое напряжение и ток:

P = U*I.

Запомнив эту нехитрую формулу, на практике можно рассчитать мощность. Например, если известны значения тока и сопротивления, а о напряжении сведений нет, можем воспользоваться законом Ома, подставив в формулу вместо него I*R. Получится, что мощность равна квадрату электрического тока, помноженному на сопротивление.

Этот закон точно так же придет на помощь, если известны величины напряжения и сопротивления. В этом случае подставив вместо значения тока I = U/R, получим значение мощности, равное квадрату напряжения, поделенному на сопротивление.

Вот так – ничего сложного!

pue8.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о