Трансформаторы постоянного тока принцип действия – Принцип работы трансформатора постоянного тока и напряжения

Принцип работы трансформатора постоянного тока и напряжения

Для того чтобы увеличить или уменьшить постоянный потенциал применяют соответствующий трансформатор. Этот преобразователь имеет магнитопровод, который выполнен как магнитная система, а в его пазах находятся обмотки (первичная и вторичная) и их коммутаторы. Последние – это включенные управляемые полупроводниковые вентили.

Для преобразования постоянного потенциала одной величины в другую применяют вращающееся магнитное поле, оно создается в обвивке (первичной).

Большой трансформатор постоянного тока

Это производят переключением вентилей и подачей импульсов тока на электроды, которые передвинуты по отношению друг к другу на определенный угол (зависит от того сколько секций имеет трансформатор постоянного тока), а в результате уменьшаются потери, массогабаритные значения и увеличивается надежность и КПД.

Где применяют такие приборы

Они позволяют повысить тот потенциал, который вырабатывает источник переменного электричества, установленный на электростанции, и передают его на большое расстояние, при этом напряжение бывает высоким (от 110 до 1150 кВ). Этим уменьшают потерю энергии, и возможно применять провода меньшего сечения.

Передаваемое напряжение от высоковольтной линии снижают, применив преобразователи до 600, 380, 220 и 127 В. На таких показателях работают бытовые приборы в жилых домах и промышленные — на производствах.

Трансформаторы применяют и на подстанциях, здесь они необходимы для того чтобы уменьшить напряжение, которое подают к контактному двигателю или вспомогательной цепи.

Такие аппараты бывают тяговыми, лабораторными и др., но все они считаются силовыми. Их применяют для подключения электроприборов, электросварки и др. Трансформаторы имеют одну- , три фазы, две- и множество обмоток.

Как работает этот аппарат

Рассмотрим принцип работы трансформатора, который основан на таком явлении, как электромагнитная индукция. Самый простой аппарат имеет стальной магнитопровод и две обвивки, которые изолированы и не связаны друг с другом электрически. К первичной обвивке подают переменную эл.энергию, а к вторичной, через выпрямитель, подключают потребителей.

Для работы тягового аппарата осуществляют связь управляющей размагничивающей обмотки с потенциалом генератора. Источником питания является вторичная обмотка распределяющего трансформатора, в цепь которого входят аппараты постоянного напряжения. Они и регулируют величину электричества в главной обмотке, которая зависима от потенциала тягового генератора.

По принципу работы трансформатор постоянного потенциала это простой магнитный усилитель, который имеет две обвивки — рабочую и управляющую обмотки, причем последняя (управляющая) не имеет обратной связи.

Трехфазный понижающий трансформатор

Этот аппарат состоит из двух сердечников, имеющих тороидальную форму. Их изготовляют из пермаллоя (сплав, имеющий ферромагнитные свойства), это лента имеет толщину 0,2 мм. На сердечниках имеется катушка с обмоткой (употребляют только медный провод с сечением 1мм). Все залито эпоксидной смолой или подобной смесью, которая не дает влаге попасть внутрь, и обеспечивает долгую и надежную эксплуатацию трансформатору.

Если хотят установить преобразователь на тепловоз, то применяют для этого угольники и стягивают их шпильками. Обвивку управления аппарата стабильного потенциала включают на выходы генератора, пропуская его через резистор. Исходя из этого, сила тока преобразователя, всегда прямо пропорциональна ампиражу тягового агрегата. Поэтому электричество в рабочих обмотках всегда пропорционально не только напряжению генератора, но и току подмагничивания.

Значит, при увеличении вольтажа генератора, на ту же величину растет ток, выходящий из преобразователя со стабильным напряжением. А так как в цепи автоматики используют слабое электричество, то максимальный трансформаторный ампираж на выходе не будет выше 3 А.

Аппарат для стабильного электричества и трансформатор постоянного напряжения идентичны, только первый без управляющей обмотки. Для того чтобы его подмагнитить через дырочки сердечника проходит гибкий провод. По нему проводят ток от двух двигателей, при его росте, увеличивается подмагничивание и растет электричество обвивки на выходе.

Отсюда, можно сделать вывод, что ток, образующийся в рабочей цепи преобразователя прямо пропорционален сумме этой же величины, но двух электрических двигателей (тяговых). В рабочей цепи преобразователя электричество может иметь максимальную величину, которая составит до 3 А.

Вместо заключения

Аппарат, работающий на стабильном токе, может преобразовывать ток большого значения в пропорциональную слабую величину, которую можно использовать для того чтобы автоматически регулировать напряжение генератора (тягового).

Статья была полезной? Оцени и поделись ей в соц. сетях:
 Loading ...

Советуем почитать по теме:

expertelektrik.ru

Измерительные трансформаторы тока и напряжения

Измерительные трансформаторы тока и напряжения применяются на промышленных предприятиях, в линиях электропередач для контроля различного электрического оборудования. Аварийность высоковольтных измерительных трансформаторов контролируется соответствующими системами. С их участием ведется учет потребления электричества. Что собой представляют измерительные трансформаторы напряжения и тока, назначение и принцип действия установок будет рассмотрено далее.

Разновидности

Высоковольтное измерительное оборудование включает в себя два типа устройств. В эту категорию устройств входят:

  • Измерительный трансформатор напряжения.
  • Измерительный трансформатор тока.

Первая категория приборов предназначена для работы вольтметров, фазометров, реле соответствующих типов. В область работы измерительных трансформаторов тока входит осуществление функционирования амперметров и прочего подобного оборудования.

Представленные типы измерительных трансформаторов производятся с номинальной мощностью от 5 до нескольких сот ВА. Измерительные трансформаторы тока и напряжения предназначены для совместной работы с вольтметрами на 100 В и амперметрами 1-5 А.

Трансформатор тока

Измерительными преобразователями тока выполняется несколько особых функций. К ним подключаются установки, которые выполняют измерение работы оборудования в разных режимах. Принцип действия, которым характеризуется трансформатор тока, обеспечивает несколько основных функций аппаратуры. К ним относится следующее:

  • Преобразование переменных токовых показателей к значениям 1 или 5 А.
  • В нормальном режиме изолируют вторичный токовый контур от высоковольтной составляющей первичной обмотки.
  • Снижение аварийности. Установка предотвращает поражение обслуживающего персонала током, защиту вторичных цепей от перегрузки.

Измерительные трансформаторы постоянного тока помимо перечисленных функций имеют в своем составе выпрямитель. Вторичные цепи заземляются во всех трансформаторах в одной точке. При повреждении изоляции монтаж измерительных трансформаторов позволяет предотвратить перегрузку вторичного контура.

Условия эксплуатации

Измерительные трансформаторы постоянного тока, переменного тока представляют собой высоковольтный агрегат. Прибор нормально функционирует только при выполнении правил по эксплуатации, требований охраны труда. Персонал знакомится со всеми установленными нормами, в каком режиме производится обслуживание, испытание измерительного оборудования. Сотрудники допускаются до работы с трансформатором только после полного инструктажа.

Персонал должен знать, при каких условиях производится испытания, осмотр, поверка и ремонт измерительных трансформаторов. В противном случае даже при условии правильного монтажа работу технической установки могут нарушить неправильные действия сотрудников.

Принцип устройства конструкции запрещает размыкать вторичную обмотку в трансформаторе, которая находится под напряжением. Такому действию сопутствует нарушение изоляции. Потребуется произвести ее замену. Сердечник перегревается. Нормальный режим работы нарушается. В процессе постоянных перегрузок трансформатору становится невозможно выполнять возложенные на него действия. Работает в этом случае неправильно и первичная обмотка. Здесь появляется замыкание. Это также приводит к замене контура.

Чтобы переключить в процессе испытаний в схеме при подведенном электрическом токе, предварительно вторичную катушку закорачивают.

Погрешность

Измерительные выпрямители и трансформаторы тока нуждаются в проверке погрешности. В ходе испытательного процесса к агрегату присоединяется аналогичное оборудование. При монтаже важно, чтобы при поверке техники применялся образцовый, исправный трансформатор тока. В ходе измерений на его вторичном контуре определяется показатель при помощи амперметра.

Испытание оборудования определяет не только погрешность, но и ряд других показателей. В ходе поверки вычисляется коэффициент трансформации, производится техническое освидетельствование качества изоляции контуров, состояние сердечника. Исследуется вопрос о том, выполняется ли установкой возложенные на нее функции, соответствует ли полярность обмоток заданным производителем характеристикам.

При проведении технического освидетельствования соответствия оборудования нормативным требованиям производится контроль вторичных цепей. В случае выявления отклонений, дефектов, требуется замена комплектующих. В зависимости от назначения аппаратура должна демонстрировать заявленные производителем характеристики.

Трансформатор напряжения

Измерительные трансформаторы напряжения применяются для понижения напряжений первичного контура с уровня 110, 40, 6, 10 кВ и т. д. Таким трансформаторам доступно выполнять ряд функций:

  • Преобразовывать первичное переменное напряжение в стандартный электрический ток.
  • Защита обслуживающего персонала, подключенных приборов от перегрузок.
  • Техническая поддержка оперативных цепей, которые работают от постоянного и переменного тока

По принципу функционирования измерительные трансформаторы напряжения приближаются к режиму холостого хода. Пользуются спросом такие разновидности представленной измерительной техники, как НТМК, НАМИ, НОЛ и прочие агрегаты. Установки работают с постоянным и переменным током, которые соответствуют назначению. Мы уже писали про трансформаторы НТМИ, подробнее читайте здесь.

Конструкция

Конструкция приборов измерительного типа схожа на обычные силовые разновидности оборудования. Агрегат имеет первичную и вторичную (одну или несколько) обмотки. Активная часть включает в себя серечник из специальной электротехнической стали. Материал набран в виде пластин определенной конфигурации.

Первичный контур имеет большее количество витков, чем на вторичной катушке. На него подается напряжение от сети. К выводам вторичной обмотки подсоединяется ваттметр или иное подобное измерительное оборудование. Оно характеризуется высоким сопротивлением. Поэтому в ходе нормальной работы по вторичной обмотке подается ток с малым значением.

 

На выходе устройство может коммутироваться с различными реле, вольтметром, ваттметром. Принцип действия системы похож на работу силового оборудования. Работа производится с переменным значением электрического тока. Чтобы преобразовать его в постоянную величину, используется в конструкции выпрямитель.

Погрешность

Класс точности представленного оборудования зависит от определенных факторов. На этот показатель влияют потери при намагничивании. На величину погрешности измерительного преобразователя напряжения влияют следующие факторы:

  • Проницаемость электротехнической стали сердечника.
  • Конструкционное исполнение магнитопривода.
  • Коэффициент мощности, который определяется вторичной нагрузкой.

Оборудование способно компенсировать погрешность показателя напряжения при уменьшении количества витков в первичной катушке. Компенсирующие обмотки влияют на уменьшение угловой погрешности.

Обслуживание

Перед монтажом, запуском в эксплуатацию производится испытание представленного оборудования. При измерениях выполняется изучение режимов работы поверяемых агрегатов, а также контроль изоляционных слоев.

В измерительном процессе применяется соответствующая техника. Поверка производится в условиях производства оборудования. После монтажа также необходимо производить соответствующую оценку работы оборудования заявленным характеристикам. Если будут выявлены отклонения, выполняется ремонт измерительных трансформаторов.

Периодически в соответствии с условиями эксплуатации производится техническое обслуживание агрегата. На это влияет тип конструкции. Соответствующее обслуживание аппаратуры позволяет избежать сбоев в работе системы, непредвиденных поломок, остановок в работе.

Установкой, обслуживанием представленной техники имеет право заниматься только квалифицированный персонал. В противном случае это будет небезопасно для сотрудников. Неправильное обслуживание приводит к нарушению работы техники.

Рассмотрев особенности измерительных преобразовательных приборов, можно понять их отличие, особенности эксплуатации и обслуживания. Это поможет подобрать оборудование, необходимое для обеспечения соответствующих потребителей электрическим током заданного значения.

protransformatory.ru

Трансформатор постоянного тока

 

Использование: для преобразования постоянного напряжения одного уровня в постоянное напряжение другого уровня. Трансформатор содержит магнитопровод, выполненный в виде магнитной системы электромашинного типа, в пазах которого размещены первичная и вторичная силовые обмотки в виде секций и управляемые полупроводниковые коммутаторы первичной и вторичной обмоток, выполненные в виде прямо и обратно включенных управляемых полупроводниковых вентилей. Преобразование напряжения в трансформаторе происходит за счет вращающегося магнитного поля, создаваемого в первичной обмотке при подаче постоянного входного напряжения, путем переключения прямо и обратно включенных вентилей коммутаторов подачей токовых импульсов на управляемые электроды, сдвинутые относительно друг друга на угол, определяемый числом секций трансформатора. Технический результат заключается в уменьшении потерь, массогабаритных показателей, а также увеличении кпд и надежности. 1 ил.

Изобретение относится к электротехнике и предназначено для преобразования постоянного напряжения одной величины в постоянное напряжение другой величины.

Такая задача решается путем достаточно сложного применения системы устройств, в которую входят: источник питания постоянного напряжения, автономный инвертор напряжения, силовой трансформатор, полупроводниковый выпрямитель, сглаживающий фильтр, стабилизатор напряжения, регулятор и система управления (см. Основы промышленной электроники под ред. проф. В.Г. Герасимова. M. 1978, стр. 178-212). Система преобразователей, реализующих изменение постоянного напряжения одной величины в постоянное напряжение другой величины, подробно приведена в работе И. М. Чиженко, В.С. Руденко, В.И. Сенько. Основы преобразовательной техники. М. 1974, стр. 221-223. Однако такое техническое решение имеет ряд существенных недостатков. Гармоники напряжений и токов, генерируемые системой преобразователей, загружают сеть, вызывают потери, снижающие кпд устройства. Помехи, вызываемые этими гармониками, оказывают вредное воздействие на окружающую электро- и радиоаппаратуру и установки различного назначения. Система преобразователя, состоящая из многих каскадов или блоков, потребляет из питающей энергетической сети большое количество реактивной мощности, негативно влияющей на основные технико-экономические показатели всего устройства в целом. Наличие большого количества элементов, входящих в блоки и каскады системы преобразователя, снижают обилую надежность последнего. Наконец, такая система преобразования постоянного напряжения одного уровня в постоянное напряжение другого уровня обладает большими массогабаритными показателями, требующими затрат полезной площади и ухудшающими его транспортировку, а также увеличивающими стоимость ремонтно-профилактических работ. Задачей, на решение которой направлено настоящее изобретение, является устранение указанных недостатков, т.е. уменьшение потерь, массогабаритных показателей, а также увеличение кпд и надежности устройства. Указанная цель достигается тем, что трансформатор постоянного тока содержит магнитопровод, выполненный в виде магнитной системы электромашинного типа, в пазах которого размещены первичная и вторичная силовые обмотки в виде секций, а переключающие элементы выполнены в виде коммутаторов первичной и вторичной обмоток, состоящих из управляемых полупроводниковых вентилей, размещенных между первичной обмоткой и токопроводящими шинами, выполненными кольцеобразными и подключенными к зажимам входного напряжения и, соответственно, между вторичной обмоткой и токопроводящими шинами, выполненными кольцеобразными и подключенными к зажимам выходного напряжения, при этом в коммутаторе первичной обмотки катоды прямо включенных и аноды обратно включенных вентилей соединены между собой и подключены к секциям первичной обмотки, а аноды прямо включенных и катоды обратно включенных вентилей соединены с токопроводящими шинами, подключенными соответственно к положительному и отрицательному зажимам входного напряжения, в коммутаторе вторичной обмотки аноды прямо включенных и катоды обратно включенных вентилей соединены между собой и подключены к секциям вторичной обмотки, а катоды прямо включенных и аноды обратно включенных вентилей соединены с токопроводящими шинами, подключенными соответственно к отрицательному и положительному зажимам выходного напряжения. Сущность изобретения поясняется чертежом, где представлена электрическая схема трансформатора постоянного тока, который состоит из первичной силовой обмотки 1, разделенной на N отдельных секций 2 (в данном случае N=6), размещенных в пазах магнитопровода, выполненного в виде магнитной системы электромашинного типа, и вторичной силовой обмотки 3, аналогично разделенной на N отдельных секций 4, также размещенных в пазах магнитопровода. Секции 2 первичной силовой обмотки и секции 4 вторичной силовой обмотки соединены в обеих силовых обмотках между собой последовательно. К секциям 2 присоединен управляемый полупроводниковый коммутатор УПК-I, состоящий из прямо включенных 5-10 и обратно включенных 11-16 полупроводниковых вентилей, в качестве которых используются GTO - запираемые тиристоры. Аналогично, к секциям 4 присоединен управляемый полупроводниковый коммутатор УПК-II, также состоящий из прямо включенных 17-22 и обратно включенных 23-28 полупроводниковых вентилей - GTO - запираемых тиристоров. Как первичная силовая обмотка 1, так и вторичная силовая обмотка 3 трансформатора выполнены замкнутыми. Аноды прямо включенных вентилей 5-10 УПК-I присоединены к кольцеобразной токопроводящей шине 29, соединенной с положительным зажимом постоянного входного напряжения U1. Катоды обратно включенных вентилей 11-16 присоединены к кольцеобразной токопроводящей шине 30, соединенной с отрицательным зажимом входного напряжения U1. Катоды прямо включенных вентилей 5-10 последовательно соединены с анодами обратно включенных вентилей 11-16 и подсоединены к точкам соединения секций 2 первичной обмотки 1 трансформатора (А, В, С, D и т.д.). Аналогичным образом устроена цепь вторичного управляемого коммутатора УПК-II. Здесь аноды прямо включенных вентилей 17-22 и катоды обратно включенных вентилей 23-28 последовательно соединены между собой и подсоединены к точкам соединения секций 4 вторичной обмотки 3 трансформатора. Катоды прямо включенных вентилей 17-22 присоединены к кольцеобразной токопроводящей шине 31, соединенной с отрицательным зажимом постоянного выходного напряжения U2. Аноды обратно включенных вентилей 23-28 присоединены к кольцеобразной токопроводящей шине 32, соединенной с положительным зажимом выходного напряжения U2. Работа трансформатора постоянного тока осуществляется с помощью вращающегося магнитного поля, создаваемого в первичной обмотке 1 трансформатора, путем последовательного переключения прямых 5-10 и обратных 11-16 управляемых вентилей коммутатора УПК-I, при поступлении токовых импульсов на управляемые электроды этих вентилей, подаваемых с системы управления. В первом интервале времени токовые импульсы подаются на диаметрально расположенные прямо включенный 5 и обратно включенный 14 вентили УПК-I первичной силовой обмотки 1 трансформатора и они открываются. Все остальные вентили первичной обмотки при этом закрыты. Первичный ток проходит от положительного зажима входного напряжения U1 через токопроводящую жилу 29, вентиль 5 и в точке А разветвляется на две параллельные ветви А и В, возвращаясь через вентиль 14 к отрицательному зажиму входного напряжения U1 через токопроводящую шину 30. Точки А и В определяют пространственное направление магнитного поля трансформатора. Это магнитное поле первичной обмотки 1 индуктирует в параллельных ветвях вторичной обмотки 3 трансформатора эдс. Синхронно с импульсами, поступающими на вентили 5 и 14, на прямо включенный вентиль 17 и обратно включенный вентиль 26 УПК-II вторичной обмотки 3 поступают аналогичные токовые импульсы системы управления и они открываются. Все остальные вентили вторичной обмотки 3 при этом также закрыты. Под действием индуктируемой во вторичной обмотке трансформатора эдс в ней протекает вторичный ток, создающий выходное напряжение U2. Цепь вторичного тока: вентиль 17, токопроводящая шина 31, отрицательный зажим выходного постоянного напряжения U2, положительный зажим выходного постоянного напряжения U2, токопроводящая шина 32, вентиль 26, вторичная обмотка 3 трансформатора. Через интервал времени t: где и - угловая частота импульса управления, на диаметрально расположенные соседние вентили 6 и 15 УПК-I первичной обмотки 1 и вентили 18 и 27 УПК-II вторичной обмотки 3 подаются токовые импульсы системы управления и они открываются. Вентили 5 и 14 УПК-I первичной обмотки 1 и вентили 17 и 26 УПК -II вторичной обмотки 3 при этом закрываются. Все остальные вентили УПК-I и УПК-II по прежнему закрыты. В этом интервале времени цепь первичного тока: положительный зажим входного напряжения U1, токопроводящая шина 29, точка С, две параллельные ветви С и D, точка D, вентиль 15, токопроводящая шина 30, отрицательный зажим входного напряжения U1. Цепь вторичного тока: вторичная обмотка 3, вентиль 18, токопроводящая шина 31, отрицательный зажим выходного напряжения U2, положительный зажим U2, токопроводящая шина 32, вентиль 27, вторичная обмотка 3 трансформатора. Пространственное направление магнитного поля определяется в этом случае точками С и D, которые смещены относительно точек А и В по окружности на угол . На этот угол магнитное поле первичной обмотки 1 трансформатора повернуто в пространстве. В третьем интервале времени открываются вентили 7 и 16 УПК-I и вентили 19 и 28 УПК-II, а вентили 6 и 15 УПК-I и 18 и 27 УПК-II закрываются. Все остальные вентили, как и в предыдущих интервалах времени, закрыты. Магнитное поле первичной обмотки 1 трансформатора сдвигается в пространстве еще на угол . Таким образом, через N интервалов времени магнитное поле сделает один оборот, равный , в течение времени где fи - частота подаваемых на управляющие электроды вентилей импульсов, формируемых системой управления. Угловая скорость вращения магнитного поля равна мп = и = 2fи. Процентное колебание напряжения можно оценить выражением
,
при
N=6 - U%=7,2
N=8 - U%=4
N=10 - U%=2,5
Предлагаемый трансформатор постоянного тока предназначен для использования в энергосистемах, энергетических сетях и линиях электропередач, кабелях постоянного тока с разным уровнем напряжения и позволит за счет уменьшения потерь, массогабаритных показателей, а также увеличения кпд и надежности этих систем и устройств существенно улучшить их технико-экономические показатели.


Формула изобретения

Трансформатор постоянного тока, содержащий первичную и вторичную силовые обмотки, переключающие элементы, подключенные к первичной и вторичной обмоткам, магнитопровод и токопроводящие шины, отличающийся тем, что магнитопровод выполнен в виде магнитной системы электромашинного типа, в пазах которого размещены первичная и вторичная силовые обмотки в виде секций, при этом секции первичной обмотки, также как и секции вторичной обмотки соединены между собой последовательно, а переключающие элементы выполнены в виде коммутаторов первичной и вторичной силовых обмоток, состоящих из управляемых полупроводниковых вентилей, размещенных между первичной обмоткой и токопроводящими шинами, выполненными кольцеобразными и подключенными к зажимам входного напряжения и, соответственно, между вторичной обмоткой и токопроводящими шинами, выполненными кольцеобразными и подключенными к зажимам выходного напряжения, при этом в коммутаторе первичной обмотки катода прямо включенных и аноды обратно включенных управляемых полупроводниковых вентилей соединены между собой и подключены к секциям первичной обмотки, а аноды прямо включенных и катоды обратно включенных управляемых полупроводниковых вентилей соединены с токопроводящими шинами, подключенными соответственно к положительному и отрицательному зажимам входного напряжения, и последовательное переключение диаметрально расположенных прямо включенных и обратно включенных управляемых полупроводниковых вентилей коммутатора первичной обмотки ведет к созданию в ней вращающегося магнитного поля, а в коммутаторе вторичной обмотки аноды прямо включенных и катоды обратно включенных управляемых полупроводниковых вентилей соединены между собой и подключены к секциям вторичной обмотки, а катоды прямо включенных и аноды обратно включенных управляемых полупроводниковых вентилей соединены с токопроводящими шинами, подключенными, соответственно, к отрицательному и положительному зажимам выходного напряжения.

РИСУНКИ

Рисунок 1

findpatent.ru

Как работает трансформатор?

  Рассмотрим принцип работы трансформатора на примере однофазного двухобмоточного трансформатора, электромагнитная схема которого представлена ниже:

На замкнутом магнитопроводе из ферромагнитного материала расположены две обмотки, первичная и вторичная. На первичную обмотку подаётся входное напряжение U1 от источника переменного тока (электрической сети), а к вторичной, на которой наводится (индуктируется) переменное напряжение  U2, подключается нагрузка, имеющая сопротивление Zн. Применение ферромагнитного магнитопровода даёт возможность уменьшать магнитное сопротивление контура, по которому замыкается магнитный поток, что положительно отражается на усилении электромагнитной связи между обмотками.

В подключенной к сети первичной обмотке трансформатора протекает переменный ток, который в свою очередь создаёт переменный магнитный поток Ф, замыкающийся по магнитопроводу. Переменный магнитный поток Ф индуцирует в обеих обмотках переменные электродвижущие силы (ЭДС) е1 и е2. Мгновенные значения этих ЭДС, согласно закону Максвелла, пропорциональны числу витков w1 и w2 соответствующих обмоток и скорости изменения магнитного потока dФ/dt, определяются выражением:

Из этого следует, что отношение действующих и мгновенных значений ЭДС в обмотках можно представить как:

Падением напряжения в обмотках трансформатора можно пренебречь, поскольку оно обычно составляет 3%…5% от номинальных значений,  и считать что E1≈U1 и E2≈U2 . Тогда получим:

Из этого равенства отношений, напряжений и количества витков соответствующих обмоток, следует, что подобрав (рассчитав) количество витков обмоток при заданном напряжении U1 можно получить желаемое напряжение U2 (то есть U2< U1, U2>U1 или  U2=U1).

Если надо получить U2< U1, то количество витков w2 вторичной обмотки должно быть меньше количества витков w1 первичной обмотки, такой трансформатор называют понижающим. Если же надо получить U2>U1, то количество витков w2 вторичной обмотки должно быть больше количества витков w1 первичной обмотки, такой трансформатор называют повышающим.

Предположим, что количество витков w1 первичной обмотки больше количества витков w2 вторичной обмотки. Это значит что в дальнейшем мы будем рассматривать работу двухобмоточного понижающего трансформатора.

Важным параметром, которым широко пользуются в электротехнических расчетах, является коэффициент трансформации, представляющий собой отношение ЭДС обмотки высшего напряжения Ев.н. к ЭДС обмотки низшего напряжения Ен.н. (или отношение числа витков wв.н.  обмотки высшего напряжения к числу витков wн.н.  обмотки низшего напряжения).

Следует обратить внимание, что значение коэффициента трансформации всегда больше единицы (поскольку всегда Ев.н. > Ен.н., wв.н.  > wн.н.).

В электроэнергетике в системах распределения и передачи энергии применяют также и трехобмоточные  трансформаторы, а для устройств автоматики и радиоэлектроники – многообмоточные трансформаторы. На магнитопроводе этих трансформаторов находится три или большее число изолированных друг от друга обмоток. Это даёт возможность получать большее число напряжений (U2, U3, U4 и так далее, необходимых для питания различных групп электрических цепей), подавая напряжение (U1) только на одну (первичную) обмотку.

Трансформаторы преобразуют только напряжения и токи, оставляя мощность приблизительно постоянной (входная мощность первичной обмотки должна равняться сумме мощностей вторичных обмоток с учётом, как правило, незначительных, внутренних потерь энергии в самом трансформаторе). В случае с двухобмоточным понижающим трансформатором, увеличение напряжения на вторичной обмотке  (без изменения напряжения на первичной) в k раз должно привести к уменьшению тока во вторичной обмотке в k раз:

Ведь   мощность P=U∙I∙сos φ , U1∙I1∙cos φ ≈ U2∙I2∙cos φ  , отсюда I2 ≈ U1∙I1/ U2

Для трансформаторов важной особенностью является то, что они могут работать только в цепях переменного тока. Если подключить к цепи постоянного тока первичную обмотку трансформатора, то в его магнитопроводе образуется магнитный поток, но он будет постоянным по направлению, величине и времени. Поэтому, в установившемся режиме, в обмотках трансформатора (как первичной, так и вторичной) не будет индуктироваться ЭДС (формула 1а) . Как следствие, не будет выполняться передача электроэнергии из первичной цепи во вторичную. При этом из-за отсутствия, противоЭДС Е1, ток I1 в первичной обмотке резко возрастает и становится равным I1=U1/r1 (где r1 – сопротивление обмотки w1). Поэтому, подключение к цепи постоянного тока, может представлять серьёзную опасность для трансформатора и не только.

Среди важных свойств трансформатора следует выделить его способность преобразовывать величину нагрузочного сопротивления. Например, если к источнику переменного тока подключить сопротивление r не напрямую, а через трансформатор с коэффициентом трансформации k, то его величина для цепи источника становится равной:

где Р1 — это мощность, которую трансформатор потребляет от источника переменного тока; Р2= I2²∙r ≈ P1— мощность, которую потребляет сопротивление r от трансформатора.

Из этого можно сделать вывод, что трансформатор изменяет величину сопротивления r для цепи источника переменного тока в k² раз. Поэтому, это свойство часто используют разработчики электрических схем для согласования сопротивления источника электроэнергии с сопротивлением нагрузки.

elenergi.ru

Трансформаторы тока назначение и принцип действия

Содержание:
  1. Что такое трансформатор тока
  2. Назначение и принцип работы
  3. Классификация трансформаторов тока
  4. Основные параметры и характеристики
  5. Возможные неисправности трансформаторов тока

В электротехнике довольно часто возникает необходимость измерения величин с большими значениями. Для решения этой задачи применяются трансформаторы тока, назначение и принцип действия которых делает возможным проведение любых измерений. С этой целью выполняется последовательное включение первичной обмотки устройства в цепь с переменным током, значение которого необходимо измерить. Вторичная обмотка подключается к измерительным приборам. Между токами в первичной и вторичной обмотке существует определенная пропорция. Все трансформаторы этого типа отличаются высокой точностью. В их конструкцию входит две и более вторичных обмоток, к которым подключаются защитные устройства, измерительные средства и приборы учета.


Что такое трансформатор тока?

К трансформаторам тока относятся устройства, в которых вторичный ток, применяемый для измерений, находится в пропорциональном соотношении с первичным током, поступающим из электрической сети.

Включение в цепь первичной обмотки осуществляется последовательно с токопроводом. Подключение вторичной обмотки выполняется на какую-либо нагрузку в виде измерительных приборов и различных реле. Между токами обеих обмоток возникает пропорциональная зависимость, соответствующая количеству витков. В трансформаторных устройствах высокого напряжения выполняется изоляция между обмотками из расчета на полное рабочее напряжение. Как правило производится заземление одного из концов вторичной обмотки, поэтому потенциалы обмотки и земли будут примерно одинаковыми.

Все трансформаторы тока предназначены для выполнения двух основных функций: измерения и защиты. В некоторых устройствах обе функции могут совмещаться.

  • Измерительные трансформаторы передают полученную информацию к подключенным измерительным приборам. Они устанавливаются в цепях с высоким напряжением, в которые невозможно включить напрямую приборы для измерений. Поэтому только во вторичную обмотку трансформатора выполняется подключение амперметров, счетчиков, токовых обмоток ваттметров и прочих приборов учета. В результате, трансформатор преобразует переменный ток даже очень высокого значения, в переменный ток с показателями, наиболее приемлемыми для использования обычных измерительных приборов. Одновременно обеспечивается изоляция измерительных приборов от цепей с высоким напряжением, повышается электробезопасность обслуживающего персонала.
  • Защитные трансформаторные устройства в первую очередь передают полученную измерительную информацию на устройства управления и защиты. С помощью защитных трансформаторов, переменный ток любого значения преобразуется в переменный ток с наиболее подходящим значением, обеспечивающим питание устройств релейной защиты. Одновременно выполняется изоляция реле, к которых имеется доступ персонала, от цепей высокого напряжения.

Назначение трансформаторов

Трансформаторы тока относятся к категории специальных вспомогательных приборов, используемых совместно с различными измерительными устройствами и реле в цепях переменного тока. Главной функцией таких трансформаторов является преобразование любого значения тока до величин, наиболее удобных для проведения измерений, обеспечения питания отключающих устройств и обмоток реле. За счет изоляции приборов, обслуживающий персонал оказывается надежно защищен от поражения током высокого напряжения.

Измерительные трансформаторы тока предназначены для электрических цепей с высоким напряжением, когда отсутствует возможность прямого подключения измерительных приборов. Их основное назначение заключается в передаче полученных данных об электрическом токе на измерительные устройства, подключаемые к вторичной обмотке.

Немаловажной функцией трансформаторов является контроль над состоянием электрического тока в цепи, к которой они подключены. Во время подключения к силовому реле, выполняются постоянные проверки сетей, наличие и состояние заземления. Когда ток достигает аварийного значения, включается защита, отключающая все используемое оборудование.

Принцип работы

Принцип работы трансформаторов тока основан на законе электромагнитной индукции. Напряжение из внешней сети поступает на силовую первичную обмотку с определенным количеством витков и преодолевает ее полное сопротивление. Это приводит к появлению вокруг катушки магнитного потока, улавливаемого магнитопроводом. Данный магнитный поток располагается перпендикулярно по отношению к направлению тока. За счет этого потери электрического тока в процессе преобразования будут минимальными.

При пересечении витков вторичной обмотки, расположенных перпендикулярно, происходит активация магнитным потоком электродвижущей силы. Под влиянием ЭДС появляется ток, который вынужден преодолевать полное сопротивление катушки и выходной нагрузки. Одновременно на выходе вторичной обмотки наблюдается падение напряжения.


Классификация трансформаторов тока

Все трансформаторы тока можно классифицировать, в зависимости от их особенностей и технических характеристик:

  1. По назначению. Устройства могут быть измерительными, защитными или промежуточными. Последний вариант используется при включении измерительных приборов в токовые цепи релейной защиты и других аналогичных схемах. Кроме того, существуют лабораторные трансформаторы тока, отличающиеся высокой точностью и множеством коэффициентов трансформации.
  2. По типу установки. Существуют трансформаторные устройства для наружной и внутренней установки, накладные и переносные. Некоторые виды приборов могут встраиваться в машины, электрические аппараты и другое оборудование.
  3. В соответствии с конструкцией первичной обмотки. Устройства разделяются на одновитковые или стержневые, многовитковые или катушечные, а также шинные, например, ТШ-0,66.
  4. Внутренняя и наружная установка трансформаторов предполагает проходные и опорные способы монтажа этих устройств.
  5. Изоляция трансформаторов бывает сухая, с применением бакелита, фарфора, и других материалов. Кроме того, применяется обычная и конденсаторная бумажно-масляная изоляция. В некоторых конструкциях используется заливка компаундом.
  6. По количеству ступеней трансформации, устройства могут быть одно- или двухступенчатыми, то есть, каскадными.
  7. Номинальное рабочее напряжение трансформаторов может быть до 1000 В или более 1000 В.

Все характерные классификационные признаки присутствуют в условных обозначениях трансформаторов тока, состоят из определенных буквенных и цифровых символов.


Параметры и характеристики

Каждый трансформатор тока обладает индивидуальными параметрами и техническими характеристиками, определяющими область применения этих устройств.

Номинальный ток. Позволяет устройству работать в течение длительного времени без перегрева. В таких трансформаторах имеется значительный запас по нагреву, а нормальная работа возможна при перегрузках до 20%.

Номинальное напряжение. Его значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.

Коэффициент трансформации. Представляет собой отношение между токами в первичной и вторичной обмотке и определяется по специальной формуле. Его действительное значение будет отличаться от номинального в связи с определенными потерями в процессе трансформации.

Токовая погрешность. Возникает в трансформаторе под влиянием тока намагничивания. Абсолютное значение первичного и вторичного тока различается между собой как раз на эту величину. Ток намагничивания приводит к созданию в сердечнике магнитного потока. При его возрастании, токовая погрешность трансформатора также увеличивается.

Номинальная нагрузка. Определяет нормальную работу устройства в своем классе точности. Она измеряется в Омах и в некоторых случаях может заменяться таким понятием, как номинальная мощность. Значение тока является строго нормированным, поэтому значение мощности трансформатора полностью зависит лишь от нагрузки.

Номинальная предельная кратность. Представляет собой кратность первичного тока к его номинальному значению. Погрешность такой кратности может достигать до 10%. Во время расчетов сама нагрузка и ее коэффициенты мощности должны быть номинальными.

Максимальная кратность вторичного тока. Представлена в виде отношения максимального вторичного тока и его номинального значения, когда действующая вторичная нагрузка является номинальной. Максимальная кратность связана со степенью насыщения магнитопровода, при котором первичный ток продолжает увеличиваться, а значение вторичного тока не меняется.


Возможные неисправности трансформаторов тока

У трансформатора тока, включенного под нагрузку, иногда возникают неисправности и даже аварийные ситуации. Как правило, это связано с нарушениями электрического сопротивления изоляции обмоток, снижением их проводимости под влиянием повышенных температур. Негативное влияние оказывают случайные механические воздействия или некачественно выполненный монтаж.

В процессе работы оборудования наиболее часто происходит повреждение изоляции, вызывающее межвитковые замыкания обмоток, что существенно снижает передаваемую мощность. Токи утечки могут появиться в результате случайно созданных цепей, вплоть до возникновения короткого замыкания.

С целью предупреждения аварийных ситуаций, специалистами с помощью тепловизоров периодически проверяется вся действующая схема. Это позволяет своевременно устранить дефекты нарушения контактов, снижается перегрев оборудования. Наиболее сложные испытания и проверки проводятся в специальных лабораториях.

electric-220.ru

Как работает трансформатор?

Используемая человеком электрическая энергия в основном вырабатывается на крупных электростанциях. Эти предприятия передают электричество на районные подстанции, которые затем распределяют его по потребителям.

Так как линии электропередач обладают электрическим сопротивлением, часть энергии электрического тока теряется, превращаясь в теплоту. Постоянный ток (DC) течет в одном направлении; переменный ток (АС) периодически изменяет свое направление. Первоначально для электроснабжения применялся только постоянный ток. По ряду причин передача и преобразование постоянного тока связаны со значительными трудностями, поэтому по соображениям безопасности электростанции передавали его под низким напряжением. Однако к тому времени, когда постоянный ток достигал потребителей, сопротивление съедало 45 процентов его энергии.

Выход был найден в передаче переменного тока высокого напряжения, которое может быть легко изменено при помощи трансформатора (рисунок внизу). Так как высоковольтным линиям требуется меньший ток для передачи одного и того же количества энергии, ее потери на преодоление сопротивления стали намного меньшими. Когда переменный ток покидает электростанцию, повышающие трансформаторы увеличивают его напряжение с 22 000 до 765 000 вольт, а перед поступлением в дома другие трансформаторы, понижающие, уменьшают его до ПО или 220 вольт.

Принцип действия трансформатора

Трансформаторы увеличивают или уменьшают напряжение переменного тока. Преобразуемый переменный ток проходит по первичной обмотке, охватывающей стальной сердечник (рисунок сверху). Периодически изменяющийся ток создает в сердечнике переменное магнитное поле. При перемещении во вторичную обмотку это магнитное поле генерирует в ней переменный ток. Если вторичная обмотка имеет больше витков, чем первичная, выходное напряжение будет выше, чем входное.

Потери энергии при протекании постоянного тока

Электрическая мощность (Р) вычисляется путем умножения силы тока (I) на напряжение (V), т.е. Р = I х V. Если напряжение возрастает, сила тока, необходимая для обеспечения заданной мощности, уменьшается. Низковольтная мощность постоянного тока требует большей силы тока, чем высоковольтная мощность переменного, чтобы передать одно и то же количество электроэнергии.

Переменный ток легко трансформируется

В отличие от постоянного, переменный ток периодически изменяет свое направление. Если переменный ток проходит по первичной обмотке трансформатора (рисунок слева), образующееся переменное магнитное поле индуцирует ток во вторичной обмотке. При протекании по первичной обмотке постоянного тока (рисунок справа), во вторичной обмотке ток не возникает.

information-technology.ru

Вопрос 1. Устройство и принцип действия трансформатора.

Ответ1. Трансформатор – это статическое электромагнитное устройство, предназначенное для преобразования переменного тока одного напряжения в переменный ток другого напряжения, но той же частоты.

Основными конструктивными элементами трансформатора являются магнитопровод и обмотки. Магнитопровод служит для усиления основного магнитного потока и обеспечения магнитной связи между обмотками.

В работе рассматривается двухобмоточный силовой трансформатор.(рис5.1)

К первичной обмотке W1подводится электрическая энергия от источника. От вторичной обмоткиW2энергия отводится к приемнику( потребителю).

Под действием переменного напряжения u1 (t) в первичной обмотке возникает ток i1 (t) и в сердечнике возбуждается изменяющийся магнитный поток w1·ф(t) . Этот поток индуцирует эдс е1(t) и е2(t) в обеих обмотках трансформатора. ЭДС е1 уравновешивает основную часть напряжения u1 , а е2 создает напряжение u2 на выходных клеммах трансформатора . При включении нагрузки во вторичной обмотке в цепи нагрузки возникает ток i2(t), который создает собственный магнитный поток, накладывающийся на магнитный поток от первичной обмотки. В результате создается общий магнитный поток сердечника Ψ, сцепленный с витками обеих обмоток трансформатора и определяющий в них результирующие ЭДС е1 и е2 с действующими значениями: и, где- амплитуда магнитного потока:- частота переменного тока; , - число витков обмоток.

На щитке тр-ра указываются его номинальные напряжения -высшее (ВН) и низшее НН) . Так же указываются номинальная полная мощность S (ВА), токи (А) , число фаз, схема соединения, режим работы, и способ охлаждения.

Вопрос 2. Записать и объяснить формулы эдс и уравнения электрического и магнитного состояний трансформатора

Ответ2-1 ЭДС определяется скоростью изменения магнитного потока сердечника и числом витков w1 , w2 обмоток трансформатора

В первичной обмотке под действием напряжения U1 возникает ток I1. Он создает магнитный поток катушки с сердечником. Поток переменный, он наводит в первичной обмотке ЭДС самоиндукции e1 =- w1dФ/dt, а во вторичной обмотке

ЭДС взаимоиндукции е 2 =- w2dФ/dt. Магнитный поток для обеих обмоток один и тот же.

В режиме холостого хода катушка - чистая индуктивность, поэтому, если напряжение изменяется по закону u1(t) =U1m Sinωt , то ток отстает от напряжения на 90°:

i(t) =I1m Sin(ωt-90°), при этом магнитный поток совпадает по фазе с током Ф(t) =Ф1m Sin(ωt-90°). Тогда ЭДС будут равны

е1 = - w1dФ/dt = -w1ω Ф1m Sinωt= -E1m Sinωt

е2 = - w2dФ/dt =- w2ω Ф1m Sinωt= -E2m Sin ωt

Векторная диаграмма идеального (без потерь) трансформатора в режиме холостого хода представлена на рис 5.2 :

Ответ2-2. Уравнения электрического состояния реального трансформатора для первичной и вторичной цепей имеют вид:

;

,

где и – активные сопротивления обмоток; и– индуктивные сопротивления рассеяния обмоток.

Ответ2-3.Уравнения магнитного состояния трансформатора можно получить, исходя из анализа МДС в трансформаторе. ЭДС обеих обмоток возникают благодаря изменению одного и того же магнитного потока Ф с индукцией В. Индукция В и напряженность магнитного поля H связаны зависимостью B=μ·H. Пусть μ= const. Напряженность магнитного поля H по закону полного тока связана с суммарной МДС обеих обмоток соотношением :

Н·l = I1 ·w1+(-I2) ·w2 (5-2)

где l-длина средней линии магнитопровода;

I1 ·w1 - МДС первичной обмотки ;

-I2 ·w2 - МДС вторичной обмотки. Знак минус МДС вторичной обмотки отрицательный в силу закона ЭМИ( правило Ленца –ток возникающий в обмотке 2 всегда будет иметь направление, при котором магнитный поток, создаваемый током I2, будет препятствовать изменению основного потока ).

ЭДС Е1=const*Ф= const*В·S= const* μ ·H·S, с учетом (5-2) :

Е1 = const* μ ·( I1 ·w1-I2 ·w2) ·S/ l (5-3)

В режиме холостого хода I2=0, соответственно уравнение (5-3) будет иметь вид :

Е1= const* μ · I10 ·w1 ·S/ l (5-4)

где I10 ток первичной обмотки трансформатора в режиме холостого хода.

Из уравнений (5-3) и (5-4) получим уравнение магнитного состояния трансформатора:

(5-5)

Определим ток I1:

I1= I10 - Iי2

где I10 – ток холостого хода или намагничивающий ток (ток создающий магнитный поток ),

Iי2 = - w2/ w1 ·I2 - компенсирующий ток . Tок Iי2 компенсирует действие тока вторичной обмотки на основной магнитный поток.

Магнитный поток в сердечнике всегда постоянный. !!!

studfile.net

0 comments on “Трансформаторы постоянного тока принцип действия – Принцип работы трансформатора постоянного тока и напряжения

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *