Схема ветров – Wind, Rain and Temperature Maps

Ветер — Википедия

Скорость ветра
v→=dr→dt{\displaystyle {\vec {v}}={\frac {\mathrm {d} {\vec {r}}}{\mathrm {d} t}}}
Размерность LT−1
СИ м/с
СГС см/с
Вектор

Ве́тер — поток воздуха, который движется около земной поверхности. На Земле ветер представляет собой движущийся преимущественно в горизонтальном направлении поток воздуха, на других планетах — поток свойственных им атмосферных газов. В Солнечной системе сильнейшие ветры наблюдаются на Нептуне и Сатурне. Солнечный ветер представляет собой поток разрежённых газов от звезды, а планетарный ветер — поток газов, отвечающий за дегазацию планетарной атмосферы в космическое пространство. Ветры, как правило, классифицируют по масштабам, скорости, видам сил, которые их вызывают, местам распространения и воздействию на окружающую среду.

В первую очередь ветры классифицируют по их силе, продолжительности и направлению. Так, порывами принято считать кратковременные (несколько секунд) и сильные перемещения воздуха. Сильные ветры средней продолжительности (примерно 1 мин) называют шквалами. Названия более продолжительных ветров зависят от силы, например, такими названиями являются бриз, буря, шторм, ураган, тайфун. Продолжительность ветра также сильно варьируется: некоторые грозы могут длиться несколько минут; бриз, зависящий от особенностей рельефа, а именно от разницы нагрева его элементов, — несколько часов; продолжительность глобальных ветров, вызванных сезонными изменениями температуры, — муссонов — составляет несколько месяцев, тогда как глобальные ветры, вызванные разницей в температуре на разных широтах и силой Кориолиса, — пассаты — дуют постоянно. Муссоны и пассаты являются ветрами, из которых слагается общая и местная циркуляция атмосферы.

Ветры всегда влияли на человеческую цивилизацию. Они порождали мифологические представления, в определённой мере определяли некоторые[какие?]исторические действия, диапазон торговли, культурное развитие и войны, поставляли энергию для разнообразных механизмов производства энергии, создавали возможности для ряда форм отдыха. Благодаря парусным суднам, которые двигались за счёт ветра, люди получили возможность преодолевать большие расстояния по морям и океанам. Воздушные шары, также движимые с использованием силы ветра, впервые позволили отправляться в воздушные путешествия, а современные летательные аппараты используют ветер для увеличения подъемной силы и экономии топлива. Однако ветры бывают и небезопасны: так, их градиентные колебания могут вызвать потерю контроля над самолётом; быстрые ветры, а также вызванные ими большие волны на крупных водоемах часто приводят к разрушению искусственных построек, а в некоторых случаях ветры увеличивают масштабы пожара.

Ветры оказывают воздействие и на формирование рельефа, вызывая аккумуляцию эоловых отложений, формирующих различные виды грунтов. Они могут переносить пески и пыль из пустынь на большие расстояния. Ветры разносят семена растений и помогают передвижению летающих животных, что приводит к расширению разнообразия видов на новой территории. Связанные с ветром явления разнообразными способами влияют на живую природу.

Ветер возникает в результате неравномерного распределения атмосферного давления, он направлен от зоны высокого давления к зоне низкого давления. Вследствие непрерывного изменения давления во времени и пространстве скорость и направление ветра также постоянно меняются. С высотой скорость ветра изменяется ввиду убывания силы трения.

Для визуальной оценки скорости ветра служит шкала Бофорта. В метеорологии направление ветра указывается азимутом точки, откуда дует ветер, тогда как в аэронавигации[1] — азимутом точки, куда он дует; таким образом, значения различаются на 180°. По результатам многолетних наблюдений за направлением и силой ветра составляют график, изображаемый в виде так называемой розы ветров, отображающей режим ветра в конкретной местности.

В ряде случаев важно не направление ветра, а положение объекта относительно него. Так, при охоте на животное с острым нюхом к нему подходят с подветренной стороны[2] — во избежание распространения запаха от охотника в сторону животного.

Вертикальное движение воздуха называют восходящим или нисходящим потоком.

Общие закономерности[править | править код]

Ветер вызван разницей в давлении между двумя разными воздушными областями. Если существует ненулевой барический градиент, то ветер движется с ускорением от зоны высокого давления в зону с низким давлением. На планете, которая вращается, к этому градиенту прибавляется сила Кориолиса. Таким образом, главными факторами, которые образуют циркуляцию атмосферы в глобальном масштабе, является разница в нагреве воздуха между экваториальными и полярными районами (которая вызывает различие в температуре и, соответственно, плотности потоков воздуха, а следовательно, и разницу в давлении) и сила Кориолиса. В результате действия этих факторов движение воздуха в средних широтах в приповерхностной области приводит к образованию геострофического ветра, направленного практически параллельно изобарам

[3].

Важным фактором, который говорит о перемещениях воздуха, является его трение о поверхность, которая задерживает это движение и заставляет воздух двигаться в сторону зон с низким давлением[4]. Кроме того, локальные барьеры и локальные градиенты температуры поверхности способны создавать местные ветры. Разница между реальным и геострофическим ветром называется агеострофическим ветром. Он отвечает за создание хаотичных вихревых процессов, таких как циклоны и антициклоны[5]

. В то время как направление приповерхностных ветров в тропических и полярных районах определяется преимущественно эффектами глобальной циркуляции атмосферы, которые в умеренных широтах обычно слабы, циклоны вместе с антициклонами заменяют друг друга и изменяют своё направление каждые несколько дней.

Глобальные эффекты ветрообразования[править | править код]

Карта пассатов и западных ветров умеренного пояса

В большинстве районов Земли преобладают ветры, дующие в определённом направлении. Возле полюсов обычно доминируют восточные ветры, в умеренных широтах — западные, тогда как в тропиках снова доминируют восточные ветры. На границах между этими поясами — полярном фронте и субтропическом хребте — находятся зоны затишья, где преобладающие ветры практически отсутствуют. В этих зонах движение воздуха преимущественно вертикальное, из-за чего возникают зоны высокой влажности (вблизи полярного фронта) или пустынь (вблизи субтропического хребта)[6].

Тропические ветры[править | править код]
Циркуляционные процессы Земли, которые приводят к ветрообразованию.

Пассатами называется приповерхностная часть ячейки Хадли — преобладающие приповерхностные ветры, дующие в тропических районах Земли в западном направлении, приближаясь к экватору

[7], то есть северо-восточные ветры в Северном полушарии и юго-восточные — в Южном[8]. Постоянное движение пассатов приводит к перемешиванию воздушных масс Земли, что может проявляться в очень больших масштабах: например, пассаты, дующие над Атлантическим океаном, способны переносить пыль из африканских пустынь до Вест-Индии и некоторых районов Северной Америки[9].

Муссоны — преобладающие сезонные ветры, ежегодно в течение нескольких месяцев дующие в тропических районах. Термин возник на территории Британской Индии и окрестных стран как название сезонных ветров, которые дуют с Индийского океана и Аравийского моря на северо-восток, принося в регион значительное количество осадков[10]. Их движение по направлению к полюсам вызвано образованием районов низкого давления в результате нагрева тропических районов в летние месяцы, то есть в Азии, Африке и Северной Америке с мая по июль, а в Австралии — в декабре[11][12].

Пассаты и муссоны — главные факторы, приводящие к образованию тропических циклонов над океанами Земли

[13].

Западные ветры умеренного пояса[править | править код]

В умеренных широтах, то есть между 35 и 65 градусами северной и южной широты, преобладают западные ветры[14][15], приповерхностная часть ячейки Феррела, это юго-западные ветры в Северном полушарии и северо-западные в Южном полушарии[8]. Это самые сильные ветры зимой, когда давление у полюсов ниже всего, и самые слабые летом[16]. Вместе с пассатами преобладающие западные ветры позволяют парусным судам пересекать океаны. Кроме того, вследствие усиления этих ветров у западных побережий океанов обоих полушарий в этих районах формируются сильные океанские течения[17][18][19], переносящие тёплые тропические воды по направлению к полюсам. Преобладающие западные ветры в целом сильнее в Южном полушарии, где меньше суши, которая задерживает ветер, и особенно сильны в полосе «ревущих сороковых» (между 40-м и 50-м градусами южной широты)[20].

Восточные ветры полярных районов[править | править код]

Восточные ветры полярных районов, приповерхностная часть полярных ячеек, это преимущественно сухие ветры, дующие от приполярных зон высокого давления к районам низкого давления вдоль полярного фронта. Эти ветры обычно слабее и менее регулярные, чем западные ветры умеренных широт

[21]. Из-за малого количества солнечного тепла, воздух в полярных районах охлаждается и опускается вниз, образуя районы высокого давления и выталкивая приполярный воздух в направлении более низких широт[22]. Этот воздух в результате силы Кориолиса отклоняется на запад, образуя северо-восточные ветры в Северном полушарии и юго-восточные — в Южной.

Локальные эффекты ветрообразования[править | править код]

Важнейшие местные ветры на Земле

Локальные эффекты ветрообразования возникают в зависимости от наличия локальных географических объектов. Одним из таких эффектов является перепад температур между не очень отдалёнными участками, который может быть вызван различными коэффициентами поглощения солнечного света или разной теплоёмкостью поверхности. Последний эффект сильнее всего проявляется между сушей и водной поверхностью и вызывает бриз. Другим важным локальным фактором является наличие гор, которые выступают как барьер на пути ветров.

Морской и континентальный бриз[править | править код]
А: морской бриз (возникает в дневное время),
В: континентальный бриз (возникает ночью)

Важными эффектами образования преобладающих ветров в прибрежных районах является морской и континентальный бриз. Море (или другой большой водоем) нагревается медленнее суши из-за большей эффективной теплоемкости воды[23]. Теплый (и потому — легкий) воздух над сушей поднимается вверх, образуя зону низкого давления. В результате образуется перепад давления между сушей и морем, обычно составляющий около 0,002 атм. В результате этого перепада давления прохладный воздух над морем движется к суше, образуя прохладный морской бриз на побережье. При отсутствии сильных ветров скорость морского бриза пропорциональна разности температур. При наличии ветра с суши скоростью более 4 м/с морской бриз обычно не образуется.

Ночью, из-за меньшей теплоемкости, суша охлаждается быстрее, чем море, и морской бриз прекращается. Когда же температура суши опускается ниже температуры поверхности водоёма, то возникает обратный перепад давления, вызывая (в случае отсутствия сильного ветра с моря) континентальный бриз, дующий с суши на море

[24].

Влияние гор[править | править код]

Горы имеют очень разнообразное влияние на ветер, они или вызывают ветрообразование, или же выступают как барьер для его прохождения. Над взгорьями воздух прогревается сильнее, чем воздух на такой же высоте над низменностями; это создаёт зоны низкого давления над горами[25][26] и приводит к ветрообразованию. Данный эффект часто приводит к образованию горно-долинных ветров — преобладающих ветров в районах с пересечённой местностью. Увеличение трения у поверхности долин ведёт к отклонению ветра, дующего параллельно долине, от поверхности на высоту окружающих гор, что приводит к образованию высотного струйного течения. Высотное струйное течение может превышать окружающий ветер по скорости на величину до 45 %[27]. Обход гор может также изменять направление ветра[28].

Перепад высоты гор существенно влияет на движение ветра. Так, если в горном хребте, который преодолевает ветер, есть перевал, ветер проходит его с увеличением скорости в результате эффекта Бернулли. Даже небольшие перепады высоты вызывают колебания в скорости ветра. В результате значительного градиента скорости движения воздух становится турбулентным и остается таковым на определённом расстоянии даже на равнине за горой. Подобные эффекты важны, например, для самолётов, взлетающих или садящихся на горных аэродромах

[28]. Быстрые холодные ветры, дующие сквозь горные проходы, получили разнообразные местные названия. В Центральной Америке это папагайо вблизи озера Никарагуа, панамский ветер на Панамском перешейке и теуано на перешейке Теуантепек. Подобные ветры в Европе известны как бора, трамонтана и мистраль.

Другой эффект, связанный с прохождением ветра над горами, — подветренные волны (стоячие волны движения воздуха, возникающие позади высокой горы), которые часто приводят к образованию лентикулярных облаков. В результате этого и других эффектов прохождения ветра через препятствия над пересечённой местностью возникают многочисленные вертикальные течения и вихри. Кроме того, на наветренных склонах гор выпадают обильные осадки, обусловленные адиабатным охлаждением воздуха, поднимающегося вверх, и конденсацией в нём влаги. С подветренной стороны, наоборот, воздух становится сухим, что вызывает образование дождливого сумрака. Вследствие этого, в районах, где преобладающие ветры преодолевают горы, с наветренной стороны доминирует влажный климат, а с подветренной — засушливый[29]. Ветры, дующие с гор в низшие районы, называются нисходящими ветрами. Эти ветры теплые и сухие. Они также имеют многочисленные местные названия. Так, нисходящие ветры, спускающихся с Альп в Европе, известные как фён, этот термин иногда распространяют и на другие районы. В Польше и Словакии нисходящие ветры известны как гальни (halny), в Аргентине — зонда, на острове Ява — коембанг (koembang), в Новой Зеландии — «норвест арк» (Nor’west arch)[30]. На Великих Равнинах в США они известны как чинук, а в Калифорнии — Санта-Ана и сандаунер. Скорость нисходящего ветра может превышать 45 м/с[31].

Кратковременные процессы ветрообразования[править | править код]

К формированию ветров приводят также и кратковременные процессы, которые, в отличие от преобладающих ветров, не являются регулярными, а происходят хаотически, часто в течение определённого сезона. Такими процессами является образование циклонов, антициклонов и подобных им явлений меньшего масштаба, в частности гроз.

Циклонами и антициклонами называют области низкого или, соответственно, высокого атмосферного давления, обычно такие, которые возникают на пространстве размером свыше нескольких километров. На Земле они образуются над большей частью поверхности и характеризуются типичной для них циркуляционной структурой. Из-за влияния силы Кориолиса в Северном полушарии движение воздуха вокруг циклона вращается против часовой стрелки, а вокруг антициклона — по часовой стрелке. В Южном полушарии направление движения обратное. При наличии трения о поверхность появляется компонента движения к центру или от центра, в результате воздух движется по спирали к области низкого или от области высокого давления.

Внетропический циклон[править | править код]

Циклоны, которые формируются за пределами тропического пояса, известны как внетропические. Из двух типов крупномасштабных циклонов они больше по размеру (классифицируются как синоптические циклоны), наиболее распространены и встречаются на большей части земной поверхности. Именно этот класс циклонов в наибольшей степени отвечает за изменения погоды день за днём, а их предсказание является главной целью современных прогнозов погоды.

Согласно классической (или норвежской) модели Бергенской школы, внетропические циклоны формируются преимущественно вблизи полярного фронта в зонах особенно сильного высотного струйного течения и получают энергию за счёт значительного температурного градиента в этом районе. В процессе формирования циклона стационарный атмосферный фронт разрывается на участки теплого и холодного фронтов, движущихся друг к другу с формированием фронта окклюзии и закручиванием циклона. Подобная картина возникает и по более поздней модели Шапиро-Кейзера, основанной на наблюдении океанских циклонов, за исключением длительного движения теплого фронта перпендикулярно к холодному без образования фронта окклюзии.

После формирования циклон обычно существует несколько дней. За это время он успевает продвинуться на расстояние от нескольких сотен до нескольких тысяч километров, вызывая резкие смены ветров и осадков в некоторых районах своей структуры.

Хотя большие внетропические циклоны обычно ассоциированы с фронтами, меньшие по размеру циклоны могут образовываться в пределах сравнительно однородной воздушной массы. Типичным примером являются циклоны, которые формируются в потоках полярного воздуха в начале формирования фронтального циклона. Эти небольшие циклоны имеют название полярных и часто возникают над приполярными районами океанов. Другие небольшие циклоны возникают на подветренной стороне гор под действием западных ветров умеренных широт[32].

Тропические циклоны[править | править код]
Схема тропического циклона[33]

Циклоны, которые образуются в тропическом поясе, несколько меньше внетропических (они классифицируются как мезоциклоны) и имеют другой механизм происхождения. Эти циклоны питаются энергией, получаемой за счёт подъёма вверх теплого влажного воздуха и могут существовать исключительно над теплыми районами океанов, из-за которых имеют название циклонов с теплым ядром (в отличие от внетропических циклонов с холодным ядром). Тропические циклоны характеризуются очень сильным ветром и значительным количеством осадков. Они развиваются и набирают силу над поверхностью воды, но быстро теряют её над сушей, из-за чего их разрушительный эффект обычно проявляется лишь на побережье (до 40 км вглубь суши).

Для образования тропического циклона необходим участок очень теплой водной поверхности, нагрев воздуха над которой приводит к снижению атмосферного давления минимум на 2,5 мм рт. ст. Влажный теплый воздух поднимается вверх, но из-за его адиабатического охлаждения значительное количество удерживаемой влаги конденсируется на больших высотах и выпадает в виде дождя. Более сухой и соответственно более плотный воздух, только что освободившийся от влаги, опускается вниз, формируя зоны повышенного давления вокруг ядра циклона. Этот процесс имеет положительную обратную связь, вследствие чего, пока циклон находится над довольно теплой водной поверхностью, что поддерживает конвекцию, он продолжает усиливаться. Хотя чаще всего тропические циклоны образуются в тропиках, иногда признаки тропического циклона приобретают циклоны другого типа на поздних этапах существования, как это случается с субтропическими циклонами.

Антициклоны[править | править код]

В отличие от циклонов, антициклоны обычно больше циклонов и характеризуются невысокой метеорологической активностью и слабыми ветрами. Чаще всего антициклоны формируются в зонах холодного воздуха сзади проходящего циклона. Такие антициклоны называют холодными, но с их ростом к циклону опускается воздух из более высоких слоев атмосферы (2-5 км), что приводит к повышению температуры и образованию теплого антициклона. Антициклоны двигаются довольно медленно, часто собираются в полосе антициклонов вблизи субтропического хребта, хотя многие из них остаются в зоне западных ветров умеренных широт. Такие антициклоны обычно задерживают ветры и поэтому имеют название блокирующих антициклонов[32].

Радарный профайлер ветра

Направление ветра в метеорологии определяется как направление, откуда дует ветер[34], тогда как в аэронавигации[1] — куда дует: таким образом значения различаются на 180°. Самым простым прибором для установления направления ветра является флюгер[35]. Ветроуказатели, установленные в аэропортах, способны, кроме направления, примерно показывать скорость ветра, в зависимости от которой изменяется наклон прибора[36].

Типичными приборами, предназначенными непосредственно для измерения скорости ветра, служат разнообразные анемометры, в которых применяются способные вращаться чаши или пропеллеры. Для измерения с большей точностью, в частности для научных исследований, используют измерения скорости звука либо измерения скорости охлаждения нагретой проволоки или мембраны под действием ветра[37]. Другим распространённым типом анемометров является трубка Пито: в нём измеряют разницу динамического давления между двумя концентрическими трубками под действием ветра; широко используют в авиационной технике[38].

Скорость ветра на метеорологических станциях большинства стран мира обычно измеряют на высоте 10 м и усредняют за 10 минут. Исключение составляют США, где скорость усредняют за 1 минуту[39], и Индия, где её усредняют за 3 минуты[40]. Период усреднения имеет важное значение, поскольку, например, скорость постоянного ветра, измеренная за 1 минуту, обычно на 14 % выше значения, измеренного за 10 минут[41]. Короткие периоды быстрого ветра исследуют отдельно, а периоды, за которые скорость ветра превышает усреднённую за 10 минут скорость как минимум на 10 узлов (5.14 м/с), называются порывами. Шквалом называется удвоение скорости ветра, сильнее определённого порога, который длится минуту или больше.

Для исследования скорости ветров во многих точках используют зонды, при этом скорость определяют с помощью ГЛОНАСС или GPS, радионавигации или слежения за зондом с применением радара[42] или теодолита[43]. Кроме того, могут использоваться содары, доплеровские лидары и радары, способные измерять доплеровский сдвиг электромагнитного излучения, отражённого или рассеянного аэрозольными частицами или даже молекулами воздуха. В дополнение радиометры и радары используют для измерения неровностей водной поверхности, хорошо отражающих приповерхностную скорость ветра над океаном. С помощью съёмки движения облаков с геостационарных спутников можно установить скорость ветра на больших высотах.

Средние скорости ветров и их изображения[править | править код]

Типичным способом представления данных по ветрам служат атласы и карты ветров. Эти атласы обычно составляются для климатологических исследований и могут содержать информацию как о средней скорости, так и об относительной частоте ветров каждой скорости в регионе. Обычно атлас содержит средние за час данные, измеренные на высоте 10 м и усреднённые за десятки лет. Для отдельных потребностей используются и другие стандарты составления карт ветра. Так, для нужд ветроэнергетики измерения проводят на высоте более 10 м, обычно 30-100 м, и приводят данные в виде средней удельной мощности ветрового потока.

Максимальная скорость ветра[править | править код]

Наибольшая скорость порыва ветра на Земле (на стандартной высоте 10 м) была зарегистрирована автоматической метеорологической станцией на австралийском острове Барроу во время циклона Оливия[en] 10 апреля 1996 года. Она составляла 113 м/с (408 км/ч)[44]. Второе по величине значение скорости порыва ветра составляет 103 м/с (371 км/ч). Оно было зарегистрировано 12 апреля 1934 года в обсерватории на горе Вашингтон в Нью-Гемпшире[45][46]. Над морем Содружества дуют самые быстрые постоянные ветры — 320 км/ч. Скорости могут быть большими во время таких явлений, как смерч, но их точное измерение очень тяжело и надежных данных для них не существует. Для классификации смерчей и торнадо по скорости ветра и разрушительной силе применяют Шкалу Фудзиты. Рекорд для скорости ветра на равнинной местности был зафиксирован 8 марта 1972 года на военно-воздушной базе США в Туле, Гренландия — 333 км/ч. Самые сильные ветры, дующие с постоянной скоростью, наблюдались на земле Адели, Антарктида. Скорость — около 87 м/с. Была зарегистрирована белорусским полярником Алексеем Гайдашовым.

Градиент скорости ветра[править | править код]

Годографический график вектора скорости ветра на разных высотах, который применяется для определения градиента ветра.

Градиентом ветра называют разницу в скорости ветра на небольшом масштабе, чаще всего в направлении, перпендикулярном его движению[47]. Градиент ветра разделяют на вертикальную и горизонтальную компоненты, из которых горизонтальная имеет заметно отличные от нуля значения вдоль атмосферных фронтов и у побережья[48], а вертикальная — в пограничном слое у поверхности земли[49], хотя зоны значительного градиента ветра разных направлений также случаются в высоких слоях атмосферы вдоль высотных токовых течений[50]. Градиент ветра является микрометеорологическим явлением, что имеет значение лишь на небольших расстояниях, однако он может быть связан с погодными явлениями мезо- и синоптической метеорологии, такими как линия шквала или атмосферные фронты. Значительные градиенты ветра часто наблюдаются у обусловленных грозами микропорывов[51], в районах сильных локальных приповерхностных ветров — низкоуровневых струйных потоков, возле гор[52], зданий[53], ветровых турбин[54] и судов[55].

Градиент ветра имеет значительное влияние на посадку и взлёт летательных аппаратов: с одной стороны, он может помочь сократить расстояние разбега самолёта, а с другой — усложняет контроль над аппаратом[56]. Градиент ветра является причиной значительного количества аварий летательных аппаратов[51].

Градиент ветра также влияет на распространение звуковых волн в воздухе, способных отражаться от атмосферных фронтов и достигать мест, которых иначе они бы не достигли (или наоборот)[57]. Сильные градиенты ветра препятствуют развитию тропических циклонов[58], но увеличивают продолжительность отдельных гроз[59]. Особая форма градиента ветра — термический ветер — приводит к образованию высотных струйных течений[60].

Классификация по силе ветров[править | править код]

Поскольку влияние ветра на человека зависит от скорости потока воздуха, эта характеристика была положена в основу первых классификаций ветра. Наиболее распространённой из таких классификаций является Шкала силы ветра Бофорта, представляющая собой эмпирическое описание силы ветра в зависимости от наблюдаемых условий моря. Сначала шкала была 13-уровневой, но начиная с 1940-х годов она была расширена до 18 уровней[61]. Для описания каждого уровня эта шкала в оригинальном виде использовала термины разговорного английского языка, такие как breeze, gale, storm, hurricane[62], которые были заменены также разговорными терминами других языков, такими как «штиль», «шторм» и «ураган» на русском. Так, по шкале Бофорта шторм соответствует скорости ветра (усреднённой за 10 минут и округлённой до целого числа узлов) от 41 до 63 узлов (20,8-32,7 м/с), при этом этот диапазон делится на три подкатегории с помощью прилагательных «сильный» и «жестокий».

Терминология тропических циклонов не имеет универсальной общепринятой шкалы и варьирует в зависимости от региона. Общей чертой является, однако, использование максимального постоянного ветра, то есть усреднённой скорости ветра за определённый промежуток времени, для причисления ветра к определённой категории. Ниже приведён краткий отчёт таких классификаций, используемых различными региональными специализированными метеорологическими центрами и другими центрами предупреждения о тропических циклонах:

Классификация ветров по силе
Общая Тропических циклонов
Шкала Бофорта[61] Скорость в узлах (средняя за 10 минут, округлённая до целых) Общее название[63] Сев. Индийский океан
IMD
Ю-З Индийский океан
MF
Австралия
BOM
Ю-З Тихий океан
FMS
С-З Тихий океан
JMA
С-З Тихий океан
JTWC
С-В Тихий и Сев. Атлантический океаны
NHC и CPHC
0 <1 Штиль Депрессия Тропические волнения Тропическое понижение Тропическая депрессия Тропическая депрессия Тропическая депрессия Тропическая депрессия
1 1-3 Тихий
2 4-6 Лёгкий
3 7-10 Слабый
4 11-16 Умеренный
5 17-21 Свежий
6 22-27 Сильный
7 28-29 Крепкий Глубокая депрессия Тропическая депрессия
30-33
8 34-40 Очень крепкий Циклонный шторм Умеренный тропический шторм

ru.wikipedia.org

Схема возникновения ветра рисунок 3 класс окружающий мир

Нарисовать схему возникновения воздуха совсем не сложно, главное что-бы ребенок понимал, что именно происходит на рисунке. Теплый воздух легче холодного, поэтому он подымается вверх, а холодный следовательно опускается вниз. Эта циркуляция происходит постоянно, из-за нагрева воздуха днем и охлаждения его ночью. Разная температура является причиной разной плотности воздуха, что приводит к ветру. Для более наглядного пояснения рассмотрите со своим ребенком схемы, нарисованные учениками 3 класса.

Температура воздуха зависит от нагрева земной поверхности.

Возникновение ветра.

Плотность частиц в нагретом и охлажденном воздухе.

Схема воздушных потоков.

Схематический рисунок.

Образование бриза.

Детские рисунки.

Разница в давлении — причина образования ветра.

Воздух — невидимка.

Свойства. Без запаха, бесцветен, упругий, легче воды, всегда движется.

Состоит из углекислого газа, кислорода и азота.

Как образуется ветер?

Частицы при нагревании и охлаждении.

Возникновение.

pickimage.ru

Карта ветров online. Ветры в реальном времени

Автор: Алина Кузнецова

Владеть информацией во все времена было признаком хорошего вкуса. Пришло время и вам быть владельцем полезных данных. Здесь и сейчас вы имеете возможность узнать о перемещениях воздушных масс на мировой карте. Все это вы можете наблюдать в реальном времени, то есть online. 

Вашему вниманию уникальная в своем роде карта ветров онлайн, которая отображает не только направления ветров и много дополнительной информации, которую вы найдете, используя навигацию в рабочей области карты. Направление ветра может пригодится для тех, кто планирует какое-либо путешествие или обычную прогулку. Особенно полезной эта информация будет для тех, кто выходит в плавание, выезжает на рыбалку, а также для спортсменов, которые преодолевают большие расстояния. Чем бы вы не занимались, вам всегда будет полезно знать, куда будет сегодня ветер в вашем регионе.

Данная карта отображает не только направление ветров на климатической карте, но и предоставляет данные о водных массах (приятный бонус для особо любознательных). Здесь присутствует любая страна, можно смотреть карту ветров России, Украины, Германии, у нас можно найти даже карту для Японии и США. Карта ветра предоставляется в реальном времени, поэтому вы смело можете использовать это для планирования своего досуга, работы или просто похвастаться перед кем-то. Направление ветров на этой карте очень легко проследить из-за удобной анимации.

Также вы можете следить за другими мониторами на нашем сайте, среди которых магнитные бури, солнечная активность, карта ураганов, карта полетов и даже Луна в реальном времени. Будьте в курсе самых свежих событий вместе с нами, заходите в гости еще и следите не только за картой ветров.



Опубликовано в Другие полезные статьи

Добавить комментарий

www.vigivanie.com

Глобальная онлайн карта ветров — NENCOM

Неверо­ятно кра­си­вая интер­ак­тив­ная карта ветров и оке­а­ни­че­ских тече­ний мира в реаль­ном вре­мени, с воз­мож­но­стью про­смотра архива и про­гноза на несколько дней вперед. Имеет раз­лич­ные режимы визу­а­ли­за­ции и ана­лиза (при­меры в конце статьи).

Слабые потоки воз­духа отоб­ра­жа­ются на карте голу­быми нитями. По мере уси­ле­ния ветра они ста­но­вятся зеле­ными, жел­тыми, крас­ными, фио­ле­то­выми и белыми, в соот­вет­ствии с этой шкалой:

Просмотр ветров и погоды в реаль­ном вре­мени

Вы можете пово­ра­чи­вать изоб­ра­же­ние пла­неты и уве­ли­чи­вать нужные участки, а при нажа­тии на опре­де­лен­ную точку на карте можно узнать ско­рость и направ­ле­ние ветра в данном реги­оне:

Поясне­ние к настрой­кам

Нажав на слово earth в нижнем левом углу карты, вы перей­дете в пол­но­экран­ный режим на офи­ци­аль­ном сайте про­екта. После этого вы смо­жете зайти в меню и поме­нять режимы отоб­ра­же­ния: потоки ветра на раз­лич­ных высо­тах, оке­а­ни­че­ские тече­ния, волны, тем­пе­ра­туру воды и воз­духа, загряз­не­ние атмо­сферы и многое другое. Кликнув на кон­крет­ное место карты вы уви­дите коор­ди­наты мест­но­сти и чис­ло­вые зна­че­ния пара­мет­ров. Единицы изме­ре­ния в боль­шин­стве слу­чаев можно менять, нажи­мая на них. Далее мы коротко опишем пред­на­зна­че­ние раз­лич­ных пунк­тов меню.

Date | Здесь отоб­ра­жа­ются дата и время, соот­вет­ству­ю­щие изоб­ра­же­нию на карте. По умол­ча­нию пока­зы­ва­ется локаль­ное время наблю­да­теля (Local), но вы можете пере­клю­читься на Всемир­ное коор­ди­ни­ро­ван­ное время (UTC). Основные данные обнов­ля­ются каждые 3 часа.

Data | Текущая визу­а­ли­за­ция на карте. По умол­ча­нию это Wind @ Surface, что озна­чает «ветер на поверх­но­сти».

Scale | Шкала соот­вет­ствия цвета на карте чис­ло­вым пара­мет­рам явле­ния. В данном случае мы видим шкалу ско­ро­сти ветра. При наве­де­нии ука­за­теля мыши на уча­сток шкалы можно уви­деть соот­вет­ству­ю­щее пока­за­ние ско­ро­сти.

Source | Перечис­лены источ­ники данных для кон­крет­ного режима карты.

Control | Управле­ние неко­то­рыми пара­мет­рами в такой после­до­ва­тель­но­сти:

  • Now — Сейчас
  • — Минус 1 день (архив данных)
  • — Минус 3 часа
  • >> — Плюс 3 часа
  • > — Плюс 1 день (про­гноз на несколько дней вперед)
  • Текущая пози­ция наблю­да­теля
  • Grid — Показать сетку на карте
  • Остано­вить ани­ма­цию
  • Запустить ани­ма­цию (по умол­ча­нию)

Mode | Режимы карты:

  • Air — Воздух
  • Ocean — Океан
  • Chem — Химиче­ские загряз­не­ния
  • Particulates — Твердые частицы

Height | Высота над уров­нем моря (для режима «Воздух»), выра­жена в гек­то­пас­ка­лях атмо­сфер­ного дав­ле­ния:

  • Sfc (Surface) — На поверх­но­сти пла­неты
  • 1 000 гПа (~100 м)
  • 850 гПа (~1 500 м)
  • 700 гПа (~3 500 м)
  • 500 гПа (~5 000 м)
  • 250 гПа (~10 500 м)
  • 70 гПа (~17 500 м)
  • 10 гПа (~26 500 м)

Overlay (Mode Air) | Дополни­тель­ная визу­а­ли­за­ция в режиме «Воздух»:

  • Wind — Скорость ветра, км/ч
  • Temp — Темпера­тура, °C
  • RH (Relative Humidity) — Относи­тель­ная влаж­ность, %
  • WPD (Instantaneous Wind Power Density) — Мгновен­ная плот­ность энер­гии ветра, в раз­ра­ботке
  • TPW (Total Precipitable Water) — Общее коли­че­ство воды в столбе воз­духа от земли до кос­моса, кг/м2
  • TCW (Total Cloud Water) — Количе­ство воды в обла­ках в столбе воз­духа от земли до кос­моса, кг/м2
  • MSLP (Mean Sea Level Pressure) — Атмосфер­ное дав­ле­ние на уровне моря, гПа
  • MI (Misery Index) — Воспри­я­тие жары и холода, °C по ощу­ще­ниям
  • None — Без допол­ни­тель­ной визу­а­ли­за­ции

Overlay (Mode Ocean) | Дополни­тель­ная визу­а­ли­за­ция в режиме «Океан»:

  • Currents — Течения
  • Waves — Волны
  • SST (Sea Surface Temp) — Темпера­тура поверх­но­сти океана
  • SSTA (Sea Surface Temp Anomaly) — Аномаль­ные откло­не­ния тем­пе­ра­туры океана от сред­не­днев­ной ста­ти­стики с 1981 по 2011 годы
  • HTSGW (Significant Wave Height) — Высота волн

Overlay (Mode Chem) | Дополни­тель­ная визу­а­ли­за­ция в режиме «Химиче­ские загряз­не­ния»:

  • COsc (CO Surface Concentration) — Концен­тра­ция угар­ного газа в нижнем слое атмо­сферы, ppbv (частей на мил­ли­ард по объему)
  • SO2sm (Sulfur Dioxide Surface Mass) — Концен­тра­ция диок­сида серы в нижнем слое атмо­сферы, μg/m3

CO (моно­ок­сид угле­рода, угар­ный газ) не имеет цвета и запаха, очень опасен для чело­века. При кон­цен­тра­ции в воз­духе более 0.1 % при­во­дит к смерти в тече­ние часа. SO2 (диок­сид серы) имеет запах заго­ра­ю­щейся спички. Основной загряз­ни­тель воз­духа, очень ток­си­чен, про­во­ци­рует кис­лот­ные дожди.

Overlay (Mode Particulates) | Дополни­тель­ная визу­а­ли­за­ция в режиме «Твердые частицы»:

  • DUex (Dust Extinction) — Поглоще­ние света пылью, τ
  • SO4ex (Sulfate Extinction) — Поглоще­ние света суль­фа­тами, τ

Projection | Различ­ные кар­то­гра­фи­че­ские про­ек­ции. По умол­ча­нию выбран режим «O» — Orthographic projection.

Примеры визу­а­ли­за­ций

Воздуш­ные потоки на высоте 10 кило­мет­ров. В ука­зан­ной точке (зеле­ный кружок на карте) ско­рость ветра дости­гает 270 км/ч.

Концен­тра­ция диок­сида серы в нижних слоях атмо­сферы. В ука­зан­ной точке (город Варна) содер­жа­ние SO2 на момент изме­ре­ния состав­ляет 7.15 μg/m3.

Темпера­тура воды в ука­зан­ной точке на поверх­но­сти океана состав­ляет 31.2 °C, а ско­рость тече­ния — 0.32 м/с.

Распре­де­ле­ние жары и холода по ощу­ще­ниям. Зависит от фак­ти­че­ской тем­пе­ра­туры воз­духа, влаж­но­сти и ветра. В ука­зан­ной точке тем­пе­ра­тура «по ощу­ще­ниям» состав­ляет 12.8 °C.

О про­екте Earth Wind Map

Автор про­екта: Камерон Беккарио

Сообще­ство: facebook.com/EarthWindMap

Подроб­ное опи­са­ние: earth.nullschool.net/about

Исходные коды: github.com/cambecc/earth

ru.nencom.com

Роза ветров — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 декабря 2018; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 декабря 2018; проверки требуют 2 правки. 16-лучевая роза ветров

Роза ветров — векторная диаграмма, характеризующая в метеорологии и климатологии режим ветра в данном месте по многолетним наблюдениям. Выглядит как многоугольник, у которого длины лучей, расходящихся от центра диаграммы в разных направлениях (румбах горизонта), пропорциональны повторяемости ветров этих направлений («откуда» дует ветер). Розу ветров учитывают при строительстве взлётно-посадочных полос аэродромов, автомобильных дорог, планировке населенных мест (целесообразной ориентации зданий и улиц), оценке взаимного расположения жилмассива и промзоны (с точки зрения направления переноса примесей от промзоны) и множества других хозяйственных задач (агрономия, лесное и парковое хозяйство, экология и др.).

Роза ветров, построенная по реальным данным наблюдений, позволяет по длине лучей построенного многоугольника выявить направление господствующего, или преобладающего ветра, со стороны которого чаще всего приходит воздушный поток в данную местность. Поэтому настоящая роза ветров, построенная на основании ряда наблюдений, может иметь существенные различия длин разных лучей.

То, что в геральдике традиционно называют «розой ветров» — с равномерным и регулярным распределением лучей по азимутам сторон света в данной точке (см. рисунок) — является распространённой метеорологической ошибкой; на самом деле это всего лишь географическое обозначение основных географических азимутов сторон горизонта в виде лучей.

Другие области использования символа[править | править код]

В геральдике розой ветров называют символ в виде стилизованной звезды. Он используется в эмблематике различных организаций: НАТО (четыре луча), ЦРУ США (16 лучей), Министерство по чрезвычайным ситуациям и Министерство транспорта РФ (8 лучей), а также на гербах городов и др.

  • 4-лучевая роза ветров

  • 8-лучевая роза ветров

  • 16-лучевая роза ветров

ru.wikipedia.org

География: Как образуется ветер

Ветер – это горизонтальное движение воздуха, возникающее из-за разности атмосферного давления и направленное из области высокого давления в область низкого давления.

Причина образования ветра – это неравномерное нагревание земной поверхности:
тёплый воздух поднимается вверх, а на его место приходит более тяжелый и плотный холодный воздух.

Ветер дует из области повышенного давления в область пониженного давления.

Чем больше разница в атмосферном давлении, тем больше скорость ветра.


Бриз – местный ветер на берегу крупного водоёма, меняющий свое направление два раза в сутки:

                                                                 Дневной бриз

Днём суша нагревается быстрее, чем вода, и над ней устанавливается более низкое атмосферное давление. Поэтому дневной бриз дует с водоёма (акватории) на нагретое побережье.

Ночной бриз

Ночью суша охлаждается быстрее, чем вода. Над водоёмом (акваторией) ночью образуется область низкого давления. Поэтому ночной бриз дует с охлажденного побережья на прогретую воду.

Как образуется бриз

Муссоны

Муссоны – (от араб. маусим — сезон), устойчивые ветры, направление которых резко меняется на противоположное (или близкое к противоположному) 2 раза в год:

 


• летом – с океана на сушу (обильные дожди, возможны наводнения)
• зимой – с суши на океан (осадков мало, возможна засуха)

Муссоны хорошо выражены в тропических широтах, главным образом в бассейне Индийского океана. Бывают и внетропические муссоны (на Дальнем Востоке).

geolvg.blogspot.com

Виды ветров - планетарные, локальные

В нижних слоях атмосферы нашей планеты несложно определить направление основных потоков воздушных масс, благодаря знанию общих закономерностей распределения атмосферного давления.

Различают два основных вида ветров:

1. Планетарные.

2. Локальные (местные).

Планетарные

К планетарным относятся западные ветры умеренных широт, пассаты, ветры из полярных регионов.

По наблюдениям ученых, из тропиков и субтропиков, где фиксируется повышенное давление, основной поток воздушных масс направляется в экваториальный пояс, где давление более низкое. Под воздействием силы вращения планеты потоки отклоняются влево в Южном полушарии и вправо – в Северном. Такие ветры дуют постоянно и называются пассатами. Определенная часть тропического воздуха «перетекает» в умеренный пояс. Особенно это заметно в летний период, когда там преобладает низкое давление. Данные потоки воздуха также отклоняются вправо в Северном полушарии и приобретают юго-западное и западное направление, в Южном – северо-западное и западное. Так, для умеренных широт характерен западный перенос воздушных масс.

Так как в полярных поясах обычно высокое атмосферное давление, то воздух устремляется в умеренные широты, причем в Северном полушарии направление воздушного потока северо-восточное, а в Южном – юго-восточное.

Распределение планетарных ветров зональное. На восточных берегах материков в умеренном поясе Северного полушария такое распределение воздушных потоков дезорганизуется. Из-за сезонного колебаний давления над сушей и прилегающей частью океанов летом ветры дуют с моря на сушу, а в зимнее время – наоборот. Такие непостоянные ветры, изменяющие свое направление по сезонам года, называются муссонами. По влиянием вращения Земли летние муссоны отклоняются и приобретают юго-восточное направление, а зимние – северо-западное. Муссоны являются характерной чертой Восточного Китая и Дальнего Востока, менее выражены они на восточном берегу Северной Америки.

Локальные

На Земле различают также локальные, или местные ветры. Их появление обусловлено особенностями рельефа определенной местности, неравномерности нагрева поверхности Земли.

К бризам относятся береговые ветры, возникающие в ясную погоду на побережьях водоемов: морей, океанов, больших рек, озер. В дневное время они дуют с воды на сушу (морской бриз), в дневное – наоборот (береговой бриз). Это связано с тем, что днем суша нагревается быстрее. Теплый воздух над сушей поднимается вверх, а потоки прохладного воздуха, образующиеся над водоемом, устремляются на сушу. Так формируется дневной бриз. Особенно сильно выражены морские бризы в тропиках, принося прохладу и влагу изнуренной жарой суше. Ночной (береговой) бриз образуется за счет переноса воздуха с суши на море, так как море ночью отдает тепло воздушным массам, которые поднимаются кверху. На их место и перемещается воздушный поток с суши.

В горной местности часто отмечаются фены – дующие по склонам теплые и сухие ветры.

Бора возникает в том случае, если движущийся холодный воздух встречает на пути препятствие в виде невысоких гор. Тогда поток холодного воздуха после преодоления препятствия с большой силой «падает» вниз, что сопровождается резким понижением температуры воздуха. В разных странах ветры бора имеют различные названия: сарма на Байкале, чинук – в Северной Америке, мистраль – во Франции и т.д.

В засушливых областях нашей планеты наблюдаются жаркие сухие ветры –суховеи. Скорость ветра этого вида может достигать 20 м/с, а его температура – 40 градусов. Относительная влажность воздуха при суховее резко снижается до 10%. В пустынях суховеям могут сопутствовать пыльные бури.

Похожие материалы:

1. Атмосфера
2. Облака
3. Ветры

geografya.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о