Ток равен формула – формула и зависимости, определение силы тока в цепях и проводниках

Формула силы тока

ОПРЕДЕЛЕНИЕ

Сила тока определяется как отношение количества заряда, прошедшего через какую-то поверхность, ко времени прохождения.

   

В формуле – сила тока, – количество заряда, – время.

Единица измерения силы тока – А (ампер).

Обычно под поверхностью, через которую прошёл заряд, понимают сечение проводника. В цепях с постоянным током силу тока находят по закону Ома:

   

Где – напряжение, – сопротивление проводника. Прибор, которой используется для измерения силы тока, называют амперметром.

Примеры решения задач по теме «Сила тока»

ПРИМЕР 1
Задание Найти силу тока в проводнике, если за 50 сек через него прошёл заряд 43 кКл.
Решение Напомним, что кКл = Кл. Подставим численные значения в формулу:

   

Ответ Сила тока была равна 860 Ампер.
ПРИМЕР 2
Задание Через сечение проводника за 1 минуту прошёл заряд 10 Кл. Найти сопротивление участка цепи, если напряжение в нём 50 В.
Решение Найдём силу тока через заряд:

   

По закону Ома:

   

Сопоставим формулы:

   

Подставим числа:

(Ом)

Ответ Сопротивление цепи равно 300 Ом.
Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Сила тока 💡. Формула силы тока. Как обозначается 🔌 единица измерения силы тока?

Автор Даниил Леонидович На чтение 5 мин. Просмотров 88 Опубликовано

18 ноября

Электрический ток — это направленный поток отрицательно заряженных частиц. Величину электрического тока определяют по числу электронов, протекающих сквозь проводник с неким поперечным сечением за определенную единицу времени.

Однако в полной мере охарактеризовать ток только движением электронов невозможно. Он также имеет другие параметры. Действительно, объем электричества, равного одному кулону способно проходить через металлический проводник в течение одной секунды или другого промежутка времени.

Если принять во внимание временной промежуток как характеристику, то можно увидеть, что интенсивность потоков в разных случаях будет не одинаковой. Тот объем, который можно пропустить сквозь проводник за секунду именуют силой тока. В качестве обозначения используют Ампер, как международную единицу измерения.

Общее описание силы тока

Сила тока является объемом электрических зарядов, проходящих сквозь поперечные профили проводников в интервале времени, равному одной секунде. Как уже было выше сказано, что за единиц силы тока принимают Ампер, которая и принадлежит к Международной СИ, используемой во всех странах мира.

Один ампер равен силе изменения потока электричества при прохождении по параллельным, парным линейным проводникам бесконечной длины, имеют ничтожно малую площадь кругового сечения. Эти материалы находятся в вакууме друг от друга на расстоянии одного метра. Он вызывает силу взаимного влияние равную 2*10-7. Единица исчисления силы тока Ампер соответствует одному кулону, пройденному за одну секунду через поперечный профиль материала проводника.

В математическом исчислении характеристика выглядит как 1 А = 1 кулон/1 секунда. Величина показателя относительно большая, поэтому для бытовых электроприборов и микросхем применяют дополнительные единицы: 1 мА и 1 мкА, которые равны одной тысячной и одной миллионной части ампера.

Если известна величина электрозаряда, прошедшего сквозь проводник с нужным сечением за требуемый промежуток времени, то параметр можно выразить следующей формулой: l=q/t.

В замкнутой сети без ответвлений за одну секунду времени проходит одинаковое количество электронов в любом участке проводника. Поскольку заряды не могут накапливаться исключительно в одном участке электрической цепи, то его интенсивность не зависит от толщины и сечения кабеля.

Для более сложных цепей с ответвлениями такое утверждение также остается истинным. Но такое определение действует только для отдельных участков схемы, которые следует рассматривать как элементарная сеть.

Способы измерения силы тока

Для того чтобы узнать силу тока на требуемом участке цепи, одних теоретических вычислений не достаточно. Да, можно использовать формулы и узнать величину, но она будет приблизительной. Поскольку приборостроение, электроника и электрика — науки точные и не терпят погрешностей, был изобретен индукционный, а позднее электронный прибор, который способен показывать точные величины.

Амперметр предназначен для измерений силы тока на отдельных участках электрической цепи. Но значения, равные 1 Амперу и более можно увидеть только в силовых установках и сетях. Для снятия показаний с них используют специальные понижающие трансформаторы. Из курсов физики многие знают от чего зависит интенсивность действий электрического тока. Инициатором движения электронов является магнитное поле. От его силы зависит и мощность потока.

Ток подается на основные катушки, в которых создается индукция. С ее помощью во второстепенной катушке генерируется электричество меньшей величины. Показатель зависит от числа витков обмоток. Они прямо пропорциональны. Поэтому даже на крупных предприятиях, где напряжение достигает нескольких тысяч вольт применяют микроамперметры или миллиамперметры. Это связано, прежде всего, с безопасностью обслуживающего персонала.

Довольно часто в обиходе можно услышать термин мультиметр. Его отличие от амперметра заключается в возможности измерять несколько характеристик одновременно, тогда как амперметр является узкоспециализированным прибором.

Включают устройство в разрыв электрической цепи. При таком способе замеров, ток протекает через измеритель к потребителю. Следовательно, соединять прибор нужно до или после элемента нагрузки, так как в простой схеме без ответвлений он будет всегда одинаковым.

Существует ошибочное убеждение, что ток до потребителя и после не одинаковый, так как часть электричества тратится на компонента. Такое утверждение ошибочно, поскольку в ток представляет собой электромагнитный процесс, выполняемый в теле металлического проводника. Результатом становится упорядоченное движение электронов вдоль всей длины проводника. Но саму энергию переносят не электроны, а магнитное поле, которое окружает тело проводника.

Важно!

Через любой поперечный профиль металла простых электрических цепей проходит одинаковое количество электрического заряда. Сколько электронов вышло из положительного полюса источника питания, столько заходит в отрицательный полюс, пройдя через элемент нагрузки. В ходе движения электроны не могут расходоваться, как другие частицы материала. Они составляют единое целое с проводником и их количество всегда одинаковое.

Отличие напряжения от силы тока

Электричество, как и любая другая материя, имеет собственные характеристики, используемые для определения эффективности работы и контроля заданных параметров. В физике существуют такие понятия как «напряжение» и «сила тока». Они описывают одно и тоже явление, но сами по себе как показатели они отличаются друг от друга.

Такие различия заключены в принципе действия электричества. Под силой тока понимают объем потока электронов, способных пройти на расстояние одного метра за установленный интервал времени. Напряжение наоборот выражено в количестве потенциальной энергии. Оба понятия тесно связаны между собой. К внешним факторам влияния на них относят:

  • материал, из которого изготовлен проводник;
  • температура;
  • магнитное поле;
  • условия окружающей среды.

Отличия также заключаются в способах получения этих параметров. Когда на заряды проводника воздействует внешнее магнитное поле, формируется напряжение, которое генерирует поток между точками цепи. Так же специалисты выделяют отличия в энергопотреблении, называемым мощностью. Если напряжение характеризует параметры потенциальной энергии, то ток — кинетической.

Заключение

Сила тока является одним из важных параметров, характеризующих электричество. Он показывает, какой объем электрического заряда проходит через поперечный профиль металлического проводника. Данная характеристика широко применяется в электронике и энергетике.

remont220.ru

физические формулы, использующие мощность и напряжение

При выборе какого-либо электрического оборудования одним из важных параметров, на который обращается внимание, является мощность изделия. Этот параметр неразрывно связан с силой тока и напряжением. Чтобы рассчитать силу тока, напряжение или мощность в электрической цепи, используются несложные формулы. Но чтобы осмысленно проводить такие вычисления, желательно понимать физическую природу возникновения этих величин.

Физическое понятие величин

Любая электрическая цепь характеризуется рядом параметров. Наиболее важными из них являются сила тока, напряжение, мощность и сопротивление. Эти характеристики связаны между собой и зависят друг от друга. Явление, объединяющее их, называется электричеством.

Это понятие было введено ещё в 1600 году английским физиком Уильямом Гилбертом, изучающим магнитные и электрические явления. Исследуя магнетизм в природе, учёный установил, что некоторые тела при трении начинают обладать силой притяжения по отношению к другим предметам, в частности, к янтарю. Поэтому он и назвал открытое явление ēlectricus, что в переводе с латинского обозначает «янтарный».

Продолжая его исследования, немецкий физик Отто фон Герике в 1663 году изобрёл электрическую машину, которая представляла собой металлический стержень с одетым на него серным шаром. В результате он выяснил, что материалы могут не только притягивать вещества, но и отталкивать. Но только через восемьдесят лет американец Бенджамин Франклин создал теорию электричества, введя такие термины, как отрицательный и положительный заряд.

Дальнейшее развитие электричество получило после опытов Шарля Кулона и открытия им закона взаимодействия зарядов. Заключался он в следующем: сила влияния двух точечных зарядов друг на друга в вакууме прямо пропорциональна их произведению и обратно пропорциональна расстоянию между ними в квадрате. После этого благодаря экспериментам таких учёных, как Джоуль, Ленц, Ом, Ампер, Фарадей, Максвелл были введены понятия ток, напряжение и электромагнетизм.

Так, в 1897 году англичанин Джозеф Томсон установил, что носителями зарядов являются электроны. Ранее, в 1880 году, электротехник из России Дмитрий Лачинов сформулировал необходимые условия для передачи электричества на расстояния.

После этих открытий были выработаны фундаментальные определения электричества. Сегодня под ним понимаются свойства материалов образовывать вокруг себя электрическое поле, оказывающее воздействие на располагающиеся рядом другие заряженные частицы. Заряды условно принято разделять на положительные и отрицательные. При их перемещении возникает магнитное поле, при этом одинакового знака заряды притягиваются, а разного — отталкиваются.

Сила тока

Ток — это упорядоченное движение носителей заряда, происходящее под влиянием электрического поля. В качестве положительно заряженных частиц выступают электроны, а отрицательных — дырки. Математически это явление описывается с помощью формулы I = Q*T, где I — ток проводимости (А), Q — заряд частицы (Кл), T — время ©.

То есть электрическим током называется количество зарядов, прошедших через поперечное сечение вещества. Но эта формулировка верна только для тока постоянной величины, в то время как для изменяемого во времени она будет выглядеть I (T) = dQ/dT.

Плотность движения носителей заряда в материале, то есть количество электричества, проходящего за условно принятое время, называется силой тока. Согласно Международной системе (СИ) его единицей измерения является ампер. Один ампер равен перемещению электрического заряда, равного одному кулону, через поперечное сечение за одну секунду.

Носители заряда могут двигаться как упорядоченно, так и хаотично. При их движении возникает электрическое поле, обозначаемое латинской буквой E. Значение, определяющееся отношением тока к поперечному сечению проводника, называется плотностью тока. За единицу её измерения принимается А/мм2.

По своему виду ток различают на следующие типы:

  1. Переноса. Характеризуется движением зарядов, осуществляемым в свободном пространстве. Этот тип характерен для газоразрядных приборов.
  2. Смещения. Возникает в диэлектриках и определяется упорядоченным перемещением связанных заряженных частиц.
  3. Полный. Определяется суммарным значением тока: проводимости, переноса и смещения.
  4. Постоянный. Это такой вид, который может изменять величину, но не изменяет направление движения, то есть свой знак.
  5. Переменный. Такого вида ток может изменяться как по величине, так и по направлению (знаку).

Переменный вид разделяется по форме и может быть синусоидальным и несинусоидальным. Для расчёта силы тока синусоидальной формы используется формула Is = Ia*sin ωt, где Ia — максимальное значение тока (A), ω — угловая скорость, равная 2πf (Гц).

Физические тела, в которых возможно протекание тока, называют проводниками, а в тех, где возникают препятствия его прохождению — диэлектриками. Промежуточное состояние между ними занимают полупроводники.

Разность потенциалов

Напряжением принято называть физическую величину, характеризующую электрическое поле. Она показывает, какую работу понадобится совершить полю для того, чтобы переместить единичный заряд из одной точки в другую. При этом принимается, что этот перенос не влияет на распределение зарядов в источнике поля. Согласно Международной системе единиц напряжение измеряется в вольтах.

Работа по переносу складывается из двух величин — электрических и сторонних. Если сторонние силы не действуют, то напряжение на участке цепи равно разности потенциалов и вычисляется по формуле U = φ1-φ2. При этом потенциал определяется отношением напряжённости электрического поля к заряду. Для его расчёта используют формулу φ = W/q.

Другими словами, это характеристика поля в определённой точке, не зависящей от величины заряда, находящегося в нём. То есть напряжение в общем случае определяется работой электростатического поля, возникающего при движении заряда вдоль его силовых линий. Математически его можно рассчитать по формуле U = A/q, где А — совершаемая работа по перемещению (Дж), q — энергия заряда (Кл).

Применительно к сети переменного тока для напряжения используются следующие понятия:

  1. Мгновенное. Это значение физической величины, измеренное в конкретный момент времени: U = U (t). Для синусоидального сигнала мгновенное напряжение находится с помощью выражения U (t) = Ua sin (ὤt + φ).
  2. Амплитудное. Характеризуется наибольшей величиной мгновенного значения без учёта знака: Ua = max (U (t)).
  3. Среднее. Определяется за полный период сигнала по формуле Us = 1/T ʃ U (t)*dt. Для синусоидальной формы это значение равно нулю.

Проводя расчёт напряжения, редко используется понятие электрического потенциала. Связано это с тем, что условно принято за одну из точек потенциала принимать землю.

Это значение берётся равным нулю, а все остальные потенциалы считаются относительно неё. Говоря, что напряжение в определённой точке составляет 300 вольт, имеется в виду разность потенциалов между этой точкой и землёй, равная этому значению.

Электрическая мощность

Электрическая мощность характеризует скорость передачи электрической энергии или её преобразование. Единицей её измерения является ватт. Для того чтобы посчитать мощность на определённом участке цепи, необходимо перемножить значение напряжения и силы тока на этом участке. Исходя из определения электрического напряжения, можно сказать, что заряд при движении совершает работу, численно равную ей на участке цепи. Если же умножить работу на количество зарядов, то можно найти общее значение работы, которую совершили заряды на этом участке.

Исходя из физического определения, что мощность — это работа за единицу времени, получается выражение P = A/Δt, где A — работа, совершаемая зарядом при перемещении от начальной точки к конечной (Дж), Δt — время, затраченное на полное перемещение заряда ©.

Для всех зарядов в цепи мощность можно найти благодаря формуле P = (U/ Δt) * Q, где Q — общее число зарядов.

Так как ток представляет собой заряд, протекающий в единицу времени (I = Q/ Δt), то получается, что мощность равна произведению тока на напряжение, то есть P = U*I (Вт).

В цепи с постоянным током его сила и напряжение всегда имеют постоянное значение в определённой точке, поэтому для любого момента времени мощность можно вычислить по формуле P = I*U = I2*R = U2/R, где R — сопротивление прохождению тока в электрической цепи (Ом). Если же в этой сети находится источник электродвижущей силы, то мощность находится как P = I*E+ I2*r, где Е — электродвижущая сила или ЭДС (В), r — внутреннее сопротивление источника ЭДС (Ом).

Для цепи, в которой её параметры изменяются по какому-то циклу, мощность в определённой точке интегрируется по времени. При этом существуют следующие виды мощности:

  1. Активная. Для её нахождения используется расчёт, учитывающий угол сдвига фаз φ. Находится согласно формуле P = U*I*cos φ.
  2. Реактивная. Характеризуется нагрузками, создаваемыми электрическими устройствами в виде колебаний энергии электромагнитного поля. Её вычисление осуществляется по формуле P = U*I*sin φ.
  3. Полная. Определяется произведением действующих значений тока и напряжения, связана с другими видами мощности выражением S= √(P 2 +Q 2).

Закон Ома для цепи

Проводя расчёты мощности по напряжению и току на практике, часто используют закон Ома. Он устанавливает связь между током, сопротивлением и напряжением. Этот закон был открыт путём проведения Симоном Омом ряда экспериментов и сформулирован им в 1826 году. Он выяснил, что величина тока на участке цепи прямо пропорциональна разности потенциалов и обратно пропорциональна сопротивлению этого участка.

Закон Ома можно записать в следующем виде: I = U/R, где I — значение силы тока (А), U — разность потенциалов (В), R — сопротивление цепи прохождению тока (Ом).

Для полной же цепи эту формулу можно записать так: I = E/(R+ r0), где E — ЭДС источника питания (В), r0 — внутреннее сопротивление источника напряжения (Ом).

Таким образом, для участка цепи будет справедливо выражение P = U2/R = I2R, а для полной цепи — P = (E/(R+ R0))2*R. Именно эти две формулы и используются чаще всего для расчётов электрических сетей или мощности необходимого оборудования.

Различные компоненты электрической сети в определённый момент времени потребляют разную величину тока. Поэтому очень важно правильно рассчитать, какое количество энергии подводится в тот или иной момент в определённое место цепи, чтобы не допустить перегрузок на линии и возникновения аварийных ситуаций.

Этим и занимаются разработчики схем, упрощая их до состояния, когда можно рассчитать необходимую мощность, используя закон Ома.

Практический расчёт

Например, пусть понадобится узнать, на какой ток необходимо приобрести устанавливаемый на участок цепи автоматический выключатель. При этом известно, что в линию, на которой он будет установлен, одновременно будут включаться холодильник с максимальной мощностью потребления энергии один киловатт, бойлер (два киловатта) и люстра, потребляющая 90 ватт. В месте установки используется однофазная сеть, рассчитанная на рабочее напряжение 220 вольт.

На первом этапе расчёта понадобится суммировать всю мощность подключаемых к линии электроприборов. Так, P общ. = 1000 + 2000 + 90 +220 = 3310 Вт. Используя формулу P = I*U, находится необходимое значение тока: I = P/U = 3310/220 = 15,04 А.

Из стандартного ряда выключателей наиболее близкое значение имеет автомат на 16 А. Поскольку необходимо покупать устройство защиты с небольшим запасом, то для рассматриваемого примера подойдёт выключатель, рассчитанный на 20 ампер.

Благодаря таким вычислениям можно рассчитать любой параметр электрической цепи, но это при учёте достаточного количества вводных данных.

220v.guru

Сила тока. Единицы силы тока. Амперметр (Гребенюк Ю.В.). Видеоурок. Физика 8 Класс

На данном уроке, тема которого «Сила тока. Единицы силы тока. Амперметр», мы познакомимся с такой характеристикой тока, как сила, поговорим о единицах её измерения, а также о приборе, с помощью которого можно измерять силу тока в цепи, – об амперметре.

На предыдущих уроках мы говорили о токе в металле, также обсудили электрическую цепь и её составные части, говорили о направлении тока. Однако мы не касались такого вопроса, как характеристики, с помощью которых можно описать электрический ток. Наверное, все вы слышали о выражении «скачок напряжения» и наблюдали мигание лампочки. То есть мы понимаем, что электрические токи бывают разными, а как же можно сравнивать электрические токи? Какие характеристики тока позволяют оценивать его величину и другие его параметры? Сегодня мы начнем изучать величины, которые характеризуют электрический ток, и начнем мы с такой характеристики, как сила тока.

Вы уже знаете, что в металлическом стержне достаточно большое количество носителей электрического заряда – электронов. Понятно, когда по стержню не течет электрический ток, эти электроны движутся хаотически, то есть можно считать, что количество электронов, которое проходит через сечение стержня слева направо, приблизительно равно количеству электронов, которое проходит через то самое сечение стрежня справа налево за одно и то же время. Если мы пропускаем по стержню электрический ток, то движение электронов становится упорядоченным и количество электронов, которое проходит через сечение стержня за промежуток времени, существенно возрастает (имеется в виду то количество электронов, которое проходит в одном направлении).

Сила тока – это физическая величина, характеризующая электрический ток и численно равная заряду, проходящему через поперечное сечение проводника за единицу времени. Силу тока обозначают символом  и определяют по формуле: , где  – заряд, проходящий через поперечное сечение проводника за время .

Чтобы лучше понять суть введенной величины, давайте обратимся к механической модели электрической цепи. Если рассмотреть водопроводную систему вашей квартиры, то она может оказаться поразительно похожей на электрическую цепь. Действительно, аналогом источника тока выступает насос, который создает давление и поставляет воду в квартиры (см. рис .1).

Рис. 1. Водопроводная система

Как только он перестанет работать, исчезнет вода в кранах. Краны выступают в роли ключей электрической цепи: когда кран открыт – вода течет, когда закрыт – нет. В роли заряженных частиц выступают молекулы воды (см. рис. 2).

Рис. 2. Движение молекул воды в системе

Если мы теперь введем величину, аналогичную только что введенной силе тока, то есть количеству молекул воды через сечение трубы за единицу времени, то фактически получим количество воды, проходящей через поперечное сечение трубки за одну секунду – то, что в быту часто называют напором. Соответственно, чем больше напор, тем больше воды вытекает из крана, аналогично: чем больше сила тока, тем сильнее ток и его действие.

Единицей силы тока является ампер: . Эта величина названа в честь французского ученого Андре-Мари Ампера. Ампер – одна из единиц интернациональной системы. Зная единицы силы тока, легко получить определение единицы электрического заряда в СИ. Поскольку , то .

Следовательно, . То есть 1 Кл – это заряд, проходящий через поперечное сечение проводника за 1 с при силе тока в проводнике 1 А. Кроме ампера, также применяют такие величины, как миллиампер (), микроампер (), килоампер (). Чтобы представлять себе, что такое малая, а что такое большая сила тока, приведем такие данные: для человека считается безопасной сила тока, меньше 1 мА, а сила тока, больше 100 мА, может привести к существенным проблемам со здоровьем.

Некоторые значения силы тока

Чтобы понимать величину такой силы тока, как 1А, давайте рассмотрим следующую таблицу.

Рентгеновский медицинский аппарат (см. рис. 3) – 0,1 А

Рис. 3. Рентгеновский медицинский аппарат

Лампочка карманного фонаря – 0,1–0,3 А

Переносной магнитофон – 0,3 А

Лампочка в классе – 0,5 А

Мобильный телефон в режиме работы – 0,53 А

Телевизор – 1 А

Стиральная машина – 2 А

Электрический утюг – 3 А

Электродоильная установка – 10 А

Двигатель троллейбуса – 160–220 А

Молния – более 1000 А

Кроме того, рассмотрим эффекты действия тока, которые он оказывает на организм человека, в зависимости от силы тока (в таблице приведена сила тока при частоте 50 Гц и эффект действия тока на человеческий организм).

0–0,5 мА        Отсутствует

0,5–2 мА        Потеря чувствительности

2–10 мА         Боль, мышечные сокращения

10–20 мА       Растущее воздействие на мышцы, некоторые повреждения

16 мА             Ток, выше которого человек уже не может освободиться от электродов

20–100 мА     Дыхательный паралич

100 мА – 3 А Смертельные желудочковые фибрилляции (необходима срочная реанимация)

Более 3 А       Остановка сердца, тяжелые ожоги (если шок был кратким, то сердце можно реанимировать)

Вместе с тем большинство приборов рассчитано на значительно большее значение силы тока, поэтому при работе с ними очень важно соблюдать некоторые правила. Остановимся на главных моментах, которые нужно помнить всем, кто имеет дело с электричеством.

Нельзя:

1) Прикасаться к обнаженному проводу, особенно стоя на земле, сыром полу и т.п.

2) Пользоваться неисправными электротехническими устройствами.

Собирать, исправлять, разбирать электротехнические устройства, не отсоединив их от источника тока.

Для измерения силы тока используется прибор – амперметр. Он обозначается буквой А в кружочке при схематическом изображении в электрической цепи. Как и любой прибор, амперметр не должен влиять на значение измеряемой величины, поэтому он сконструирован таким образом, чтобы практически не менять значение силы тока в цепи.

Правила, которые необходимо соблюдать при измерении силы тока амперметром

1) Амперметр включают в цепь последовательно с тем проводником, в котором необходимо измерять силу тока (см. рис. 4).

2) Клемму амперметра, возле которой стоит знак +, нужно соединять с проводом, идущим от положительного полюса источника тока; клемму со знаком минус – с проводом, идущим от отрицательного  полюса источника тока (см. рис. 5).

3) Нельзя подключать амперметр к цепи, где отсутствует потребитель тока (см. рис. 6).

Рис. 4. Последовательное соединение амперметра

Рис. 5. Правильно соединена клемма +

Рис. 6. Неверно подключенный амперметр

Давайте посмотрим на работу амперметра вживую. Перед нами электрическая цепь, которая состоит из источника тока, амперметра, который соединен последовательно, и лампочки, которая также соединена последовательно (см. рис. 7).

Рис. 7. Электрическая цепь

Если сейчас включим источник тока, то сможем пронаблюдать, какая сила в цепи с помощью амперметра. Вначале он указывает 0 (то есть тока в цепи нет), а теперь видим, что сила тока стала почти 0,2 А (см. рис. 8).

Рис. 8. Протекание тока в цепи

Если мы изменим ток в цепи, увидим, что сила тока увеличится (станет примерно 0,26 А), и при этом лампочка загорится ярче (см. рис .9), то есть, чем больше сила тока в цепи, тем ярче лампочка горит.

Рис. 9. Сила тока в цепи больше – лампочка горит ярче

Виды амперметров

Распространение получили амперметры электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные.

В электромагнитных амперметрах (см. рис. 10) измеряемый ток, проходя по катушке, втягивает внутрь ее сердечник из мягкого железа с силой, возрастающей с увеличением силы тока; при этом насаженная на одной оси с сердечником стрелка поворачивается и по градуированной шкале указывает силу тока в амперах.

Рис. 10. Электромагнитный амперметр

В тепловых амперметрах (см. рис. 11) измеряемый ток пропускается по натянутой металлической нити, которая вследствие нагревания током удлиняется и провисает, поворачивая при этом стрелку, указывающую на шкале силу тока.

Рис. 11. Тепловой амперметр

В магнитоэлектрическом амперметре (см. рис. 12) под влиянием взаимодействия измеряемого тока, пропускаемого по проволоке, намотанной на легкую алюминиевую рамку, и магнитного поля постоянного подковообразного магнита рамка вместе с указательной стрелкой поворачивается на больший или меньший угол в зависимости от величины силы тока.

Рис. 12. Магнитоэлектрический амперметр

В электродинамических амперметрах (без железа) (см. рис. 13) измеряемый ток пропускается последовательно по обмотке неподвижной и подвижной катушек; последняя благодаря взаимодействию проходящего по ней тока с током в неподвижной катушке поворачивается вместе со стрелкой, указывающей силу тока.

interneturok.ru

Формула электрического тока, по какой формуле можно найти, вычислить силу тока.

 

 

 

Тема: как рассчитать силу тока, зная напряжение и сопротивления по закону Ома.

 

Электрический ток, это именно та сила, которая течет во всей электротехники заставляя ее работать. Но сводить все к простому течению электротока по электрическим цепям в схемах неразумно, должна быть какая-то мера, определенная величина этой силы тока. Ведь если в электрической схеме пойдет слишком большой ток по проводникам, которые на него не рассчитаны, то просто эта схема выгорит. Из школьных уроков мы помним, что существуют так называемые формулы, которые и позволяют вычислять конкретные неизвестные величины имея при этом известные.

 

Вот самая базовая, наиболее используемая формула тока, по которой и вычисляется эта самая сила тока. В ней всего лишь три электрических величины (базовые электрические величины) — ток, напряжение и сопротивление.

 

 

Итак, сила тока на схемах обычно обозначается большой английской буквой «I». Единицей измерения тока является «Ампер». Формула тока звучит следующим образом — электрический ток равен отношению напряжения (разности потенциалов) к сопротивлению. То есть, чтобы найти силу тока нам нужно просто напряжение разделить на сопротивление. Единицей измерения электрического напряжения является «Вольт», а сопротивления «Ом». Следовательно, известные вольты делим на известные омы и получаем ранее неизвестные амперы.

 

 

 

 

Эта же формула еще называется законом Ома. Она помогает найти из двух известных величин третью, которая неизвестна. Чтобы найти напряжение, то нужно силу тока перемножить на сопротивление, а для нахождения сопротивления нужно будет напряжение разделить на силу тока. Все достаточно просто. Данная формула тока подходит и для постоянного тока и для переменного, но именно с активным сопротивлением. То есть, по ней можно рассчитать те электрические цепи (участки цепей в схемах), которые содержать сопротивления в виде обычных нагревателей, резисторов, лампочек (не имеющих индуктивную и емкостную составляющую). Индуктивностью обладают все катушки, а емкостью обладают все конденсаторы (они уже имеют реактивное сопротивление и рассчитываются по другой формуле).

 

Если говорить о формуле тока, которая ближе к научной сфере, то она уже будет иметь вид немного другой. Электрический ток изначально выражается как отношение количества электрических зарядов ко времени их прохождения через проводник.

 

 

Электрический ток это упорядоченное движение электрических зарядов (в твердых телах это электроны, а в жидких и газообразных телах это ионы). Так вот ток, это непосредственное движение этих зарядов и, естественно, что он определяется их количеством и временем течения. Электрические заряды измеряются в «Кулонах», ну а время в «секундах». Следовательно, чтобы узнать силу электрического тока нужно количество зарядов разделить на время их прохождения. То есть, кулоны делим на секунды и получаем амперы.

 

Повторюсь, что на практике при измерении и вычислении силы тока пользуются именно формулой закона Ома, поскольку приходится использовать при расчетах напряжение и сопротивление. Именно они повсеместно будут встречаться в электрических схемах той или иной электротехники. Никаких кулонов (количества зарядов) вы при своей работе электриком не увидите!

 

 

Ну, и поскольку выше я затронул тему реактивного сопротивления, то пожалуй приведу формулу для нахождения силы тока именно для цепей, содержащих индуктивное и емкостное сопротивление.

 

 

По данной формуле можно найти силу тока, которая будет течь в электрической цепи с переменным, синусоидальным напряжением и содержащая реактивное сопротивление в виде катушки (индуктивности) или конденсатора (емкости). Думаю вы заметили, что в приведенной формуле изменился лишь тип сопротивления. Сама же основа — это все та же формула закона Ома, что была приведена в самом начале. Просто тут для нахождения индуктивного и емкостного сопротивления уже используются такие величины как частота, емкость и индуктивность, ну и еще «ПИ», которое равно 3,14.

 

P.S. Формулу электрического тока вы просто обязаны знать наизусть (если вы конечно электрик или электронщик). Формула закона Ома будет вам полезна очень много раз. Как только нужно найти силу тока, напряжение или сопротивление (зная любые две величины из трех) вы быстро и без проблем сразу подставляете числа в эту формулу и вычислите неизвестные электрические величины.

 

 

electrohobby.ru

Формула тока. Как найти ток. Вычисляем и определяем ток по формуле закона Ома.

 

 

 

Тема: Как вычислить ток по формуле. Находим силу тока по формуле Ома и мощности.

 

Основополагающей формулой для нахождения силы тока является классический закон Ома, который гласит, что сила тока равна напряжение деленное на сопротивление. И эта основополагающая формула любого электрика и электроника, которая постоянно используется для быстрого вычисления силы тока той или иной цепи. Из любых двух известных величин закона Ома (это ток, напряжение и сопротивление) всегда можно найти третью. В случае нахождения напряжения мы перемножаем ток на сопротивление, ну а при вычислении тока или сопротивления всегда напряжение делим на ту величину, которая известная (сила тока или сопротивление).

 

Стоит сказать, что данная формула тока подходит как для переменного, так и для постоянного тока. Хотя для переменного имеются некоторые нюансы. А именно: это случаи, когда мы используем активную нагрузку (нагреватели, лампочки). Формула тока показывает зависимость напряжения, сопротивления, и собственно силы тока.

 

Поскольку немаловажной характеристикой, используемой в области электричества, является также электрическая мощность, то для нахождения силы тока применять можно и её. Электрическая мощность, это произведение силы тока на напряжение. И чтобы найти силу тока необходимо мощность поделить на известное напряжение. Например, нам известна мощность нагревательного элемента, которая равна 880 Вт. Мы также знаем напряжение, что будет подаваться на него, равное 220 В. Нам нужно найти силу тока, которая будет протекать по цепи питания данного нагревателя. Для этого мы просто 880 ватт делим на 220 вольт, что даст на силу тока в 4 ампера.

 

 

 

 

Теперь как можно вычислить по формуле тока (по закону Ома) этот самый ток зная напряжение и сопротивление. Итак, у нас всё то же напряжение 220 вольт, и есть тот же нагревательный элемент. Мы мультиметром, тестером измеряем сопротивление элемента (у нагревателя с мощностью 880 ватт и рассчитанного на напряжение 220 вольт оно будет 55 ом). И что бы найти силу тока мы напряжение 220 вольт делим на сопротивление нагревателя 55 ом, в итоге получаем всю ту же силу тока в 4 ампера.

 

Просто нужно хорошо запомнить эти две формулы тока (его нахождение через мощность и через сопротивление с известным напряжением). Тогда вы быстро и без труда в голове сможете вычислять как силу тока электрической цепи, так и любые другие электрические величины (напряжение, сопротивление, мощность).

 

 

Ну, а если вы больше практик, тогда просто берите в руки измерители и меряйте. Напомню, напряжение мы измеряем параллельным прикладыванием щупов тестера, мультиметра к контактам, на которых будет измерять величину разности потенциалов. Силу тока же мы меряем уже путем разрыва цепи, где нужно измерить силу тока, то есть разрываем электрическую цепь в начале (поближе к источнику питания) и между этим разрывом подсоединяем щупы нашего измерителя тока (амперметра). Не забывайте, что переменный ток должен соответствовать своему положению на переключателе тестера, а постоянный своему месту (иначе вы получите неверные значения измеряемого тока).

P.S. Для лучшего запоминания закона Ома вы просто держите в голове, что при делении напряжение всегда в верху, то есть если по закону Ома мы находим напряжение, то перемножаем ток на сопротивление, ну в двух других случаях (при нахождении сопротивления или тока) мы всегда напряжение делим на известную величину, получая вторую, которая ранее была неизвестна.

 

electrohobby.ru

Формула силы тока в физике

Определение и формула силы тока

Определение

Электрическим током называют упорядоченное движение носителей зарядов. В металлах таковыми являются электроны, отрицательно заряженные частицы с зарядом, равным элементарному заряду. Направлением тока считают направление движения положительно заряженных частиц.

Силой тока (током) через некоторую поверхность S называют скалярную физическую величину, которую обозначают I, равную:

где q – заряд, проходящий сквозь поверхность S, t – время прохождения заряда. Выражение (1) определяет величину силы тока в момент времени t (мгновенное значение величины силы тока).

Некоторые виды силы тока

Ток носит название постоянного, если его сила и направление с течением времени не изменяются, тогда:

Формула (2) показывает, что сила постоянного тока равна заряду, который проходит сквозь поверхность S в единицу времени.

Если ток является переменным, то выделяют мгновенную силу тока (1), амплитудную силу тока и эффективную силу тока. Эффективной величиной силы переменного тока (Ieff) называют такую силу постоянного тока, которая выполнит работу равную работе переменного тока в течение одного периода (T):

Если переменный ток можно представить как синусоидальный:

то Im – амплитуда силы тока ( – частота силы переменного тока).

Плотность тока

Распределение электрического тока по сечению проводника характеризуют при помощи вектора плотности тока (). При этом:

где – угол между векторами и ( – нормаль к элемен

www.webmath.ru

0 comments on “Ток равен формула – формула и зависимости, определение силы тока в цепях и проводниках

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *