Параллельное включение конденсаторов – » :

Параллельное соединение конденсаторов | Практическая электроника


Достаточно часто в электронных схемах применяют параллельное соединение конденсаторов в основном для получения большей общей емкости.
При параллельном соединении емкости складываются и результирующая емкость будет равна сумме емкостей объединенных конденсаторов.
Важно помнить, что максимальное напряжение которое выдержит эта сборка конденсаторов будет равно значению напряжения у самого низковольтного конденсатора.

Из того что было

Чаще всего параллелят конденсаторы на одинаковое напряжение, но от недостатка нужных компонентов под рукой можно изготовить и «икебану» подобрав разнородные конденсаторы на разные напряжения, емкость и род тока.
Главное помнить, что полярные конденсаторы можно использовать только на постоянном токе, причем нужно обязательно соблюдать полярность: чтобы на положительной обкладке конденсатора всегда был «+», а на отрицательной «-» . А вот неполярные конденсаторы можно применять как в цепях с переменным током, так и в цепях с постоянным.

Параллельно соединяем конденсаторы для борьбы с помехами

Чаще всего конденсатор используется для сглаживания и фильтрации напряжения в электронных схемах. Помехи с которыми должен бороться конденсатор могут иметь разные частоты.
Конденсаторы с маленькими значениями емкости (это обычно керамические и пленочные конденсаторы) лучше подавляют высокочастотные помехи, а конденсаторы с большими значениям емкости (танталовые, электролитические) низкочастотные помехи.
Казалось, бы ставь максимальную емкость и она отфильтрует коротенькие импульсы и достаточно длинные. Вот только в силу конструктивных особенностей конденсаторы с большими значениями емкости, имеют длинные выводы, длинные обкладки конденсаторов, все это создает распределенные индуктивности, которые в свою очередь мешают конденсатору фильтровать высокочастотные помехи.
Таким образом если нужно сгладить и отфильтровать сигнал, то нужно для сглаживания применять конденсатор с большим значением емкости, а для фильтрации помех — в параллель первому ставить второй высокочастотный.

hardelectronics.ru

1.4. Способы соединения конденсаторов

Возможны параллельное и последовательное соединения конденсаторов.

Припараллельном соединении (рис. 1.9) все конденсаторы находятся под одним напряжением U, а заряд, который они получают от источника энергии, равен сумме зарядов отдельных конденсаторов

гдеп — число конденсаторов;

к — порядковый номер конденсатора.

Следовательно, общая емкость параллельно соединенных конденсаторов по (1.9)равна сумме емкостей отдельных конденсаторов.

Припоследовательном соединении конденсаторов (рис. 1.10) общее напряжение равно сумме напряжений на отдельных конденсаторах

где п — число конденсаторов;

к — порядковый номер конденсатора.

Но заряд от источника энергии получают лишь внешние электроды двух крайних конденсаторов. На остальных попарно электрически соединенных электродах заряды создаются переносом положительного заряда на один электрод и отрицательного — на второй, которые равны между собой. Таким образом, при последовательном соединении конденсаторов их заряды одинаковы.

Так как заряд конденсатора равен произведению его емкости на приложенное к нему напряжение

то напряжения на конденсаторах равны

а общая емкость последовательно соединенных конденсаторов — Собщ

Если последовательно соединены n одинаковых конденсаторов каждый емкостью С0, то их общая емкость будет равна

1.5. Зарядка и разрядка конденсатора

Чтобы изменить скачком энергию конденсатора, необходим источник бесконечной мощности что невозможно.

Поэтому при зарядке и разрядке конденсатора его энергия, а следовательно, и напряжение на нем Uс не могут изменяться скачком. Это условие называется первым законом коммутации и записывается в виде

(1.16)

где и— моменты времени, непосредственно предшествующий моменту времении непосредственно следующий за моментом времениt, в который начинается зарядка или разрядка конденсатора.

Зарядка конденсатора.

Рассмотрим процесс зарядки конденсатора от источника постоянного напряжения Е=U (см. подразд. 2.7) через резистор сопротивлением R (см. подразд. 2.4) при замыкании в момент времени t=0 ключа К (рис. 1.11, а).

Напряжение источника равно сумме напряжений на резисторе и конденсаторе

или с учетом (2.1) и (1.13)

(1.17)

Разделим переменные в (1.17)

(1.18)

и проинтегрируем (1.18)

(1.19)

где неизвестная постоянная интегрирования записана в виде In А.

Умножив обе части равенства (1.19) на (-1) и заменив разность логарифмов логарифмом частного, после потенцирования получим

или

(1.20)

Для определения постоянной А в (1.20) обратимся к закону коммутации для емкостного элемента (1.16). Примем, что емкостный элемент до замыкания ключа, т. е. и в момент времени /= 0_, не был заряжен. Поэтому

ис(0_) = 0 = ис(0+)

= Е+А, откуда А = -Е.

Подставив значение постоянной А в (1.20), найдем напряжение на емкостном элементе во время его зарядки (рис. 1.11, б):

(1.21)

где τ = RC имеет размерность времени (Ом • Ф = Ом • А • с/В = с) и называется постоянной времени цепи. Она определяет скорость переходного процесса.

Напряжение на емкостном элементе (1.21) определяет зависимости от времени тока зарядки и напряжения на резисторе (рис. 1.11,5):

тогда

В первый момент после замыкания ключа t=0+ ток заряда в цепи скачком возрастает

от нуля i (0_) = 0

до i (0

+) = E/R.

При малом сопротивлении R в цепи может наблюдаться значительный скачок тока.

Процесс зарядки можно считать практически закончившимся через интервал времени Зτ, (при этом uc=0,95 E) который может быть достаточно большим, что используется, например, в реле времени — устройствах, срабатывающих по истечении определенного времени.

Разрядка конденсатора.

В электрическом поле заряженного емкостного элемента сосредоточена энергия (1.15), за счет которой емкостный элемент в течение некоторого времени сам может служить источником энергии. После подключения емкостного элемента, предварительно заряженного до напряжения ис= Е, к резистивному элементу сопротивлением

R (рис. 1.12, а) ток в цепи будет обусловлен изменением заряда q емкостного элемента (1.13):

(1.22)

где знак минус указывает на то, что ток i — это ток разрядки в контуре цепи, обозначенном на рисунке штриховой линией, направленный навстречу напряжению на емкостном элементе.

Разделим переменные в (1.22)

и проинтегрируем (1.23)

(1.24)

где неизвестная постоянная интегрирования записана в виде (-In А).

После потенцирования (1.24) получим

(1.25)

Для определения постоянной А в (1.25) обратимся к закону коммутации для емкостного элемента (1.16). Так как до коммутации, т.е. и в момент времени t=0_, емкостный элемент был заряжен до напряжения источника, то

ис (0_) = Е=ис

(0+)=А.

Подставив значение постоянной А в (1.25), получим зависимость изменения напряжения на емкостном элементе при его разрядке (рис. 1.12, б):

(1.26)

где τ = RC постоянная времени цепи.

Ток разрядки найдем по (1.22):

Ток разрядки скачком возрастает от нуля

i(0_) = 0 до i(0+) = E/R, а затем убывает экспоненциально (см. рис. 1.12, б).

Зарядка конденсатора при малых значениях тока и больших значениях ЭДС Ев цепи на рис. 1.12, а позволяет накопить в нем большую энергию, которая может использоваться при разрядке большим током в импульсных источниках.

ЗАДАЧИ И ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1.1. Конденсатор емкостью С = 1 Ф, имеющий заряд q = 1 Кл, в

момент времени t= 0 начинает разряжаться через резистор сопротивлением R= 1 Ом (см. рис. 1.12). Определите ток в резисторе в момент времени i=0,5 с.

Ответ: 0,6065 А.

1.2. Сохранив условия задачи 1.1, определите энергию конденсатора в момент времени t=0,5 с.

Ответ: 0,183 Дж.

1.3. Сохранив условия задачи 1.1, определите, какое количество энергии выделится в виде тепла в резисторе к моменту времени t= 0,5 с.

Ответ: 0,317 Дж.

1.4. Плоский конденсатор (см. рис. 1.7, а) состоит из двух листов фольги каждый площадью 20 см2, разделенных слоем парафина (см. табл. 1.1) толщиной 0,05 мм с относительной диэлектрической проницаемостью εr = 2,1. Определите емкость конденсатора.

Ответ: 0,745 нФ.

  1. Дайте определения электрического потенциала и разности электрических потенциалов.

  2. Дайте определения линейных и нелинейных емкостных элементов.

  3. Определите общую емкость двух конденсаторов, включенных параллельно, емкостью 1 мкФ каждый (см. рис. 1.9).

Ответ: 2 мкФ.

1.8. Определите общую емкость двух конденсаторов, включенных последовательно, емкостью 2 мкФ каждый (см. рис. 1.10).

Ответ: 1 мкФ.

3

studfile.net

Последовательное и параллельное соединение конденсаторов


Последовательное и параллельное соединение конденсаторов применяют в зависимости от поставленной цели. При последовательном соединении конденсаторов уменьшается общая емкость и увеличивается общее напряжение конденсаторов.
Емкость набора при последовательном соединении конденсаторов будет вычисляться по формуле:

1 = 1 + 1 + 1 + ...
C C1 C2 C3

А общее напряжение будет равняться сумме напряжений всех конденсаторов.
Например: мы имеем три конденсатора по 30 мкФ x 100 В каждый. При их последовательном соединении общий конденсатор будет иметь следующие данные: 10 мкФ x 300 В.

При параллельном соединении общая емкость конденсаторов складывается, а допустимое напряжение всего набора будет равно напряжению конденсатора, имеющего самое низкое значение допустимого напряжения из всего набора.

C = C1 + C2 + C3 + C4 + ...

Например: мы имеем три конденсатора 30 мкФ x 100 В, соединённые параллельно. Параметры всего набора конденсаторов в этом случае будут следующие: 90 мкФ x 100 В.

Соединение более двух конденсаторов последовательно редко встречается в реальных схемах. Хотя для увеличения общего напряжения такой набор может встретиться в высоковольтных источниках питания. А вот в низковольтных источниках довольно часто встречается параллельное соединение нескольких конденсаторов для сглаживания пульсаций после выпрямления при больших токах потребления.

Обратите внимание, формулы вычисления емкости последовательного и параллельного соединения конденсаторов в точности обратны формулам вычисления сопротивления при последовательном и параллельном соединении резисторов.


katod-anod.ru

Схемы соединения конденсаторов

При проектировании и построении различных электрических цепей широко используются конденсаторы (емкости). В разрабатываемых схемах они могут соединяться как с другими электронными компонентами, так и между собой. Во втором случае такие соединения подразделяются на последовательные, параллельные, и последовательно-параллельные. Нужно еще отметить, что последовательно-параллельные соединения конденсаторов иначе называются смешанными.

Последовательное соединение конденсаторов

Это способ соединения конденсаторов ( электрических емкостей ) используется тогда, когда то напряжение, которое к ним подводится, выше чем то, на которое они рассчитаны. Используется оно в подавляющем большинстве случаев для того, чтобы избежать пробоев этих элементов устанавливаемых в электронных схемах.

Конденсаторы, соединенные между собой последовательно – это, по сути дела, цепочка. В ней вторая обкладка первого элемента соединяется с первой обкладкой второго; первая обкладка третьего – со второй второго и так далее.

Последовательное соединение конденсаторов

 

Напряжение на конденсаторах обратно пропорционально ёмкостям конденсаторов.

 

Cобщ =

C1 × C2 × C3

C1 + C2 + C3

 

Наибольшее напряжение будет на конденсаторе с наименьшей ёмкостью.

Параллельное соединение конденсаторов

Этот способ соединения конденсаторов используется тогда, когда необходимо существенно увеличить их общую емкость. Суть такого наращивания состоит в том, что значительно возрастает общая площадь пластин по сравнению с той, которую имеет каждый конденсатор в отдельности. Что касается общей емкости всех конденсаторов, соединенных друг с другом параллельно, то она равняется сумме емкостей каждого из них.

Параллельное соединение конденсаторов

 

 

 

  • Cобщ = C1 + C2 + C3
  • Uобщ = U1 = U2 = U3
  • qобщ = q1 + q2 + q3
Смешанное соединение конденсаторов

Как нетрудно догадаться из самого названия, этот тип соединения конденсаторов представляет собой ни что иное, как некую комбинацию описанных выше. То есть, смешанное соединение конденсаторов – это сочетание их соединения параллельного и последовательного.

На практике в большинстве случаев оно используется тогда, когда отдельные элементы по таким характеристикам, как емкость и рабочее напряжение, не соответствуют тем параметрам, которые нужны для функционирования электротехнической установки. Когда конденсаторы соединяются между собой именно по такой схеме, то в первую очередь определяются те эквивалентные емкости, которые имеют их параллельные группы, а затем та емкость, которую имеет соединение последовательное.

Смешанное соединение конденсаторов

 

 

C2;3 = C2 + C3

 

 

Cобщ =

C1 × C2;3

C1 + C2;3

selectelement.ru

0 comments on “Параллельное включение конденсаторов – » :

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *