Конденсатор фильтра питания – Сглаживающие фильтры питания

Сглаживающие фильтры питания

В данной статье расскажем про сглаживающие фильтры питания, покажем пример определения выходного напряжения, и подбора сглаживающего конденсатора для источника вторичного питания.

Сглаживающие фильтры питания предназначены для уменьшения пульсаций выпрямленного напряжения. Принцип работы простой – во время действия полуволны напряжения происходит заряд реактивных элементов (конденсатора, дросселя) от источника – диодного выпрямителя, и их разряд на нагрузку во время отсутствия, либо малого по амплитуде напряжения.


 

 

Основные схемы сглаживающих фильтров питания

 

1. Ёмкость2. Г-образный3. Т-образный4. П-образный

Простейшим методом сглаживания пульсаций является применение фильтра в виде конденсатора достаточно большой ёмкости, шунтирующего нагрузку (сопротивление нагрузки). Конденсатор хорошо сглаживает пульсации, если его емкость такова, что выполняется условие:

1 / (ωС) << Rн

Во время действия синусоидального сигнала, когда напряжение на диоде выпрямителя прямое, через диод проходит ток, заряжающий конденсатор до напряжения, близкого к максимальному. Когда напряжение на выходе диодного выпрямителя оказывается меньше напряжения заряда конденсатора, конденсатор разряжается через нагрузку Rн и создает на ней напряжение, которое постепенно снижается по мере разряда конденсатора через нагрузку. В каждый следующий полупериод конденсатор подзаряжается и его напряжение снова возрастает.

Чем больше емкость С и сопротивление нагрузки Rн, тем медленнее разряжается конденсатор, тем меньше пульсации и тем ближе среднее значение выходного напряжения Uср к максимальному значению синусоиды Umax. Если нагрузку вообще отключить, то в режиме холостого хода на конденсаторе получится постоянное напряжение равное Umax, без всяких пульсаций.

Работа простейшего сглаживающего фильтра на конденсаторе в цепи однополупериодного выпрямителя поясняется рисунком и эпюрами:

Красным цветом показано напряжение на выходе выпрямителя без сглаживающего конденсатора, а синим – при его наличии.

Если пульсации должны быть малыми, или сопротивление нагрузки Rн мало, то необходима чрезмерно большая емкость конденсатора, т.е. сглаживание пульсаций одним конденсатором практически осуществить нельзя. Приходится использовать более сложный сглаживающий фильтр.

Работа сглаживающего Г-образного фильтра на конденсаторе и дросселе в цепи двухполупериодного мостового выпрямителя поясняется рисунком и эпюрами:

Как и в примере с однополупериодным выпрямителем, красным цветом показано напряжение на выходе выпрямителя без сглаживающих элементов (конденсатора и дросселя), а синим – при их наличии.

Логично следует, что чем больше ёмкости и индуктивности фильтров, и чем больше в нём реактивных элементов (сложнее фильтр), тем меньше коэффициент пульсаций такого выпрямителя.

В качестве сглаживающих конденсаторов используются электролитические конденсаторы. Чем больше ёмкость, тем лучше. Кроме того, для надёжности, конденсаторы должны быть рассчитаны на напряжение в полтора-два раза превышающее выходное напряжение диодного моста.


 

 

Определение выходного напряжения выпрямителя и выбор сглаживающего фильтра для блока вторичного питания

 

К описанному в статье, следует добавить важную информацию, используемую для конструирования источников (блоков) питания постоянного тока:

1. Любой p-n переход, любого полупроводникового прибора, в том числе диода имеет характеристику – падение напряжения на переходе. Это напряжение обычно указывают в справочниках. Для германиевых диодов оно может быть от 0,3 вольт до 0,5 вольт, а для кремниевых диодов – от 0,6 вольт до 1,5 вольт.

Это значит, что если мы возьмём трансформатор с выходным напряжением 6,3 вольта, выпрямим его однофазным двухполярным мостовым выпрямителем (диодным мостом) у которого на каждом диоде по справочнику падает по 1 вольту (Uпр.= 1 В), то на выходе выпрямителя мы получим всего лишь 4,3 вольта. Напряжение в 2 вольта «потеряется» на 2-х диодах по пути прохождения тока. Начинающие радиолюбители обычно этого не учитывают, потому и недоумевают, почему на выходе маленькое напряжение.

2. Переменный электрический ток измеряется приборами, которые, как правило, показывают его среднее значение, а не максимальное. Максимальное значение переменного напряжения это – значение электрического напряжения соответствующее его максимальному значению синусоиды.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:

Uср = Umax / π = 0,318 * Umax

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:

Uср = 2 Umax / π = 0,636 * Umax

Значение среднего напряжения — 0,636 за счёт особенностей конструкции измерительных приборов округляется и принимается равной 0,7.

3. Исходя из изложенного выше, можно сделать вывод, который справедлив в том случае, когда нагрузка на блок питания маленькая. Обратите внимание на рисунки ниже.

Выходное напряжение выпрямителей с фильтром питания:

а) с большой нагрузкой :

б) с маленькой нагрузкой :

Эти рисунки поясняют, что при малой нагрузке выходное напряжение выпрямителя с фильтром питания равно максимальной амплитуде синусоиды поступающей на выпрямитель, за вычетом падения напряжения на диодах.

 


 

 

Пример определения выходного напряжения, и подбора сглаживающего конденсатора для источника вторичного питания

 

Рассмотрим случай со средним переменным напряжением на выходе трансформатора, измеренным мультиметром равным 6,3 вольта, и нагрузкой (сопротивлением нагрузки) равной 200 Ом.

Выходное напряжение c мостового выпрямителя будет определено следующим образом:

— максимальное напряжение на выходе трансформатора:

Umax = Uизм / 0,7 = 6,3в / 0,7 = 9 вольт

— максимальное выходное напряжение на выходе выпрямителя:

Uвых. = Umax – UVD1 – UVD2 = 9 – 1 – 1 = 7 вольт

— емкость сглаживающего конденсатора выбираем из условия:

1 / (2*π*f*С) << Rн , откуда 1 / (2*π*f *Rн) << С

— подставим данные:

1/(2*3,14*50*200) = 1,59*10-5 (Фарад) = 15,9 мкФ

— учитывая условие, при котором емкость конденсатора должна быть намного больше полученному по приведенному условию, выбираем конденсатор ёмкостью более чем в пять раз больше расчётного значения — 100 мкФ*16 вольт.


Схема, состоящая из трансформатора, выпрямителя и сглаживающего фильтра является источником нестабилизированного питания. От таких источников можно питать любые устройства, потребляющие слабый ток, не критичные к наличию пульсаций и нестабильности питающего напряжения. Для максимального подавления пульсаций и стабилизации питающего напряжения применяют Стабилизаторы напряжения.

meanders.ru

Сглаживающие фильтры выпрямителей блоков питания. Схемы, онлайн расчёт

Ёмкостные, индуктивно-ёмкостные, активные сглаживающие фильтры.
Схемы, свойства, онлайн калькулятор.

Потолковали мы основательно на предыдущей странице про разные виды диодных выпрямителей, перебросились парой фраз на тему простейших ёмкостных фильтров, а вопрос достижения параметра коэффициента пульсаций Кп   в пределах 10-5... 10-4 так и повис в воздухе - уж очень немалым получается номинал ёмкости сглаживающего конденсатора.

Коэффициент пульсаций выпрямленного напряжения

Кп является важнейшим параметром выпрямителя. Его численное значение равно отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей.
Напомню выдержку из печатного издания, приведённую на предыдущей странице:

«Коэффициент пульсаций выбирают самостоятельно в зависимости от предполагаемой нагрузки, допускающей питание постоянным током вполне определённой "чистоты":
10-3... 10-2   (0,1-1%) - малогабаритные транзисторные радиоприёмники и магнитофоны,
10-4... 10-3   (0,01-0,1%) - усилители радио и промежуточной частоты,
10-5... 10-4  (0,001-0,01%) - предварительные каскады усилителей звуковой частоты и микрофонных усилителей.»

Помимо этого в характеристиках выпрямителей может использоваться и понятие коэффициента фильтрации (коэффициента сглаживания).
Коэффициент фильтрации, он же коэффициент сглаживания - величина, численно равная отношению коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на выходе фильтра

Кс = Кп-вхп-вых .
Для многозвенных фильтров коэффициент фильтрации равен произведению коэффициентов фильтрации отдельных звеньев.

В слаботочных цепях вопрос снижения пульсаций решается легко и кардинально - применением интегральных стабилизаторов. Параметр подавления пульсаций (Ripple Rejection) у подобных массовых ИМС составляет не менее 50дБ (в 360раз по напряжению), что при высокой "чистоте" выходного напряжения позволяет уменьшить ёмкости электролитов в 5-10 раз.

Если же у разработчика нет возможности (либо желания) включать в состав устройства стабилизаторы напряжения, то реальным подспорьем окажутся индуктивно-ёмкостные или активные сглаживающие фильтры.

Начнём с фильтров, выполненных из индуктивных элементов – дросселей и из ёмкостных элементов – конденсаторов.

Рис.1

На Рис.1а приведена схема простейшего ёмкостного сглаживающего фильтра. Принцип действия заключается в накоплении электрической энергии конденсатором фильтра и последующей отдачи этой энергии в нагрузку.

Для того чтобы не ограничиваться 50-ти герцовыми блоками питания, но и иметь возможность расчёта фильтров импульсных ИБП, приведу универсальные формулы, учитывающие частоту входного сигнала F:
С1 = Iн/(3,14×Uн×F×Кп) для однополупериодных выпрямителей и
С1 = Iн/(6,28×Uн×F×Кп) - для двухполупериодных.
Кп   - это коэффициент пульсаций, равный отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей, а
F   - частота переменного напряжения на входе диодного выпрямителя.

Переходим к индуктивно-ёмкостным LC фильтрам.
ВНИМАНИЕ!!!
Потребность в такого рода цепях возникает исключительно в случаях необходимости получить низкий уровень пульсаций в достаточно мощных сетевых блоках питания, либо в высокочастотных импульсных ИБП. Связано это с тем, что для эффективной работы LC-фильтра, индуктивное сопротивление катушки XL

на частоте подавления стремятся сделать значительно больше Rн. А это, в свою очередь, приводит к тому, что в условиях низких частот и малых токов (высоких Rн) индуктивность дросселя получается необоснованно высокой.

Г-образный индуктивно-ёмкостной LC фильтр 2-го порядка (Рис.1б) обладает значительно лучшими фильтрующими свойствами по сравнению с обычным ёмкостным.
Произведение LC (Гн*мкФ) зависит от необходимого коэффициента сглаживания фильтра и определяется по приближенной формуле:
L1(Гн)×С1(МкФ) = 25000/(F2(Гц)×Кп) для однополупериодных выпрямителей и
L1×С1 = 12500/(F2×Кп) - для двухполупериодных, где
С1(МкФ)/L1(мГн) = 1000/Rн2(Ом).

Схема П-образного LC-фильтра приведена на Рис.1в. Сглаживающее действие П-образного LC-фильтра можно упрощённо представить как совместное действие двух фильтров, описанных выше, а коэффициент сглаживания - как произведение коэффициентов сглаживания звеньев: ёмкостного и Г-образного индуктивно-ёмкостного.

Наилучшими фильтрующими свойствами обладают LC-фильтры Чебышева. Напишем формулу, исходя из рекомендаций, изложенных на странице   ссылка на страницу:
С1 = С2 ;   С1(МкФ)/L1(мГн) = 1176/Rн2(Ом).

Уменьшить напряжение пульсаций на выходе однозвенного П-образного LC-фильтра можно, включив параллельно дросселю L1 неполярный конденсатор С3 (Рис.1г), который вместе с индуктивностью катушки образует режекторный фильтр. Если ёмкость конденсатора С3 выбрать такой, чтобы резонансная частота контура L1-С3 равнялась частоте пульсаций (F при однополупериодном выпрямлении или 2F при двухполупериодном), то большая часть напряжения пульсаций задержится этим контуром и лишь незначительная перейдёт в нагрузку.
Итак:    С3 = 1/(39,44×L1×F2) для однополупериодных выпрямителей и
С3 = 1/(9,86×L1×F2) - для двухполупериодных.
Все остальные номиналы элементов - такие же, как в предыдущей схеме.

Давайте сдобрим пройденный материал онлайн таблицей.

КАЛЬКУЛЯТОР РАСЧЁТА ЭЛЕМЕНТОВ СЛАЖИВАЮЩЕГО ФИЛЬТРА БЛОКА ПИТАНИЯ.

Транзисторные фильтры по сравнению с ёмкостными сглаживающими фильтрами имеют меньшие габариты, массу и более высокий коэффициент сглаживания пульсаций. Они позволяют уменьшить в десяток раз (при том же уровне пульсаций) номинал сглаживающего конденсатора, либо уменьшить в аналогичное количество раз амплитуду пульсаций при неизменном значении ёмкости.

Рис.2

На Рис.2а представлена схема наиболее распространённого транзисторного фильтра.

Напряжение с высокой амплитудой пульсаций, поступающее на коллектор транзистора, по сути, является напряжением питания эмиттерного повторителя, образованного Т1.
В это же самое время цепь базы питается через резисторы смещения и интегрирующую цепь R1C1, которая сглаживает пульсации напряжения на базе. Чем больше постоянная времени T=R1C1, тем меньше пульсации напряжения на базе, а так как устройство представляет собой эмиттерный повторитель, то на выходе фильтра пульсации будут столь же малыми, как и на базе.
Для того, чтобы снизить зависимость напряжения на выходе фильтра от уровня передаваемой мощности, ток через делитель R1R2 выбирают в 5…10 раз большим, чем ток, ответвляющийся в базу при минимальном сопротивлении нагрузки.
При расчёте номиналов элементов делителя, следует исходить из напряжения на базе транзистора:
Uб = Uвх - Uвх пульсаций - (2,5...3В) .
В этом случае будет обеспечена работа регулирующего транзистора в активном режиме, а падение напряжения на нём составит величину:
Uкэ = Uвх пульсаций + (3,1...3,6В) .
Коэффициент полезного действия транзисторного фильтра будет тем больше, чем меньше падание постоянного напряжения на силовом транзисторе. Из формулы видно, что для обеспечения высокого КПД активного сглаживающего фильтра, на вход устройства следует подавать уже отфильтрованное до определённого уровня напряжение.
На практике это делается включением на вход простейшего ёмкостного фильтра (Рис.1а), уровень пульсаций которого можно посчитать на приведённом выше калькуляторе.

Эффективность активных сглаживающих фильтров напрямую зависит от величины коэффициента усиления транзистора. Чем выше h31 полупроводника, тем больших величин можно выбрать номиналы резисторов R1, R2 - тем лучшими фильтрующими свойствами будет обладать схема. Поэтому в данной ситуации не стоит даже рассматривать транзисторы с h31

Для дальнейшего улучшения фильтрующих свойств сглаживающего фильтра можно применить двухзвенный RC-фильтр в цепи базы транзистора (Рис.2б).
Здесь сумма значений сопротивления резисторов R1 и R2 равна сопротивлению резистора R1 в предыдущем устройстве, а сопротивление резистора R3 равно сопротивлению резистора R2 в фильтре (Рис.2а).

Ещё эффективней будет работать транзисторный фильтр, у которого в цепь базы транзистора вместо R2 (Рис.1а), либо R3 (Рис.1б) включить стабилитрон с напряжением пробоя, равным значению, рассчитанному для резистивного делителя.

 

vpayaem.ru

Ликбез КО. Лекция №4 Сглаживающие фильтры питания.


Сглаживающие фильтры питания.
  Сглаживающие фильтры питания предназначены для уменьшения пульсаций выпрямленного напряжения. Принцип работы простой – во время действия полуволны напряжения происходит заряд реактивных элементов (конденсатора, дросселя) от источника – диодного выпрямителя, и их разряд на нагрузку во время отсутствия, либо малого по амплитуде напряжения.
Основные схемы сглаживающих фильтров питания.

Простейшим методом сглаживания пульсаций является применение фильтра в виде конденсатора достаточно большой ёмкости, шунтирующего нагрузку (сопротивление нагрузки). Конденсатор хорошо сглаживает пульсации, если его емкость такова, что выполняется условие:
1 / (ωС) << Rн
Во время действия синусоидального сигнала, когда напряжение на диоде выпрямителя прямое, через диод проходит ток, заряжающий конденсатор до напряжения, близкого к максимальному. Когда напряжение на выходе диодного выпрямителя оказывается меньше напряжения заряда конденсатора, конденсатор разряжается через нагрузку и создает на ней напряжение, которое постепенно снижается по мере разряда конденсатора через нагрузку. В каждый следующий полупериод конденсатор подзаряжается и его напряжение снова возрастает.

Чем больше емкость С и сопротивление нагрузки , тем медленнее разряжается конденсатор, тем меньше пульсации и тем ближе среднее значение выходного напряжения Uср к максимальному значению синусоиды Umax. Если нагрузку вообще отключить, то в режиме холостого хода на конденсаторе получится постоянное напряжение равное Umax, без всяких пульсаций.

Работа простейшего сглаживающего фильтра на конденсаторе в цепи однополупериодного выпрямителя поясняется рисунком и эпюрами:

Красным цветом показано напряжение на выходе выпрямителя без сглаживающего конденсатора, а синим – при его наличии.

Если пульсации должны быть малыми, или сопротивление нагрузки мало, то необходима чрезмерно большая емкость конденсатора, т.е. сглаживание пульсаций одним конденсатором практически осуществить нельзя. Приходится использовать более сложный сглаживающий фильтр.

Работа сглаживающего Г-образного фильтра на конденсаторе и дросселе в цепи двухполупериодного мостового выпрямителя поясняется рисунком и эпюрами:

Как и в примере с однополупериодным выпрямителем, красным цветом показано напряжение на выходе выпрямителя без сглаживающих элементов (конденсатора и дросселя), а синим – при их наличии.

Логично следует, что чем больше ёмкости и индуктивности фильтров, и чем больше в нём реактивных элементов (сложнее фильтр), тем меньше коэффициент пульсаций такого выпрямителя.

В качестве сглаживающих конденсаторов используются электролитические конденсаторы. Чем больше ёмкость, тем лучше. Кроме того, для надёжности, конденсаторы должны быть рассчитаны на напряжение в полтора-два раза превышающее выходное напряжение диодного моста.
Определение выходного напряжения выпрямителя и выбор сглаживающего фильтра для блока вторичного питания
К описанному в статье, следует добавить важную информацию, используемую для конструирования источников (блоков) питания постоянного тока:

1. Любой p-n переход, любого полупроводникового прибора, в том числе диода имеет характеристику – падение напряжения на переходе. Это напряжение обычно указывают в справочниках. Для германиевых диодов оно может быть от 0,3 вольт до 0,5 вольт, а для кремниевых диодов – от 0,6 вольт до 1,5 вольт.

Это значит, что если мы возьмём трансформатор с выходным напряжением 6,3 вольта, выпрямим его однофазным двухполярным мостовым выпрямителем (диодным мостом) у которого на каждом диоде по справочнику падает по 1 вольту (Uпр.= 1 В), то на выходе выпрямителя мы получим всего лишь 4,3 вольта. Напряжение в 2 вольта «потеряется» на 2-х диодах по пути прохождения тока. Начинающие радиолюбители обычно этого не учитывают, потому и недоумевают, почему на выходе маленькое напряжение.

2. Переменный электрический ток измеряется приборами, которые, как правило, показывают его среднее значение, а не максимальное. Максимальное значение переменного напряжения это – значение электрического напряжения соответствующее его максимальному значению синусоиды.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:
Uср = Umax / π = 0,318 * Umax

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:
Uср = 2 Umax / π = 0,636 * Umax

Значение среднего напряжения - 0,636 за счёт особенностей конструкции измерительных приборов округляется и принимается равной 0,7.

3. Исходя из изложенного выше, можно сделать вывод, который справедлив в том случае, когда нагрузка на блок питания маленькая. Обратите внимание на рисунки ниже.
Выходное напряжение выпрямителей с фильтром питания:
а) с большой нагрузкой :
 б) с маленькой нагрузкой :
Эти рисунки поясняют, что при малой нагрузке выходное напряжение выпрямителя с фильтром питания равно максимальной амплитуде синусоиды поступающей на выпрямитель, за вычетом падения напряжения на диодах.
Пример определения выходного напряжения, и подбора сглаживающего конденсатора для источника вторичного питания
Рассмотрим случай со средним переменным напряжением на выходе трансформатора, измеренным мультиметром равным 6,3 вольта, и нагрузкой (сопротивлением нагрузки) равной 200 Ом.

Выходное напряжение c мостового выпрямителя будет определено следующим образом:

- максимальное напряжение на выходе трансформатора:

Umax = Uизм / 0,7 = 6,3в / 0,7 = 9 вольт

- максимальное выходное напряжение на выходе выпрямителя:

Uвых. = Umax – UVD1 – UVD2 = 9 – 1 – 1 = 7 вольт

- емкость сглаживающего конденсатора выбираем из условия:

1 / (2*π*f*С) << Rн , откуда 1 / (2*π*f *Rн) << С

- подставим данные:

1/(2*3,14*50*200) = 1,59*10-5 (Фарад) = 15,9 мкФ

- учитывая условие, при котором емкость конденсатора должна быть намного больше полученному по приведенному условию, выбираем конденсатор ёмкостью более чем в пять раз больше расчётного значения - 100 мкФ*16 вольт.
Схема, состоящая из трансформатора, выпрямителя и сглаживающего фильтра является источником нестабилизированного питания. От таких источников можно питать любые устройства, потребляющие слабый ток, не критичные к наличию пульсаций и нестабильности питающего напряжения. Для максимального подавления пульсаций и стабилизации питающего напряжения применяют Стабилизаторы напряжения.
 

overclockers.ru

Страничка эмбеддера » Сетевые фильтры и помехоподавляющие конденсаторы

В сетевых фильтрах часто используют хитрые конденсаторы с непонятными многим надписями — X1, Y2 итп. Это — помехоподавляющие конденсаторы. Разобраться в том, зачем они нужны и чем отличаются от «просто конденсаторов» поможет эта статья. Помех в сети всегда хватало — сначала они появлялись от щеточных двигателей, а теперь их в промышленных масштабах производят импульсные блоки питания. То, что помехи — это плохо, лишний раз распинаться не стоит. Сетевое напряжения в крайних случаях выглядит как-то вот так: Видно, что это сильно отличается от синусоиды, которая там должна быть. Для того, чтобы избавиться от помех, нужно сформировать беспрепятственный путь, по которому ток помехи может вернутся к источнику. Обычно такой путь, по закону Мерфи, лежит через самое чувствительное оборудование.

Наша задача сделать так, чтобы помехам не «захотелось» залазить в «нежные места» наших схем, но дать току помех течь туда, куда он «хотел» течь (в нейтраль, к примеру).  С другой стороны, можно не доводить сеть до плачевного состояния, не выпуская помехи за пределы устройства.

Для того, чтобы уменьшить помехи, применяют фильтры. Тип фильтра и даже его расположение зависит от конкретного случая. К примеру, если помехи создаются одним источником (двигателем, например), то лучше всего поместить фильтр поближе к этому источнику – замкнуть ток помехи (как на рисунке выше).

Если помехи создаются распределенной схемой в металлическом корпусе (компьютерный блок питания), то фильтр лучше поместить как можно ближе к сетевому шнуру – замкнуть ток помехи внутри корпуса и соединить корпус с самым “чистым” местом схемы, чтобы он сам не излучал.

На рисунке – типичная схема фильтра компьютерного блока питания. Красным показан путь излучаемой помехи, а зеленым – помехи, передающейся по проводам.

Помеха имеет две составляющих – синфазную и противофазную.

Противофазная составляющая помехи — это напряжение помехи между фазой и нейтралью. Для ее подавления используются конденсаторы типа X. Само название X происходит от английского “across-the-line”, буква X похожа на крест (“cross”). На рисунке выше, это конденсатор – C1.

К этим конденсаторам предъявляются такие требования – они должны выдерживать максимально допустимые в сети всплески, не загораться при выходе из строя и не поддерживать горение.

Сейчас используются два основных подкласса X-конденсаторов – X1 и X2.

  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4кВ.

  • X2 – самый распространенный класс конденсаторов. Используется в бытовых приборах с номинальным напряжением сети до 250В, выдерживают всплеск до 2.5кВ.

Емкость X конденсаторов варьируется от 0.1мкФ до 1мкФ. Какую емкость нужно выбрать для данного конкретного прибора можно выяснить только с осциллографом.

Синфазная составляющая помехи — это напряжение помехи между обоими сетевыми проводами и корпусом устройства. Понять, что это такое и зачем нужно немного сложнее.

Рассмотрим типичный импульсный источник питания. Между первичной и вторичной обмоткой трансформатора T1 всегда есть паразитная емкость (нарисована зелененьким). Представим, что конденсатора C7 пока нет. Высокочастотные пульсации беспрепятственно проникают со стока транзистора (самое шумное место схемы!) на вторичную обмотку через зелененькую емкость. Таким образом, на всей выходной части блока питания присутствуют пульсации (с частотой блока питания) относительно заземления и обоих сетевых проводов. Напряжение эти пульсаций может доходить до тысяч вольт. Наш мега-чувствительный прибор будет излучать эти пульсации в эфир, а излучать помехи – это тоже самое, что ловить помехи только с обратным знаком. Прибору будет плохо.

Теперь добавим конденсатор C7. Ток помехи, который просочился через зеленый конденсатор теперь может вернуться туда, откуда взялся по более короткому и менее сложному пути, чем в предыдущем случае и в наш мега-чувствительный прибор ему больше течь не хочется!

Заметьте, что конденсатор C7 теперь связывает сеть с выходом блока питания! Но ведь это-же опасно! Человек, который дотронется одновременно к выходу такого блока питания (к корпусу устройства) и к заземлению (к батареи отопления, к примеру), получит заметный, но не страшный удар. А что будет, если конденсатор C7 сломается? Правильно, выход блока питания станет “электрическим стулом”. Именно поэтому и сделали конденсаторы типа Y – они предназначены для работы в тех местах, где выход их из строя угрожает жизни людей.

Конденсаторы Y – типа делятся на 2 основных класса

  • Y1 – Работают при номинальном сетевом напряжении до 250В и выдерживают импульсное напряжение до 8кВ

  • Y2 – Самый популярный тип, может быть использован при сетевом напряжении до 250В и выдерживает импульсы в 5кВ

Теперь немного фактов.
  • Конденсаторы Y типа можно использовать вместо конденсаторов X типа, но нельзя использовать конденсаторы X типа вместо конденсаторов Y типа.

  • Конденсаторы Y типа имеют обычно намного меньшую емкость, чем конденсаторы X типа.

  • Если для конденсаторов X типа чем больше емкости, тем лучше, то емкость конденсаторов Y типа нужно выбирать как можно меньшей. Типичное значение 2.2нФ уже прилично бьется, если хватануться за выход БП и за батарею.

  • Несмотря на все меры безопасности, производители рекомендуют вынимать вилку из розетки, когда вы на долго покидаете дом.

Рекомендую также почитать документ

CAPACITORS FOR RFI SUPPRESSION OF THE AC LINE: BASIC FACTS

bsvi.ru

Сглаживающий фильтр — Википедия

Сглаживающий фильтр — устройство для сглаживания пульсаций после выпрямления переменного тока. Простейшим сглаживающим фильтром является электролитический конденсатор большой ёмкости, включённый параллельно нагрузке. Нередко параллельно электролитическому конденсатору устанавливается плёночный (или керамический) ёмкостью в доли или единицы микрофарада для устранения высокочастотных помех.

В любой схеме выпрямления на выходе выпрямленное напряжение помимо постоянной составляющей содержит переменную, называемую пульсацией напряжения[1]. Пульсация напряжения столь значительна, что непосредственно питание нагрузки от выпрямителя возможно относительно редко (при зарядке аккумуляторных батарей, для питания цепей сигнализации, электродвигателей и т. д.) — там, где приёмник энергии не чувствителен к переменной составляющей выпрямленного напряжения. Пульсация напряжения резко ухудшает, а чаще вообще нарушает работу радиоэлектронных устройств. Для уменьшения переменной составляющей выпрямленного напряжения, то есть для ослабления пульсации, между выпрямителем и нагрузкой устанавливается сглаживающий фильтр, который обычно состоит из реактивных сопротивлений (то есть тех, которые включают в себя индуктивность и ёмкость). Данный фильтр действует как фильтр нижних частот[2][3], обрезая лишние гармоники.

Переменная составляющая выпрямленного напряжения в общем случае представляет собой совокупность ряда гармоник с различными амплитудами, сдвинутых по отношению к первой на разные углы (см. Ряд Фурье). При этом первая гармоника имеет амплитуду, во много раз превосходящую амплитуды высших гармоник. В зависимости от назначения аппаратуры предъявляют различные требования к величине и характеру пульсации выпрямленного напряжения. Чаще всего для радиотехнической аппаратуры качество сглаживания характеризуется величиной максимально допустимой амплитуды переменной составляющей. В этом случае фильтры рассчитывают на максимальное подавление основной гармоники.

При оценке помех, проникающих из цепей питания в телефонные каналы, необходимо учитывать не только амплитуду напряжения данной гармоники, но и такой параметр, как частота. Это объясняется тем, что микротелефонные цепи и ухо человека обладают различной чувствительностью к колебаниям разной частоты, даже если их амплитуда одинакова. В связи с этим вводят понятие псофометрического коэффициента помех ak{\displaystyle a_{k}}[4], который зависит от частоты и величина которого определяется экспериментально с учётом микротелефона и человеческого уха.

Эффективное значение псофометрического напряжения пульсации U на выходе выпрямителя будет равно:

U=0,5[(U01m⋅a1)2+(U02m⋅a2)2+...+(U0km⋅ak)2]{\displaystyle U={\sqrt {0,5[(U_{01m}\cdot a_{1})^{2}+(U_{02m}\cdot a_{2})^{2}+...+(U_{0km}\cdot a_{k})^{2}]}}}

где

a1...,ak{\displaystyle a_{1}...,a_{k}} — псофометрические коэффициенты для соответствующих гармоник;
U1...,Uk{\displaystyle U_{1}...,U_{k}} — амплитуды соответствующих гармоник выпрямленного напряжения.

Основным параметром сглаживающих фильтров является коэффициент сглаживания, которым называется отношение коэффициента пульсации на входе (KBx){\displaystyle (K_{Bx})} к коэффициенты пульсации на выходе (KH){\displaystyle (K_{H})}, то есть на нагрузке.

KC=KBx/KHa={\displaystyle K_{C}=K_{Bx}/K_{Ha}=}(U01m/U0)/(Uh2m/UH){\displaystyle (U_{01m}/U_{0})/(U_{h2m}/U_{H})}

где U01m,Uh2m{\displaystyle U_{01m},U_{h2m}} -это амплитуды первой гармоники напряжений на входе и выходе фильтра соответственно; U0,UH{\displaystyle U_{0},U_{H}} — постоянные составляющие напряжений на входе и выходе фильтра.

Индуктивный сглаживающий фильтр[править | править код]

Индуктивный фильтр состоит из дросселя, включенного последовательно с нагрузкой. Под дросселем подразумевается обычная катушка, характеризующаяся определённой индуктивностью[5]. Сглаживающее действие такого фильтра основано на возникновении в дросселе ЭДС самоиндукции, препятствующей изменению выпрямленного тока. Дроссель выбирается так, чтобы индуктивное сопротивление его обмотки (XL=mwcL{\displaystyle X_{L}=mw_{c}L}) было больше сопротивления нагрузки RH{\displaystyle R_{H}}. При выполнении этого условия большая часть переменной составляющей падает на обмотке дросселя. На сопротивлении нагрузки выделяется в основном постоянная составляющая выпрямленного напряжения U0{\displaystyle U_{0}} и переменная составляющая, величина которой намного меньше переменной составляющей напряжения, падающего на обмотке дросселя.

Коэффициент сглаживания такого фильтра равен KC={\displaystyle K_{C}=}(RH)2+(mwcL)2RH{\displaystyle {\sqrt {(R_{H})^{2}+(mw_{c}L)^{2}}} \over R_{H}}

где у нас

RH{\displaystyle R_{H}} — сопротивление нагрузки

L{\displaystyle L} — индуктивность обмотки дросселя

wc{\displaystyle w_{c}} — угловая частота

m{\displaystyle m} — коэффициент зависящий от схемы выпрямителя и показывающий, во сколько раз частота основной гармоники выпрямленного напряжения больше частоты тока сети.

Ёмкостной сглаживающий фильтр[править | править код]

Ёмкостной сглаживающий фильтр.
С — фильтрующий конденсатор, R — сопротивление нагрузки.

Ёмкостной фильтр обычно анализируют не отдельно, а совместно с выпрямителем. Его сглаживающее действие основано на накоплении электрической энергии в электрическом поле конденсатора[6] и его разряде при отсутствии тока через выпрямитель (вентиль) в моменты времени, когда мгновенное напряжение на выходе выпрямителя ниже напряжения на конденсаторе, через сопротивление нагрузки (R){\displaystyle (R)}. Причём конденсатор подключается параллельно нагрузке.

Конденсатор имеет реактивное сопротивление:

XC=1/(ω⋅C){\displaystyle X_{C}=1/(\omega \cdot C)},

где C{\displaystyle C} — ёмкость конденсатора.

Коэффициент сглаживания такого фильтра будет следующим:

KC={\displaystyle K_{C}=}K1K2{\displaystyle K_{1} \over K_{2}}={\displaystyle =}(2m2−1{\displaystyle 2 \over m^{2}-1})/{\displaystyle /}(HrC{\displaystyle H \over rC})

где

K1{\displaystyle K_{1}} — коэффициент пульсаций на входе выпрямителя при отсутствии ёмкости

K2{\displaystyle K_{2}} — коэффициент пульсаций на выходе выпрямителя при наличии ёмкости.

При увеличении m{\displaystyle m} коэффициент сглаживания индуктивного фильтра увеличивается, а ёмкостного уменьшается. Поэтому ёмкостной фильтр выгодно применять при выпрямлении однофазных[7], а индуктивный при выпрямлении многофазных токов.

При увеличении RH{\displaystyle R_{H}} сглаживающее действие ёмкостного фильтра увеличивается, а индуктивного уменьшается. Поэтому ёмкостной фильтр выгодно применять при малых, а индуктивный фильтр — при больших токах нагрузки.

LC-фильтр[править | править код]

Наиболее широко используют Г-образный индуктивно-ёмкостной фильтр. Для сглаживания пульсаций таким фильтром необходимо, чтобы ёмкостное сопротивление конденсатора для низшей частоты пульсации было много меньше сопротивления нагрузки, а также много меньше индуктивного сопротивления дросселя для первой гармоники.

При выполнении этих условий, пренебрегая активным сопротивлением дросселя, коэффициент сглаживания такого Г-образного фильтра будет равен

Kc=m2ωc2LC−1.{\displaystyle K_{c}=m^{2}\omega _{c}^{2}LC-1.}

Так как 1/LC=ω0{\displaystyle 1/{\sqrt {LC}}=\omega _{0}} — собственная частота фильтра, то

Kc=(mωc/ω0)2−1.{\displaystyle K_{c}=(m\omega _{c}/\omega _{0})^{2}-1.}

Одним из основных условий выбора L{\displaystyle L} и C{\displaystyle C} является обеспечение индуктивной реакции фильтра. Такая реакция необходима для большей стабильности внешней характеристики выпрямителя, а также в случаях использования в выпрямителях германиевых, кремниевых[8] или ионных вентилей.

Для обеспечения индуктивного импеданса необходимо выполнение неравенства:

L>2RH/(m2−1)mωc.{\displaystyle L>2R_{H}/(m^{2}-1)m\omega _{c}.}

При проектировании фильтра необходимо также обеспечить такое соотношение реактивных сопротивлений дросселя и конденсатора, при которых не мог бы возникнуть резонанс на частоте пульсаций выпрямленного напряжения и частоте изменения тока нагрузки.

П-образный LC-фильтр.

П-образный LC{\displaystyle LC} фильтр можно представить в виде двухзвенного, состоящего из ёмкостного фильтра с ёмкостью C0{\displaystyle C_{0}} и Г-образного с L{\displaystyle L} и C1{\displaystyle C_{1}}.

Коэффициент сглаживания такого фильтра будет равен:

Kc={\displaystyle K_{c}=}2rC0(m2−1)H{\displaystyle 2rC_{0} \over (m^{2}-1)H}(m2ωc2LC1−1).{\displaystyle (m^{2}\omega _{c}^{2}LC_{1}-1).}

В П-образном фильтре наибольшей величины коэффициент сглаживания достигает при равенстве ёмкостей C1=C0.{\displaystyle C_{1}=C_{0}.}

При необходимости обеспечения большого коэффициента сглаживания целесообразно применение многозвенного фильтра, — фильтра, составленного из двух и более однозвенных фильтров. Коэффициент сглаживания такого фильтра будет равен:

Kc={\displaystyle K_{c}=}Kc1⋅Kc2⋅Kc3⋅...⋅Kcn,{\displaystyle K_{c1}\cdot K_{c2}\cdot K_{c3}\cdot ...\cdot K_{cn},}

то есть, общий коэффициент сглаживания будет равен произведению коэффициентов сглаживания всех последовательно соединённых фильтров.

Если все звенья фильтра состоят из одинаковых элементов (C1=C2=...=Cn{\displaystyle C_{1}=C_{2}=...=C_{n}} и L1=L2=...=Ln{\displaystyle L_{1}=L_{2}=...=L{n}}), что практически наиболее целесообразно, то:

Kc1=Kc2=...=Kcn{\displaystyle K_{c1}=K_{c2}=...=K_{cn}} и Kc=Kzvn=(mωc)2n(LzvCzv)n{\displaystyle K_{c}=K_{zv}^{n}=(m\omega _{c})^{2n}(L_{zv}C_{zv})^{n}}

где Kzv{\displaystyle K_{zv}} — коэффициент сглаживания каждого звена; Czv{\displaystyle C_{zv}},Lzv{\displaystyle L_{zv}} — соответственно индуктивность и ёмкость каждого звена; n{\displaystyle n} — число звеньев.

RC-фильтр[править | править код]

В выпрямителях[9] малой мощности в некоторых случаях применяют фильтры, в состав которого входит активное сопротивление и ёмкость. В таком фильтре относительно велико падение напряжения и потери энергии на резисторе R{\displaystyle R}, но габариты и стоимость такого фильтра меньше, чем индуктивно-ёмкостного. Коэффициент сглаживания такого фильтра будет равен:

Kc={\displaystyle K_{c}=}mwcCR{\displaystyle mw_{c}CR}RHRH+R{\displaystyle R_{H} \over R_{H}+R}

Значение сопротивления фильтра R{\displaystyle R} определяется исходя из оптимальной величины его коэффициента полезного действия. Оптимальное значение КПД лежит в пределах от 0,6 до 0,8. Расчёт П-образного активно-ёмкостного фильтра производится так, как и в случае П-образного LC-фильтра, путём разделения этого фильтра на ёмкостной и Г-образный RC-фильтры.

Статическое электромагнитное устройство, предназначенное для использования его индуктивности в электрической цепи с целью уменьшения содержания высших гармоник (пульсаций) в выпрямленном токе. Применяется на тяговых подстанциях постоянного тока, на электроподвижном составе (электровозы, электропоезда) переменного тока. Сглаживающий реактор обычно соединяется последовательно с выпрямителем, таким образом, через него протекает весь ток нагрузки.

  • Китаев В. Е.,Бокуняев А. А., Колканов М. Ф. Электропитание устройств связи. — М.: «Связь», 1975. — С. 328.
  • Бушуев В. М., Деминский В. А., Захаров Л. Ф. Электропитание устройств и систем телекоммуникаций. — М.: «Связь», 2009. — С. 383.
  • Раймонд Мэк. Импульсные источники питания. — М.: Издательский дом «Додэка XXI», 2008. — С. 272.
  • Митрофанов А. В., Щеголев А. И. Импульсные источники вторичного электропитания в бытовой радиоаппаратуре. — М.: Радио и Связь, 1985. — С. 37.
  • Костиков В. Г., Парфенов Е. М., Шахнов В. А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3.

Полезные статьи

Видео

Все сглаживающие фильтры применяются в зависимости от мощности нагрузки

ru.wikipedia.org

Фильтр по питанию. — DRIVE2

Всем Привет.
На днях меня попросил наш одноклубник изобрести какой-нибудь фильтр от помех для своей магнитолы.
С его слов, в динамиках прослушивались какие-то наводки, то ли от генератора, то ли ещё от чего-то.

Ну я долго не думая, решил сделать то что пришло на ум первым.
А именно самый распространённый фильтр CLC. (может кому тоже пригодится)
Он состоит из катушки (или двух катушек) индуктивности и на входе и выходе конденсаторы.

Вот что у меня получилось.

Полный размер

1

Ну а теперь поподробней для тех кому это интересно.

Сами катушки лучше всего сделать на ферритовых кольцах, можно на одном, но лучше на двух.
Для этого хорошо подойдут ферритовые кольца с магнитной проницаемостью не менее 2000МН, они как раз у меня были на работе.

Полный размер

2

Далее я взял провод и намотал его на кольцо. На каждое кольцо ушло примерно около 1 метра провода.

Полный размер

3

Так же и второе кольцо. Т.к. из-за электролитических конденсаторов наш фильтр будет полярным, для удобств сделаем разными цветами. А именно красным будет у нас (плюс).
Дабы одноклубник не перепутал полярность. ;))

Полный размер

4

Далее я взял два электролитических конденсатора, желательно большой ёмкостью.
Я посчитал что 4700мкф будет в самый раз.
Ну и за одно эти электролиты шунтируем кондесаторами малой ёмкости. Для избавления от ВЧ помех.
Для этого подойдут 0,1мкф . Для удобства взял SMD.

Полный размер

5

Припаиваем SMD кондесаторы (0,1мкф) параллельно выводам наших электролитов.

Полный размер

6

Вот все детали из которых будет выполнен LCL фильтр.

Полный размер

7

Его можно сделать как в корпусе, так и на печатной плате.
Но когда я спросил своего "заказчика", то он мне ответил — ему всё равно.
И тогда я решил всё сделать навесным монтажом и далее всё обернуть в клеевую термоусадку.

Полный размер

8

Полный размер

9

И всё это запихиваем в клеевую термоусадочную трубку.

www.drive2.ru

Сглаживающие фильтры питания

      Сглаживающие фильтры питания предназначены для уменьшения пульсаций выпрямленного напряжения. Принцип работы простой – во время действия полуволны напряжения происходит заряд реактивных элементов (конденсатора, дросселя) от источника – диодного выпрямителя, и их разряд на нагрузку во время отсутствия, либо малого по амплитуде напряжения.

Основные схемы сглаживающих фильтров питания

1. Ёмкость

2. Г-образный

3. Т-образный

4. П-образный

      Простейшим методом сглаживания пульсаций является применение фильтра в виде конденсатора достаточно большой ёмкости, шунтирующего нагрузку (сопротивление нагрузки). Конденсатор хорошо сглаживает пульсации, если его емкость такова, что выполняется условие:

1 / (ωС) << Rн

      Во время действия синусоидального сигнала, когда напряжение на диоде выпрямителя прямое, через диод проходит ток, заряжающий конденсатор до напряжения, близкого к максимальному. Когда напряжение на выходе диодного выпрямителя оказывается меньше напряжения заряда конденсатора, конденсатор разряжается через нагрузку Rн и создает на ней напряжение, которое постепенно снижается по мере разряда конденсатора через нагрузку. В каждый следующий полупериод конденсатор подзаряжается и его напряжение снова возрастает. 

Чем больше емкость С и сопротивление нагрузки Rн, тем медленнее разряжается конденсатор, тем меньше пульсации и тем ближе среднее значение выходного напряжения Uср к максимальному значению синусоиды Umax. Если нагрузку вообще отключить, то в режиме холостого хода на конденсаторе получится постоянное напряжение равное Umax, без всяких пульсаций.        Работа простейшего сглаживающего фильтра на конденсаторе в цепи однополупериодного выпрямителя поясняется рисунком и эпюрами:

Рис.6.11

      Красным цветом показано напряжение на выходе выпрямителя без сглаживающего конденсатора, а синим – при его наличии.        Если пульсации должны быть малыми, или сопротивление нагрузки Rн мало, то необходима чрезмерно большая емкость конденсатора, т.е. сглаживание пульсаций одним конденсатором практически осуществить нельзя. Приходится использовать более сложный сглаживающий фильтр.        Работа сглаживающего Г-образного фильтра на конденсаторе и дросселе в цепи двухполупериодного мостового выпрямителя поясняется рисунком и эпюрами:

Рис. 6.12.

Как и в примере с однополупериодным выпрямителем, красным цветом показано напряжение на выходе выпрямителя без сглаживающих элементов (конденсатора и дросселя), а синим – при их наличии. 

Логично следует, что чем больше ёмкости и индуктивности фильтров, и чем больше в нём реактивных элементов (сложнее фильтр), тем меньше коэффициент пульсаций такого выпрямителя.

В качестве сглаживающих конденсаторов используются электролитические конденсаторы. Чем больше ёмкость, тем лучше. Кроме того, для надёжности, конденсаторы должны быть рассчитаны на напряжение в полтора-два раза превышающее выходное напряжение диодного моста.

Порядок расчета выпрямителя напряжения

Точный аналитический расчет выпрямителей представляет определенные трудности, в связи с тем, что полупроводниковые приборы, применяемые в качестве преобразователей переменного напряжения в постоянное напряжение, являются нелинейными элементами. Расчет таких электрических цепей проводится по приближенным формулам с использованием графических зависимостей.

В табл. 6.3. приведены формулы для расчета схем выпрямителей, приведенных на рис. 6.5 – 6.10. Для определения параметров элементов выпрямителя необходимо нахождение коэффициентов B, D, F и H. Чтобы приступить к нахождению данных коэффициентов, необходимо рассчитать следующие базовые величины:

1. Внутреннее сопротивление вентиля

,

где Uпр – прямое падение напряжения на вентиле (0,4 – 0,5 В для германиевых диодов и 1,0 – 1,1 В для кремниевых диодов), kВ – коэффициент, учитывающий динамические свойства характеристики диода (2,0 – 2,2 для германиевых диодов и 2,2 – 2,4 для кремниевых диодов), IОВ – среднее значение тока вентиля выбирается по таблице 6 для соответствующей схемы выпрямления.

Таблица6.3.

.2. Активное сопротивление обмоток трансформатора

где kr – коэффициент, зависящий от схемы выпрямления, определяется по таблице 7; B – магнитная индукция в сердечнике, Т. Величину магнитной индукции В для трансформаторов мощностью до 1000 Вт можно предварительно принимать равной 1,2 – 1,6 Т для сети с частотой тока 50 Гц и 1,0 – 1,3 Т для сети с частотой тока 400 Гц; f – частота переменного тока питающей сети; s – число стержней сердечника трансформатора (s = 1 для броневой, s = 2 для стержневой и s = 3 для трехфазной конфигурации магнитопровода).

Таблица 6.4.

Схема выпрямления

kr

Однофазная однополупериодная

2,3

Однофазная двухполупериодная, с выводом средней точки

4,7

Однофазная мостовая

3,5

Удвоения

0,9

Трехфазная однополупериодная, с выводом нулевой точки

6,9

Трехфазная двухполупериодная мостовая (схема Ларионова)

4,5

3. Активное сопротивление фазы выпрямителя

.

4. Основной расчетный коэффициент А

где p – число импульсов пульсаций в цепи выпрямленного тока за период переменного напряжения. Для схемы на рис.6.5 p = 1; на рис. 6.6, 6.7, 6.8 p = 2; на рис. 6.9 p = 3; на рис.6.10 p = 6.

5. Проводят определения вспомогательных коэффициентов B, D, F и H по графикам, приведенным на рис. 6.11, 6.12, 6.13.

6. С помощью коэффициентов B, D, F и H по формулам таблицы 6 проводят расчет параметров выпрямителя.

7. По значениям UОБР и IВ с помощью справочных данных для диодов, приведенных в табл. 6.5, выбираем тип выпрямительных диодов. Выбранные из справочной таблицы данные диодов должны несколько превосходить расчетные значения, создавая, тем самым, запасной ресурс мощности выпрямителя.

Таблица 6.5.

Тип диода

Электрические параметры при tОКР = + 20 ± 50 С

Наибольшая амплитуда обратного напряжения, В

Наибольший выпрямленный ток (среднее значение), А

Обратный ток при наибольшем обратном напряжении, мА

Падение напряжения в прямом направлении при наибольшем токе, В

Германиевые диоды

Д7А

50

0,3

0,3

0,5

Д7Б

100

0,3

0,3

0,5

Д7В

150

0,3

0,3

0,5

Д7Г

200

0,3

0,3

0,5

Д7Д

300

0,3

0,3

0,5

Д7Е

350

0,3

0,3

0,5

Д7Ж

400

0,3

0,3

0,5

Д302

200

1

1

0,25

Д303

150

3

1

0,3

Д304

100

5

3

0,3

Д305

50

10

3

0,35

Кремниевые диоды

Д217

800

0,1

0,05

0,7

Д218

1000

0,1

0,05

0,7

МД226

400

0,3

0,03

1,0

МД226А

300

0,3

0,03

1,0

Д229А

200

0,4

0,05

1,0

Д229Б

400

0,4

0,05

1,0

Д230А

200

0,3

0,05

1,0

Д230Б

400

0,3

0,05

1,0

Д231А,

300

10

3

1,0

Д231Б,

300

5

3

1,5

Д237А

200

0,3

0,05

1,0

Д237Б

400

0,3

0,05

1,0

Д237В

600

0,1

0,05

1,0

Д232А,

400

10

3

1,0

Д232Б,

400

5

3

1,0

Д233,

500

10

3

1,5

Д233Б,

500

5

3

1,0

Д234Б,

600

5

3

1,5

Д242,

100

5

3

1,5

Д242А,

100

10

3

1,0

Д242Б,

100

2

3

1,0

Д243,

200

5

3

1,0

Д243А,

200

10

3

1,0

Д243Б,

200

2

3

1,0

Д244,

50

5

3

1,0

Д244А,

50

10

3

1,0

Д244Б,

50

2

3

1,0

2Д201А,

100

5

3

1,0

2Д201Б,

100

10

3

1,0

2Д201В,

200

5

3

1,0

2Д201Г,

200

10

3

1,0

Д1004

2000

0,1

0,1

4,0

Д1005А

4000

0,5

0,1

4,0

Д1005Б

4000

0,1

0,1

6,0

Д1006

6000

0,1

0,1

6,0

Д1007

8000

0,075

0,1

6,0

Д1008

10000

0,05

0,1

6,0

Д1009

2000

0,1

0,1

7,0

Д1009А

1000·2

0,1·2

0,1

3,5

Д1010

2000

0,3

0,1

11,0

8. Определив по графику на рис. 6.13 значение коэффициента H и задаваясь коэффициентом пульсаций Kп% на выходе выпрямителя по таблице 5, определяют емкость конденсатора, необходимую для получения заданного коэффициента пульсаций по формуле из таблицы 6

откуда имеем

9. По справочнику необходимо выбрать тип конденсатора, его номинальную емкость и номинальное напряжение. Номинальное напряжение конденсатора должно не менее чем на 20% превосходить значение напряжения на нагрузке.

studfile.net

Оставить комментарий

avatar
  Подписаться  
Уведомление о