Как работает резистор – Резистор — Википедия

Переменный резистор: характеристики, виды, проверка мультиметром

В аппаратуре часто присутствуют подстраиваемые параметры. Для реализации используют переменный резистор. В зависимости от подключения они позволяют менять ток или напряжение в цепи. 

Содержание статьи

Что такое резистор с изменяемым (переменным) сопротивлением

Среди радиоэлементов существуют детали, которые могут изменять свой основной параметр. Именно такими являются переменные или регулируемые резисторы. Они отличаются от постоянных тем, что их сопротивление можно плавно менять практически от нуля до определенного значения. Изменение происходит путем механического перемещения ползунка.

Регулируемые или переменные резисторы — виды и размеры разные

Есть у переменных резисторов разновидности — подстроечные и регулировочные. Чем отличаются переменные резисторы от подстроечных? Тем что подстроечные рассчитаны на небольшое количество регулировок. У некоторых моделей их количество может исчисляться сотнями или десятками (например, у НР1-9А перемещать ползунок можно не более 100 раз). Если посмотреть на таблицу ниже, можно увидеть что у некоторых подстроечных SMD резисторов циклов регулировки всего 10.

Пример характеристик подстроечных резисторов SMD

У переменных резисторов этот показатель значительно выше. Количество перемещений регулятора может исчисляться десятками и даже сотнями тысяч. Так что использовать подстроечные резисторы вместо переменных явно не стоит.

Основной недостаток переменных резисторов — их недолговечность. Контакт между резистивным слоем и щеткой постепенно ухудшается. Для акустической аппаратуры это может выражаться во все усиливающихся шумах, при подстройке частоты в радиоприемниках все тяжелее «поймать»  нужную длину волны и т.д.

Анимация дает понять, как работает переменный резистор и почему выходит из строя

Способы производства

Переменный резистор может быть двух типов: проволочным и пленочным. У проволочных на диэлектрическую трубку намотана проволока, вдоль нее перемещается металлический передвижной контакт — ползунок. Его местоположение и определяет сопротивление элемента. Витки проволоки уложены вплотную друг к другу, но они разделены слоем лака с высокими диэлектрическими свойствами.

Ползунковые переменные резисторы проволочного типа

Переменные проволочные резисторы — это необязательно трубка с намотанной на нее проволокой как на фото выше. Такие элементы выпускались в основном несколько десятков лет назад. Современные мало чем отличаются от пленочных, разве что корпус чуть выше, так как проволока все-таки занимает больше места, чем пленка.

Со снятой крышкой видна проволочная спираль и бегунок

У пленочных переменных резисторов на диэлектрическую пластину (обычно выполнена в виде подковы) нанесен слой токопроводящего углерода. В этом случае контакт тоже подвижный, но он закреплен на стержне в центре подковы и чтобы изменить сопротивление, надо повернуть стержень.

Пленочный регулируемый резистор

Регулировочное переменное сопротивление может быть и проволочным, и пленочным, а подстроечные, в основном, делают пленочными. Есть у них внешнее отличие: нет стержня с ручкой, а есть плоский диск с отверстием под отвертку. Сопротивления этого типа используются только для наладки параметров при пуске или техническом обслуживании аппаратуры.

Переменные резисторы SMD

Кроме способа производства есть еще две формы выпуска: для обычного навесного монтажа и SMD-элементы для поверхностного монтажа. SMD резисторы отличаются миниатюрными размерами, выполнены по пленочной технологии.

Схематическое обозначение  и цоколевка

В отличие от постоянных резисторов, у регулируемых не два вывода, а как минимум три.  Почему как минимум? Потому что есть модели с дополнительными выводами — их может быть несколько. На электрических схемах  переменные и подстроечные резисторы обозначаются прямоугольниками как постоянные, но имеют дополнительный вывод, который схематически представлен как ломанная линия, упирающаяся в середину изображения. Чтобы можно было отличить переменный от подстроечного, у переменного на конце третьего ввода рисуют стрелку, подстроечный изображается более длинной перпендикулярной линией без стрелки.

Обозначение на схемах переменных и подстроечных резисторов

Если говорить о расположении выводов, то средний вывод подключен к ползунку, крайние — к началу и концу резистивного элемента.

Цоколевка переменного резистора

Виды и особенности применения

Переменных резисторов существует немалое количество, с их помощью регулируют звук, громкость, подстраивают частоту, регулируют яркость света. В общем, практически везде, где происходят изменения настроек при помощи бегунков или вращением рукояток стоят эти элементы. Но для разных задач нужны резисторы с различным характером изменений или с разным числом выводов. Вот о разных видах регулируемых сопротивлений и поговорим.

Переменные резисторы бывают разных видов

Характер изменения сопротивления

Не стоит думать, что при перемещении подвижного контакта сопротивление изменяется линейно. Такие модели есть, но они используются в основном для регулировки или настройки, в делителях частоты. Гораздо чаще требуется нелинейная зависимость. Переменные резисторы с нелинейной характеристикой бывают двух типов:

  • сопротивление изменяется по логарифмическому закону;
  • по показательному типу (обратному логарифмическому).

    Характер изменения сопротивления в переменных резисторах

В акустике используют нелинейные элементы с сопротивлением, которое имеет потенциальную зависимость, в измерительной аппаратуре — по логарифмическому.

Сдвоенные, тройные, счетверенные

В плеерах, радиоприемниках и некоторых других видах бытовой аппаратуры часто применяются сдвоенные (двойные) переменные резисторы. В корпусе элемента скрыты две резистивные пластины. Внешне от обычных они отличаются наличием двух рядов выводов. Бывают двух типов:

  • С одновременным изменением параметров. Обычно применяются в стереоаппаратуре для одновременного изменения параметров двух каналов. Такие резисторы имеют запараллеленные бегунки. Поворачивая или сдвигая рукоятку, меняем сопротивление сразу двух резисторов.
  • С раздельным изменением параметров. Называются еще соосными,  так как ось одного находится внутри оси другого. Если надо одной ручкой изменять различные параметры (громкость и баланс) подойдет этот тип резисторов. Механическая связь бегунков отсутствует, что позволяет менять сопротивление независимо друг от друга.

    Сдвоенный регулируемый резистор и его обозначение

Обозначаются разные типы сдвоенных переменных резисторов на схемах по-разному. С наличием механической связи бегунков при близком расположении изображений резисторов на схеме, ставят связанные между собой стрелочки (на рисунке выше слева). Принадлежность к одному резистору указывается через нумерацию: две части обозначаются как R1.1 и R 1.2. Если обозначение частей спаренного переменного резистора находятся на схеме далеко друг от друга, связь указывается при помощи пунктирных линий (на рисунке выше справа). Буквенное обозначение такое же.

Так выглядят сдвоенные и тройные переменные сопротивления

Двойной регулируемый резистор без физической связи между бегунками на схемах ничем не отличается от обычного регулируемого. Отличают их по буквенному обозначению с двумя цифрами, разделенными точкой через — как у спаренного —  R15.1 и R15.2.

Частный случай сдвоенного переменного резистора — строенный, счетверенный и т.д. Они встречаются не так часто, все больше в акустической аппаратуре.

Дискретный переменный резистор

Чаще всего, изменение сопротивления при повороте ручки или передвижении ползунка происходит плавно. Но для некоторых параметров необходимо ступенчатое изменение параметров. Такие переменные сопротивления называют дискретными. Используют их для ступенчатого изменения частоты, громкости, некоторых других параметров.

Дискретный переменный резистор (со ступенчатой регулировкой) и его обозначение на схеме

Устройство этого типа резисторов отличается. По сути, внутри находится набор из постоянных резисторов, подключенных к каждому из выходов. При переключении подвижный контакт перескакивает с выхода на выход, подключая к цепи нужный в данный момент резистор. Принцип действия можно сравнить с многопозиционным переключателем.

С выключателем

Такие резисторы мы встречаем часто — в радио и других устройствах. Это с их помощью поворотом ручки включается питание, а затем регулируется громкость. Внешне их отличить невозможно, только по описанию.

Переменный резистор с выключателем в одном корпусе: внешний вид и обозначение на схемах

На схемах переменные резисторы с выключателем отображаются рядом с контактной группой, то что это единое устройство, отображается при помощи пунктирной линии, которая соединяет контактную группу с корпусом переменного резистора. С одной стороны — возле изображения сопротивления — пунктир заканчивается точкой. Она показывает, возле какого из выводов происходит разрыв цепи. При повороте руки регулятора в эту сторону питание отключается.

Способы подключения: реостат и потенциометр

Любое регулируемое сопротивление может подключаться как реостат или потенциометр. Реостат изменяет силу тока в цепи, для этого подключается подвижный контакт и один из крайних выводов.

Переменный резистор может использоваться как реостат или потенциометр

Потенциометр изменяет напряжение, при подключении задействуют все контакты, получая таким образом делитель напряжения.

Основные параметры

Выбирать переменный резистор необходимо не только по стандартным параметрам — сопротивлению, рассеиваемой мощности и допустимой погрешности. Как вы уже, наверное, поняли, придется еще и другие принять во внимание:

  • Диапазон изменения сопротивлений. Стоит обычно две цифры — минимальная и максимальная.
  • Рабочая температура.
  • Тепловое сопротивление. Показывает насколько увеличивается сопротивление при нагреве.
  • Эффективный угол поворота регулятора.

Параметры мощных переменных резисторов

Конечно, основные параметр важны и именно они являются определяющими. Но стоит обращать внимание и на температурный режим. Если оборудование будет работать в помещении, важно, чтобы резистор не перегревался. Для техники, которая будет эксплуатироваться на открытом воздухе, важен нижний диапазон — если предусматривается работа в зимнее время, они должны переносить минусовые температуры.

Как проверить переменный резистор при помощи тестера

Проверка переменных резисторов не слишком отличается от тестирования обычных. Нужен будет мультиметр с функцией омметра. Положение щупов стандартное, диапазон измерений выбираем в зависимости от измеряемого параметра. Если меряем минимальное сопротивление, имеет смысл поставить самый малый диапазон. Для измерения максимального сопротивления, подбираем в зависимости от заявленной характеристики. При измерениях положение щупов произвольное, так как полярность подаваемого тестового напряжения неважна.

Как проверить переменное сопротивление тестером

Провести надо будет несколько несложных замеров:

  • Максимальное сопротивление измеряется между крайними выводами.
  • Чтобы измерить минимальное сопротивление, бегунок переводят в крайнее левое положение. Измерения проводят между крайним левым и средним (первым и вторым выводами). Полученные измерения сравнивают с заявленным диапазоном. Обычно бывают отклонения в ту или другую сторону. Это не страшно, если величина отклонений находится в рамках допуска (зависит от точности).
  • Главная проблема переменных резисторов — ухудшение контакта между щеткой и токопроводящим элементом. Подключаем мультиметр в режиме омметра к одному из крайних выводов и центральному, затем медленно вращаем ось резистора и наблюдаем за показаниями мультиметра. Если резистор исправен, но показания должны изменяться плавно. Проверку рекомендуется повторить переключив мультиметр ко второму крайнему выводу резистора (см. видео ниже).

elektroznatok.ru

Что такое резистор? | AUDIO-CXEM.RU

Резистор представляет собой пассивный элемент электрической цепи, то есть не вносит в электрическую цепь энергию, а только потребляет её. В электротехнике резистор, как идеализированный элемент электрической цепи, характеризующийся только сопротивлением электрическому току, называют сопротивлением.

При сопротивлении протеканию электрического тока через резистор, последний нагревается, преобразуя энергию электрического тока в тепловую энергию, рассеивая тепло в окружающую среду.

Если говорить простым языком, то резистор ограничивает ток, текущий по проводнику.

Для полного понимания, сразу приведу аналогию. Представим, что у нас есть трубопровод, по которому течет вода с определенным давлением. В нашей аналогии диаметр трубы и будет резистором (сопротивлением), а количество воды, проходящее через данный диаметр трубы в единицу времени, будет силой тока. Чем меньше диаметр трубы, тем больше сопротивление, следовательно, меньше сила тока. Напряжением в нашей аналогии будет давление воды в трубе.

Одной из основных характеристик резистора является сопротивление. Сопротивление измеряется в Омах.

1 кОм = 1000 Ом

1 Мом = 1000000 Ом
Следующая основная характеристика, это рассеиваемая мощность, которая измеряется в Ваттах.

Самые распространенные резисторы с рассеваемой мощностью от 0.125 до 2 Вт и более.

Погрешность тоже бывает различная, в основном 5%. В моем городе других не продают. Есть высокоточные резисторы с погрешностью 1% и менее, но таких компонентов в нашем городе нет.

Есть и другие характеристики, но они не так важны.

Давайте наглядно посмотрим, как резистор ограничивает ток. Соберем простую схему:

Амперметр показывает потребление тока равное 19 мА. Напряжение подаваемое в цепь 3.3 В. Светодиод светит ярко.

 

Теперь добавим в цепь резистор, сопротивлением 1.3 кОм. Схема будет выглядеть так:

Соберем схему на монтажной плате:

Мы видим, что яркость светодиода уменьшилась. Ток, текущий через светодиод и резистор уменьшился с 19 до 0.5 мА.


Похожие статьи

audio-cxem.ru

Резисторы [Амперка / Вики]

Резистор — один из наиболее распространённых компонентов в электронике. Его назначение — простое: сопротивляться течению тока, преобразовывая его часть в тепло.

Основной характеристикой резистора является сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем большая часть тока рассеивается в тепло. В схемах, питаемых небольшим напряжением (5 – 12 В), наиболее распространены резисторы номиналом от 100 Ом до 100 кОм.

Закон Ома

Закон Ома позволяет на заданном участке цепи определить одну из величин: силу тока I, напряжение U, сопротивление R, если известны две остальные:

Для обозначения напряжения наряду с символом U используется V.

Рассмотрим простую цепь

Расчитаем силу тока, проходящего через резистор R1 и, соответственно, затем через лампу L1. Для простоты будем предполагать, что сама лампа обладает нулевым собственным сопротивлением.

Аналогично, если бы у нас был источник питания на 5 В и лампа, которая по документации должна работать при токе 20 мА, нам нужно бы было выбрать резистор подходящего номинала.

В данном случае, разница в 10 Ом между идеальным номиналом и имеющимся не играет большого значения: можно смело брать стандартный номинал — 240 или 220 Ом.

Аналогично, мы могли бы расчитать требуемое напряжение, если бы оно было не известно, а на руках были значения сопротивления и желаемая сила тока.

Соединение резисторов

При последовательном соединении резисторов, их сопротивление суммируется:

При параллельном соединении, итоговое сопротивление расчитывается по формуле:

Если резистора всего два, то:

В частном случае двух одинаковых резисторов, итоговое сопротивление при параллельном соединении равно половине сопротивления каждого из них.

Таким образом можно получать новые номиналы из имеющихся в наличии.

Применеие на практике

Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:

  1. Токоограничивающий резистор (current-limiting resistor)

  2. Стягивающий, подтягивающий резистор (pull-down / pull-up resistor)

  3. Делитель напряжения (voltage divider)

Токоограничивающий резистор

Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего резистора: у нас есть компонент, который расчитан на работу при определённом токе — резистор снижает силу тока до нужного уровня.

В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins). Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации, ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.

Стягивающие и подтягивающие резисторы

Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом со входными контактами логических компонентов, которым важен только факт: подаётся ноль вольт (логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино. Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмём такую схему

Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения. Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать хаотично, непредсказуемым образом. Причина тому — шумы, образующиеся вокруг: провода действуют как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:

Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора не даёт большей части тока идти в землю: сигнал пойдёт к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло бы короткое замыкание.

Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь разомкнута:

То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой.

Делитель напряжения

Делитель напряжения (voltage divider) используется для того, чтобы получить из исходного напряжения лишь его часть. Например, из 9 В получить 5. Он подробно описан в отдельной статье.

Мощность резисторов

Резисторы помимо сопротивления обладают ещё характеристикой мощности. Она определяет нагрузку, которую способен выдержать резистор. Среди обычных керамических резисторов наиболее распространены показатели 0.25 Вт, 0.5 Вт и 1 Вт. Для расчёта нагрузки, действующей на резистор, используйте формулу:

При превышении допустимой нагрузки, резистор будет греться и его срок службы может сильно сократиться. При сильном превышении — резистор может начать плавиться и вызвать воспламенение. Будьте осторожны!

wiki.amperka.ru

Резистор в цепи затвора или как делать правильно / Habr

Всем доброго времени суток!

Эта небольшая статья возможно станет шпаргалкой для начинающих разработчиков, которые хотят проектировать надежные и эффективные схемы управления силовыми полупроводниковыми ключами, обновит и освежит старые знания опытных специалистов или может хотя бы где-то поцарапает закрома памяти читателей.

Любому из этих случаев я буду очень рад.

В этой заметке я попробую описать наиболее распространенные вопросы выбора затворных резисторов для силовых электронных устройств. Она базируется на знаниях, почерпнутых мной из разной литературы, апноутов от TOSHIBA, Infineon, Texas Instruments а также из скромной практики. Стоит заметить, что эта информация не дает прямо универсальных рекомендаций для каждого силового ключа. Тем не менее, можно проанализировать какие предположения могут быть важны и какое влияние они могут оказать на выбор резисторов затвора для дискретных силовых транзисторов, а также для силовых модулей.

Основы


Затворный резистор расположен в цепи между драйвером силового транзистора и затвором самого транзистора, как показано на изображении в шапке статьи.

Открыт или закрыт полевой ключ (IGBT/MOSFET) зависит от приложенного к затвору напряжения. Изменение этого напряжения заряжает или разряжает затворные емкости силового устройства, которые состоят из емкостей затвора-коллектора и затвора-эмиттера и небольшой емкости самого затвора. Заряд входных емкостей ключа включит его (ток ), а разряд выключит (ток ).

Резистор в данной цепи ограничивает ток заряда/разряда входных емкостей, помимо этого, правильно подобранный резистор не даст ключу самопроизвольно открываться, что иногда может случиться, из-за быстрого изменения напряжения на силовых выводах ключа например, такое может случиться, когда в полумостовой топологии соседний ключ открывается. В таком случае емкость перезаряжается и ток, протекающий через затворный резистор вызывает на нем падение напряжения, которое и может открыть ключ. К тому же порог открывания ключа часто сильно опускается при росте температуры кристалла полупроводника.

Что нужно знать и как выбрать “правильный” резистор


1. Максимальный ток заряда/разряда выхода драйвера

Любая микросхема драйвера имеет такой параметр, как максимальный выходной ток. Если ток затвора при открытии/закрытии ключа превысит значение максимального выходного тока, то драйвер может выйти из строя, поэтому, в данном случае, затворный резистор ограничит выходной ток драйвера.

Можно составить эквивалентную модель цепи, по которой и рассчитать необходимое значение резистора:

Следуя несложным умозаключениям, можем получить формулы для расчета тока драйвера, и подобрать резистор затвора таким, чтобы не превысить максимально допустимые параметры драйвера:


2. Рассеиваемая мощность

Также одна из важных функций затворного резистора — рассеивать мощность выходного каскада микросхемы драйвера. В соответствии с моделью выше, рассеиваемую мощность можно посчитать с помощью следующих формул:


Тут — заряд затвора ключа, а — частота коммутации.
После расчета и подбора резистора важно соблюдать следующее условие:

где — собственное потребление драйвера.

Тут еще есть небольшое примечание, в большинстве даташитов на ключи указывают заряд затвора при определенных условиях, например при напряжении управления затвором +15В…-15В, если же в Вашей схеме другое напряжение управления, например +15В...0В, или же +15…-8В, то достаточно точно определить заряд затвора помогут следующие соотношения:


3. Скорость включения и электромагнитная совместимость

Давайте рассмотрим потери на переключение, как функцию от сопротивления затворного резистора. Я возьму ключ, который я недавно использовал в своем небольшом проекте — IKW40N120 от любимых Infineon:

Как можно заметить, при увеличении сопротивления затвора, скорость переключения уменьшается и потери на переключения растут. Соответственно это повлияет на эффективность системы в целом. Напротив, если применять меньшее сопротивление затвора, переключение станет более быстрым и потери уменьшаться, но при этом шум, вызванный быстрым нарастанием тока и напряжения, будет увеличиваться, что может быть критично, когда нужно отвечать требованиям электромагнитной совместимости поэтому значение сопротивления затвора нужно выбирать очень аккуратно.

4. То самое “паразитное” включение

В начале, когда я писал о функциях затворного резистора, я упоминал о возможности ключа самопроизвольно включиться. Чтобы такого не случилось, можно рассчитать напряжение, которое может появиться на затворе транзистора, посмотрим на изображение ниже и запишем две небольшие формулы:

И не стоит забывать, что напряжение открытия ключа сильно зависит от температуры кристалла, и это тоже нужно учитывать.

Заключение


Теперь у нас есть формулы для оптимального (в какой-то степени) подбора с первого взгляда такого простого элемента силовой схемы, как затворный резистор.

Вполне возможно вы не нашли тут ничего нового, но я надеюсь, что хоть кому-то эта заметка окажется полезной.

Также для расширения кругозора в том числе в области управлении силовыми ключами очень советую выделять часик-два в неделю на прочтение всяких статей и апноутов от именитых производителей силовой электроники, в особенности о применении микросхем драйверов. Уверен, найдёте там очень много интересностей. Для старта, и чтобы углубится в рассмотренную тему предлагаю вот эту.

Спасибо за прочтение!

habr.com

Что необходимо знать о резисторах? / Habr

Резистор: кусочек материала, сопротивляющийся прохождению электрического тока. К обоим концам присоединены клеммы. И всё. Что может быть проще?

Оказывается, что это совсем не просто. Температура, ёмкость, индуктивность и другие параметры играют роль в превращении резистора в довольно сложный компонент. И использовать его в схемах можно по-разному, но мы сконцентрируемся на разных видах резисторов фиксированного номинала, на том, как их делают и как они могут пригодиться в разных случаях.

Начнём с самого простого и старого.




Углеродный композит в проигрывателе

Их часто называют «старыми» резисторами. Они широко применялись в 1960-х, но с появлением других типов резисторов и благодаря достаточно большой себестоимости, их использование сейчас ограничено. Они состоят из смеси керамического порошка с углеродом, связанных при помощи смолы. Углерод хорошо проводит ток, и чем больше его в смеси, тем меньше сопротивление. Провода присоединяются с концов. Они покрываются краской или пластиком, служащими изоляцией, а сопротивление и допуск обозначаются цветными полосками.

Сопротивление таких резисторов можно перманентно изменить, подвергнув их высокой влажности, высокому напряжению или перегреву. Допуск составляет 5% или более. Это просто твёрдый цилиндр с хорошими высокочастотными характеристиками. Также они хорошо переносят перегрев, несмотря на свой малый размер, и всё ещё используются в блоках питания и сварочных контроллерах.

Однако их возраст не остановил меня от использования мешка таких резисторов, купленных мною в комиссионке с целью изготовления различных сопротивлений, которые были нужны мне для моего проекта муз. проигрывателя 555. На фото как раз моя поделка.


Производятся нанесением слоя чистого углерода на керамический цилиндр и последующего удаления углерода с целью формирования спирали. Итог покрывается кремнием. Толщина слоя и ширина оставшегося углерода управляют сопротивлением, а допуск таких резисторов бывает от 2%, лучше, чем у предыдущих. Благодаря чистому углероду сопротивление меньше меняется с температурой.

Температурный коэффициент сопротивления углеродно-плёночных резисторов составляет от 200 до 500 ppm/C – миллионных долей на градус Цельсия. 200 ppm/C значит, что с каждым градусом сопротивление не изменится больше, чем на 200 Ом на каждый МОм общего сопротивления. В процентах это можно выразить как 0,02%/C. Если температура изменится на 80 С, при показателе 200 ppm/C сопротивление резистора поменяется на 1,6%, или на 16 кОм.

Такие резисторы выпускаются номиналом от 1 Ом до 10 кОм, мощностью от 1/16 Вт до 5 Вт и выдерживают напряжения в несколько киловольт. Обычно используются в высоковольтных блоках питания, рентгеновских аппаратах, лазерах и радарах.


Металлическая плёнка делается схожим с углеродной образом, путём размещения металлического слоя (часто это никель хром) на керамике, с последующим вырезанием спирали. Согласно документации от производителя Vishay, после присоединения клемм спираль раньше обрабатывали шлифовкой, но сейчас для этого используют лазеры. Результат покрывается лаком и помечается цветовой кодировкой или текстом.

Сопротивление резисторов из металлической плёнки меняется меньше, чем у углеродно-плёночных. ТКС находится в районе 50-100 ppm/C. 50 ppm/C аналогичны 0,005%/C. Использовав аналогичный приведённому выше пример с резистором в 1 МОм, изменение температуры на 80 С приведёт в случае резистора 50 ppm/C к изменению сопротивления на 0,4%, или на 4 кОм.

Допуск у них меньше, порядка 0,1%. Также обладают хорошими шумовыми характеристиками, низкой нелинейностью и хорошей стабильностью по времени, и используются для множества целей.


Случай схож с металлической плёнкой, только обычно используется оксид олова с примесью оксида сурьмы. Ведут себя такие резисторы лучше, чем углеродные или металлические плёнки, если говорить о напряжении, перегрузках, скачках и высоких температурах. Резисторы на углеродной плёнке работают до 200 С, на металлической – до 250-300 С, а резисторы на плёнке из оксида – до 450 С. При этом их стабильность весьма хромает.


Производятся намоткой провода на пластиковый, керамический или стекловолоконный цилиндр. Поскольку провод можно отрезать довольно точно, номинал их сопротивления можно выбрать с большой точностью с допуском не хуже 0,1%. Чтобы получить резистор с высоким сопротивлением, нужно использовать очень тонкий и длинный провод. Провод можно сделать тоньше для меньшей мощности или толще для большей мощности. Его можно изготавливать из большого числа металлов и сплавов, включая никель хром, медь, серебро, хромистой стали и вольфрама.

Разрабатываются с прицелом на возможность работы при высоких температурах: вольфрамовые выдерживают температуры до 1700 С, серебряные – от 0 до 150 С. ТКС у высокоточных проволочных резисторов составляет порядка 5 ppm/C. У резисторов, предназначенных для высоких мощностей, ТКС выше.

Работают на мощностях от 0,5 Вт до 1000 Вт. Резисторы на несколько сотен Вт могут быть покрыты высокотемпературным кремнием или стекловидной эмалью. Для увеличения теплоотвода могут быть оборудованы алюминиевым кожухом с пластинами, работающими как радиатор.


Виды намотки

Поскольку это практически катушки, у них присутствует индуктивность и ёмкость, из-за чего на высоких частотах они ведут себя плохо. Для уменьшения этих эффектов применяются различные хитрые схемы намотки, например, бифилярная, намотка на плоском носителе, и намотка Аэртона-Перри.

У бифилярной намотки отсутствует индукция, но высокая ёмкость. Намотка на плоском и тонком носителе сближает провода и уменьшает индукцию. Намотка Аэртона-Перри, благодаря тому, что провода идут в разных направлениях и находятся близко друг от друга, уменьшает самоиндукцию и ёмкость, поскольку в местах пересечения напряжение одинаково.

Потенциометры делают на основе проволочных резисторов благодаря их надёжности. Также они используются в прерывателях и предохранителях. Их индукцию можно увеличить и использовать их как датчики тока, измеряя индуктивное сопротивление.


Используют фольгу толщиной в несколько микрон, обычно из никель хрома с добавлениями, расположенную на керамической подложке. Они наиболее стабильные и точные из всех, даром что существуют с 1960-х. Необходимое сопротивление достигается фототравлением фольги. Не имеют индуктивности, обладают низкой ёмкостью, хорошей стабильностью и быстрой тепловой стабилизацией. Допуск может быть в пределах 0,001%.

ТКС составляет 1 ppm/C. При изменении температуры на 80 С мегаомный резистор поменяет сопротивление всего на 0.008% или 80 Ом. Интересен способ, которым достигается подобная точность. При увеличении температуры увеличивается и сопротивление. Но резистор делается так, что увеличение температуры приводит к сжатию фольги, из-за чего сопротивление падает. Суммарный эффект приводит к тому, что сопротивление почти не меняется.

Хорошо подходят для аудиопроектов с токами высоких частот. Также подходят для проектов, требующих высокую точность, например, электронных весов. Естественно, используются в областях, где ожидаются большие колебания температуры.


В основном применяются для поверхностного монтажа. Плёнка в толстоплёночных резисторах в 1000 раз толще, чем в тонкоплёночных. Это самые дешёвые резисторы, так как толстая плёнка дешевле.

Тонкооплёночные резисторы изготавливаются ионным напылением никель хрома на изолирующую подложку. Затем применяется фототравление, абразивная или лазерная чистка. Толстоплёночные изготавливаются печатью по трафарету. Плёнка представляет собой смесь связующего вещества, носителя и оксида металла. В конце процесса применяется абразивная или лазерная чистка.

Допуск тонкоплёночных резисторов находится на уровне 0,1%, а ТКС – от 5 до 50 ppm/C. У толстоплёночных допуск бывает 1%, а ТКС — 50 до 200 ppm/C. Тонкоплёночные резисторы меньше шумят.

Тонкоплёночные резисторы применяются там, где требуется высокая точность. Толстоплёночные можно использовать практически везде – в некоторых ПК можно насчитать до 1000 толстоплёночных резисторов поверхностного монтажа.

Существуют и другие виды резисторов постоянного номинала, но в ящичках для резисторов вы, скорее всего, встретите один перечисленных.

habr.com

Резистор - это что такое? Резистор

В электротехнике, электронике, физике встречается такое понятие, как резистор. Это довольно распространенный элемент электронных схем. Тем, кто не сталкивался с принципами радиотехники, тяжело разобраться в большом количестве составляющих систем любого прибора. Для начала следует понять принцип работы такого простого и широко распространенного элемента, как резистор. Без него не функционирует практически ни одна электросхема.

Что такое резистор

Это название берет свое начало от англ. resist, что переводится как «сопротивляться». Поэтому резистор еще называют сопротивлением.

Электрический ток, поступающий к различным приборам, в силу разных причин испытывает сдерживающий эффект. Его величина зависит от типа проводника и внешних условий.

Величина такого влияния на электроток измеряется в омах. Чем лучше резистор способен рассеять мощность в тепловую энергию, тем он больше. Его работа не должна мешать соседним деталям схемы, поэтому учитывается тот нагрев, который выделяется при уменьшении силы тока.

Роль, которую играет в цепи этот элемент, переоценить трудно. Резистор позволяет обеспечить стабильность работы системы и контролирует напряжение.

Другие составляющие схемы также несколько рассеивают силу тока, однако у него это главная задача. Вот почему резистор - это сопротивление.

Это пассивный элемент электронной схемы. Но его роль тяжело переоценить.

Виды

Продвигаясь по пути изучения вопроса о том, что такое резистор, следует рассмотреть их разновидности. Эти элементы бывают переменными, постоянными и подстроечными.

Постоянные резисторы не меняют своего сопротивления (внизу на схеме: I - американское обозначение; II - европейское).

Переменные их разновидности бывают потенциометрами (манипулируют напряжением) и реостатами (манипулируют силой тока).

Подстроечный резистор – это проводник, который относится к классу переменных элементов схемы, но его настройку производят вручную при помощи отвертки или шестигранника.

Чтобы понять, является резистор материалом или оборудованием, следует рассмотреть его подвиды.

Встречаются фоторезисторы, термисторы, варисторы. Они различны по своему устройству и области применения.

Термисторы производят на основе полупроводников. Их функции находятся в зависимости от температуры кружащей среды.

Варисторы резко изменяют сопротивление при увеличении напряжения. Такое свойство просто незаменимо в цепях, подвергающихся скачкам напряжения.

Фоторезисторы, соответственно, меняют сопротивление при попадании на них солнечных лучей.

Опираясь на все перечисленные качества, можно смело ответить на вопрос о том, резистор - это материал или оборудование. В электросхеме это прибор сопротивления.

Идеальный резистор

Существует понятие того, каким должен быть идеальный резистор. В действительности его не существует, но некоторые элементы схемы могут быть приближенно похожи на безупречный вариант.

Идеальный резистор является проводником со строго обозначенным, не меняющимся сопротивлением, надписанным на корпусе. Данная функция оборудования не зависит в этом случае от силы тока и окружающих условий. Такой прибор не имеет внутренней емкости, но при этом он отличается идеальной технологией полного отвода тепла при работе.

Размеры его должны быть нулевыми, чтобы не занимать место на электросхеме. Идеальный резистор является электротехническим элементом, имеющим систему бесшумной работы.

Но в реальности такие приборы не соответствуют подобному образу.

Реальный резистор

Резонно возникает следующий вопрос: "Реальный резистор – это что?" В жизни это оборудование, стремясь к идеальному, предполагает наличие всего нескольких совершенных качеств.

В зависимости от типа оборудования применяются соответствующие разновидности резисторов. Они выполняют строго определенные функции, которые обеспечат правильную работу в конкретно взятых условиях.

Для этого разработчикам резисторов приходится либо жертвовать площадью, которую оборудование занимает на схеме, либо учитывать влияния окружения, а также предусматривать дополнительные внутренние емкости и т. д.

Реальные резисторы имеют сопротивление, отличное от указанного на корпусе, что связано с влиянием разных внешних условий.

Показатели, влияющие на тип резистора

Любой резистор постоянного сопротивления включает ряд характеристик, обозначенных на корпусе при его производстве. Основными из них являются сопротивление, класс точности, а также мощность рассеивания.

Существуют и другие характеристики, но они разнятся в зависимости от типа оборудования.

Резистор – это источник тока, величина которого зависит от таких факторов, как длина и площадь поперечного сечения проводника, температура. Имеет значение напряжение, которое было приложено к концам проводника. Величина резистора также зависит от силы тока и материала, из которого выполнен проводник.

Электронные конструкции используют разные резисторы. В соответствии с определенными условиями применяют соответствующие разновидности приборов.

Сопротивление

В электротехнике применяют резисторы, имеющие различное сопротивление. Приборы, у которых оно меньше 1000 Ом, имеют на корпусе букву R. Встречаются экземпляры, на которых вообще не указывают никакой буквы. Однако они все равно относятся к подобной разновидности оборудования.

Если прибор имеет сопротивление больше 1000 Ом, применяют для обозначения величины килоомы, мегаомы.

Резистор – это электротехнический элемент, имеющий довольно маленькие размеры. Поэтому, даже написав на их корпусе маркировку, производители понимают, что прочесть ее будет сложно. Широко используется цветовая маркировка резисторов, которую можно рассмотреть на фото ниже.

Класс точности

Большинство резисторов изготавливается из особого материала. Но даже в условиях промышленного производства практически нереально сделать их абсолютно идентичными.

В силу разных обстоятельств происходит разброс параметров оборудования для электросхем. Производитель рассчитывает величину отклонения от номинального значения и указывает его в процентах. Допустимая погрешность может находиться в указанном диапазоне, который резистор не превышает.

Для определенного типа устройств необходимо соблюдать более точные показатели сопротивления. Поэтому резистор имеет неодинаковые показатели погрешности для каждого типа электроприборов.

Указанная в процентах величина отклонения подразумевает, что погрешность может быть как в положительную, так и в отрицательную сторону.

Мощность рассеивания

Резистор – это прибор, применяющийся в цепях с различной силой тока. Для маломощных схем подойдут резисторы любой мощности. Их работа будет стабильной и не приведет к негативным последствиям.

Совсем другая картина наблюдается в цепи, по которой осуществляется течение тока значительной силы. Если резистор будет иметь недостаточную мощность, он перегреется, выйдет из строя, а то и может стать причиной пожара.

Расчет мощности рассеивания для подобных систем является обязательным действием. Это обеспечит страховку в процессе эксплуатации техники и позволит подобрать подходящий прибор сопротивления.

На маломощных резисторах производители обычно не указывают величину рассеивания. На более крупных экземплярах этот показатель указан в обязательном порядке и может быть обозначен римскими или арабскими цифрами.

Опираясь на такие обозначения, а также на расчет мощности цепи, подбирают требуемое оборудование.

Крепление резисторов

Резистор – это электротехнический элемент, который чаще всего имеет два выхода для подсоединения к схеме. Существуют также разновидности оборудования с тремя выводами. Их можно встретить среди переменных и подстроечных резисторов.

Используются также специальные их разновидности, имеющие отводы. Обычно их несколько.

В современной электронике все чаще применяются резисторы, предназначенные для поверхностного монтажа. Они выглядят как крохотные детали прямоугольной формы и не имеют привычных проволочных выводов. Вместо этого для подключения подобной детали предназначены две полоски из металла, расположенные по краям резистора.

Поверхностный монтаж производится путем припаивания элемента сопротивления на печатные проводники, находящиеся на плате.

Популярность подобных деталей объясняется их минимальными размерами, что соответствует современным требованиям электротехнического оборудования. Их маркировка имеет отличную от проволочных резисторов систему.

Роль резисторов в схеме

Резистор – это элемент, который может выполнять в электросхеме различные функции. Самыми распространенными являются токоограничивающая, стягивающая и разделительная роль.

Токоограничивающий резистор представляет собой прибор, предназначенный для обеспечения требуемой силы тока, при которой компонент оборудования будет функционировать бесперебойно.

Стягивающий (растягивающий) резистор применяют на входе логических компонентов схемы, которым важно знать только наличие или отсутствие напряжения (логическая единица или ноль). Резистор в подобной схеме нужен для обеспечения нормальной работы системы, чтобы она не оставалась в подвешенном состоянии. Нежелательный ток, поступающий извне на вход, будет при помощи стягивающего резистора уходить в землю. Это гарантирует определение входом позиции "логический ноль".

Делитель напряжения требуется для взятия только определенной части тока, необходимой для правильной работы электрокомпонента.

Маркировка

Существует определенный принцип выделения основных качеств резисторов. Его широко применяют во всем мире.

Резистор – это (фото представлено ниже) небольшая деталь, имеющая цветовую или знаковую маркировку.

Главной характеристикой детали электросхемы является ее сопротивление, поэтому именно данный показатель определен на корпусе. Буквенные обозначения характеризуют систему измерений: R – омы, К – килоомы, М – мегаомы.

В последнее время многие производители переходят на другой тип маркировки – цветовой. Он проще в нанесении при больших объемах производства.

Самые точные резисторы имеют до 6 цветов на корпусе. Две первые полосы соответствуют номиналу напряжения.

Рассмотрев, что собой представляет элемент сопротивления в схеме приборов различной техники, следует сделать вывод, что резистор – это оборудование, обеспечивающее всю систему необходимой для работы силой тока.

www.syl.ru

Использование резисторов в электронике. » Хабстаб

Резистор можно охарактеризовать тремя параметрами:
  • сопротивление
  • допуск
  • мощность

Для того чтобы понять, что такое сопротивление, давайте представим себе трубу, по которой течёт вода. Так как движению воды в трубе ничего не мешает, напор на выходе трубы будет равен напору на входе трубы. Теперь давайте мысленно разрежем трубу на две части и поместим между ними сетку, такую же, как у ситечка, которым мы сеем муку. Желательно ещё представить, что эта сетка обладает некоторой толщиной, но это необязательно. Теперь напор на выходе трубы будет отличаться от напора на входе трубы, а насколько он будет отличаться будет зависеть от размера ячейки сетки.


Если провести аналогию с электрической цепью, то ток — это вода, а резистор — сетка, а размер ячейки — сопротивление. Функция сетки — ограничение потока воды, а основное назначение резистора в электрических цепях — ограничение тока.

Допуск показывает насколько реальное сопротивление резистора, может отличается от заявленного. Резистор 100 ом с допуском в 5%, в действительности может обладать сопротивлением от 95 до 105 ом.

Известно что при протекании тока через проводник, последний нагревается, то есть электрическая энергия превращается в тепловую. Мощность резистора определяет какое количество тепла он способен рассеивать. С другой стороны, если записать формулу мощности следующим образом

P = U²/R

P = I²*R


Становится понятно, что мощность определяет максимальный ток, протекающий через резистор или максимальное напряжение, которое может быть к нему приложено. Как правило, более мощные резисторы обладают большими размерами.

Применение резистора.

Токоограничивающий резистор.
Как Вы думаете можно ли подключить светодиод, падение напряжения на котором 2V, к кроне на клеммах которой напряжение 9V?
Конечно можно, надо только ограничить ток текущий через светодиод и в этом нам поможет резистор.


Такой резистор называют токоограничивающим, потому что в данной схеме он предназначен для ограничения тока через светодиод. Его сопротивление легко рассчитать воспользовавшись законом Ома.

I = (Uкроны — Uдиода)/R


А ток через светодиод не должен превышать 20mA, тогда у нас получится следующее

R = (Uкроны — Uдиода)/I

R = (9 –2)/0.02 = 350 ом


Сопротивление можно взять большего номинала, например 470 ом, при этом диод будет не так ярко светиться.

Подтягивающий резистор.
На картинке ниже изображены 4 микросхемы, к двум верхним кнопка подключена без подтягивающего резистора, а к двум нижним с подтягивающим резистором.


Давайте рассмотрим две верхние микросхемы, когда кнопка нажата, на первом выводе левой микросхемы будет 0V или логический ноль, а на первом выводе правой микросхемы будет напряжение питания или логическая единица. Определить в каком состоянии находится вывод микросхемы когда кнопка не нажата нельзя, вывод просто болтается в воздухе и ловит наводки, которые являются источником ложных срабатываний. Состояние первого вывода нижних микросхем всегда определено, у левой микросхемы, на первом выводе когда кнопка не нажата — логическая единица, когда кнопка нажата — логический ноль, у правой наоборот. Если заменить подтягивающий резистор куском провода, то при нажатии кнопки плюс подключался бы к минусу и ток стремился бы к бесконечности.
Подведём итоги, подтягивающий резистор позволяет избежать состояния неопределённости и ограничивает ток.

Делитель напряжения.
С помощью двух последовательно соединённых резисторов можно разделить напряжение кроны на несколько частей, причём чем больше сопротивление резистора, тем больше на нём падение напряжения.


Рассчитать падение напряжения на каждом из резисторов очень просто, для этого надо по закону Ома вычислить ток, протекающий через них и умножить его на сопротивление каждого из резисторов.

Задание коэффициента усиления операционного усилителя(ОУ)
В данной схеме с помощью резисторов задаётся коэффициент усиления ОУ, но если присмотреться становится понятно, что резисторы на схеме образуют обычный делитель.

Времязадающие цепи.
Резистор совместно с конденсатором образует RC цепочку, с помощью которой можно измерять временный промежутки. Подробнее об этом можно прочитать тут.

Фильтры.
Та же RC цепочка может быть использована как фильтр, высоких или низких частот.


Такие фильтры называют пассивными, в зависимости от номинала резистора и конденсатора они могут без изменения пропускать одни частоты и ослаблять другие.

Кроме обычного резистора о котором писалось выше, существуют резисторы способные изменять своё сопротивление в зависимости от внешних условий. Например, термистор, который изменяет своё сопротивление в зависимости от температуры, или фоторезистор, сопротивление которого зависит от освещения.

hubstub.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о