Электрическое сопротивление проводника – Электрическое сопротивление — Википедия

Электрическое сопротивление проводника

Электрическое сопротивление - физическая величина, которая показывает, какое препятствие создается току при его прохождении по проводнику. Единицами измерения служат Омы, в честь Георга Ома. В своем законе он вывел формулу для нахождения сопротивления, которая приведена ниже. 

Рассмотрим сопротивление проводников на примере металлов. Металлы имеют внутреннее строение в виде кристаллической решетки. Эта решетка имеет строгую упорядоченность, а её узлами являются положительно заряженные ионы. Носителями заряда в металле выступают “свободные” электроны, которые не принадлежат определенному атому, а хаотично перемещаются между узлами решетки. Из квантовой физики известно, что движение электронов в металле это распространение электромагнитной волны в твердом теле. То есть электрон в проводнике движется со скоростью света (практически), и доказано, что он проявляет свойства не только как частица, но еще и как волна. А сопротивление металла возникает в результате рассеяния электромагнитных волн (то есть электронов) на тепловых колебаниях решетки и её дефектах.  При столкновении электронов с узлами кристаллической решетки часть энергии передается узлам, вследствие чего выделяется энергия. Эту энергию можно вычислить при постоянном токе, благодаря закону Джоуля-Ленца – Q=I

2Rt. Как видите чем больше сопротивление, тем больше энергии выделяется. 

Удельное сопротивление

Существует такое важное понятие как удельное сопротивление, это тоже самое сопротивление, только в единице длины. У каждого металла оно свое, например у меди оно равно 0,0175 Ом*мм2/м, у алюминия 0,0271 Ом*мм2/м .  Это значит, брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 0,0175 Ом, а такой же брусок, но из алюминия будет иметь сопротивление 0,0271 Ом. Выходит что электропроводность меди выше чем у алюминия. У каждого металла удельное сопротивление свое, а рассчитать сопротивление всего проводника можно по формуле   

где p – удельное сопротивление металла, l – длина проводника, s – площадь поперечного сечения.

Значения удельных сопротивлений приведены в таблице удельных сопротивлений металлов

 (20°C)   

Вещество

p, Ом*мм2/2

α,10-3 1/K

Алюминий

0.0271

3.8

Вольфрам

0.055

4.2

Железо

0.098

6

Золото

0.023

4

Латунь

0.025-0.06

1

Манганин

0.42-0.48

0,002-0,05

Медь

0.0175

4.1

Никель

0.1

2.7

Константан

0.44-0.52

0.02

Нихром

1.1

0.15

Серебро

0.016

4

Цинк

0.059

2.7

Кроме удельного сопротивления в таблице есть значения ТКС, об этом коэффициенте чуть позже.

Зависимость удельного сопротивления от деформаций

При холодной обработке металлов давлением, металл испытывает пластическую деформацию. При пластической деформации кристаллическая решетка искажается, количество дефектов становится больше. С увеличением дефектов кристаллической решетки, сопротивление течению электронов по проводнику растет, следовательно, удельное сопротивление металла увеличивается. К примеру, проволоку изготавливают методом протяжки, это значит, что металл испытывает пластическую деформацию, в результате чего, удельное сопротивление растет. На практике для уменьшения сопротивления применяют рекристаллизационный отжиг, это сложный технологический процесс, после которого кристаллическая решетка как бы, “расправляется” и количество дефектов уменьшается, следовательно, и сопротивление металла тоже.

При растяжении или сжатии, металл испытывает упругую деформацию. При упругой деформации вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличиваются, следовательно, электроны испытывают большие затруднения, и в связи с этим, увеличивается удельное сопротивление. При упругой деформации вызванной сжатием, амплитуды тепловых колебаний узлов уменьшаются, следовательно, электронам проще двигаться, и удельное сопротивление уменьшается.

Влияние температуры на удельное сопротивление

Как мы уже выяснили выше, причиной сопротивления в металле являются узлы кристаллической решетки и их колебания. Так вот, при увеличении температуры, тепловые колебания узлов увеличиваются, а значит, удельное сопротивление также увеличивается. Существует такая величина как температурный коэффициент сопротивления (ТКС), который показывает насколько увеличивается, или уменьшается удельное сопротивление металла при нагреве или охлаждении. Например, температурный коэффициент меди при 20 градусах по цельсию равен 4.1 · 10 − 3 1/градус. Это означает что при нагреве, к примеру, медной проволоки на 1 градус цельсия, её удельное сопротивление увеличится на 

4.1 · 10 − 3  Ом. Удельное сопротивление при изменении температуры можно вычислить по формуле 

где r это удельное сопротивление после нагрева, r0 – удельное сопротивление до нагрева, a – температурный коэффициент сопротивления, t2 – температура до нагрева, t1  - температура после нагрева. 

Подставив наши значения, мы получим: r=0,0175*(1+0.0041*(154-20))=0,0271 Ом*мм2/м. Как видите наш брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2, после нагрева до 154 градусов, имел бы сопротивление, как у такого же бруска, только из алюминия и при температуре равной 20 градусов цельсия. 

Свойство изменения сопротивления при изменении температуры, используется в термометрах сопротивления. Эти приборы могут измерять температуру основываясь на показаниях сопротивления. У термометров сопротивления высокая точность измерений, но малые диапазоны температур.

На практике, свойства проводников препятствовать прохождению тока используются очень широко.  Примером может служить лампа накаливания, где нить из вольфрама, нагревается за счет высокого сопротивления металла, большой длины и узкого сечения. Или любой нагревательный прибор, где спираль разогревается благодаря высокому сопротивлению. В электротехнике, элемент главным свойством которого является сопротивление, называется – резистор. Резистор применяется практически в любой электрической схеме. 

  • Просмотров: 5514
  • electroandi.ru

    Электрическое сопротивление и проводимость

    Дата публикации: .
    Категория: Электротехника.

    При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

    Электрическое сопротивление

    Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

    На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

    Рисунок 1. Условное обозначение электрического сопротивления

    Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б. В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

    Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

    Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

    Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

    Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

    За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать "Сопротивление проводника равно 15 Ом", можно написать просто:

    r = 15 Ω.
    1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
    1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

    При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

    Видео 1. Сопротивление проводников

    Удельное электрическое сопротивление

    Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

    В таблице 1 даны удельные сопротивления некоторых проводников.

    Таблица 1

    Удельные сопротивления различных проводников

    Материал проводника Удельное сопротивление ρ в
    Серебро
    Медь
    Алюминий
    Вольфрам
    Железо
    Свинец
    Никелин (сплав меди, никеля и цинка)
    Манганин (сплав меди, никеля и марганца)
    Константан (сплав меди, никеля и алюминия)
    Ртуть
    Нихром (сплав никеля, хрома, железа и марганца)
    0,016
    0,0175
    0,03
    0,05
    0,13
    0,2
    0,42
    0,43
    0,5
    0,94
    1,1

    Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

    Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

    Сопротивление проводника можно определить по формуле:

    где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

    Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

    Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

    Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

    Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

    Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

    Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

    Материал проводника характеризует его удельное сопротивление.

    По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

    Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

    У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

    Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

    Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

    Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления

    Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

    Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

    Таблица 2

    Значения температурного коэффициента для некоторых металлов

    Металл α

     

    Металл

    α

    Серебро
    Медь
    Железо
    Вольфрам
    Платина
    0,0035
    0,0040
    0,0066
    0,0045
    0,0032
    Ртуть
    Никелин
    Константан
    Нихром
    Манганин
    0,0090
    0,0003
    0,000005
    0,00016
    0,00005

    Из формулы температурного коэффициента сопротивления определим rt:

    rt = r0 [1 ± α (tt0)].

    Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

    rt = r0 [1 ± α (tt0)] = 100 (1 + 0,0066 × 200) = 232 Ом.

    Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

    Электрическая проводимость

    До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

    Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

    Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

    Электрическая проводимость измеряется в (1/Ом) или в сименсах.

    Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

    Если r = 20 Ом, то

    Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

    Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

    Источник: Кузнецов М. И., "Основы электротехники" – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

    www.electromechanics.ru

    Зависимость электрического сопротивления от сечения, длины и материала проводника

      

    Сопротивление различных проводников зависит от материала, из которого они изготовлены.

    Можно проверить это практически на следующем опыте.

    Рисунок 1. Опыт, показывающий зависимость электрического сопротивления от материала проводника

    Подберем два или три проводника из различных материалов, возможно меньшего, но одинакового поперечного сечения, например, один медный, другой стальной, третий никелиновый. Укрепим на планке два зажима а и б на расстоянии 1 —1,5 м один от другого (рис. 1) и подключим к ним аккумулятор через амперметр. Теперь поочередно между зажимами а и б будем на 1—2 сек включать сначала медный, потом стальной и, наконец, никелиновый проводник, наблюдая в каждом случае за отклонением стрелки амперметра. Нетрудно будет заметить, что наибольший по величине ток пройдет по медному проводнику, а наименьший — по никелиновому.

    Из этого следует, что сопротивление медного проводника меньше, чем стального, а сопротивление стального проводника меньше, чем никелинового.

    Таким образом, электрическое сопротивление проводника зависит от материала, из которою он изготовлен.

    Для характеристики электрического сопротивления различных материалов введено понятие о так называемом удельном сопротивлении.

    Определение: Удельным сопротивлением называется сопротивление проводника длиной в 1 м и сечением в 1 мм2 при температуре +20 С°.

    Удельное сопротивление обозначается буквой ρ («ро») греческого алфавита.

    Каждый материал, из которого изготовляется проводник, обладает определенным удельным сопротивлением. Например, удельное сопротивление меди равно 0,0175 Ом*мм2/м, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,0175 Ом.

    Ниже приводится таблица удельных сопротивлений материалов, наиболее часто применяемых в электротехнике.

    Удельные сопротивления материалов, наиболее часто применяемых в электротехнике

    Материал Удельное сопротивление,  Ом*мм2
     Серебро 0,016
     Медь 0,0175 
     Алюминий 0,0295 
     Железо 0,09-0,11
     Сталь 0,125-0,146
     Свинец 0,218-0,222
     Константан 0,4-0,51
     Манганин 0,4-0,52
     Никелин 0,43
     Вольфрам 0,503
     Нихром 1,02-1,12
     Фехраль 1,2
     Уголь 10-60

    Любопытно отметить, что например, нихромовый провод длиною 1 м обладает примерно таким же сопротивлением, как медный провод длиною около 63 м (при одинаковом сечении).

    Разберем теперь, как влияют размеры проводника, т. е. длина и поперечное сечение, на величину его сопротивления.

    Воспользуемся для этого схемой, изображенной на рис. 1. Включим между зажимами а и б для большей наглядности опыта проволоку из никелина. Заметив показание амперметра, отключим от зажима б проводник, которой соединяет прибор с минусом аккумулятора, и освободившимся концом проводника прикоснемся к никелиновой проволоке на некотором удалении от зажима а (рис. 2). Уменьшив таким образом длину проводника, включенного в цепь, нетрудно заметить по показанию амперметра, что ток в цепи увеличился.

     

    Рисунок 2. Опыт, показывающий зависимость электрического сопротивления от длины проводника

    Это говорит о том, что с уменьшением длины проводника сопротивление его уменьшается. Если же перемещать конец проводника по никелиновой проволоке вправо, т. е. к зажиму б, то, наблюдая за показаниями амперметра, можно сделать вывод, что с увеличением длины проводника сопротивление его увеличивается.

    Таким образом, сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление..

    Выясним теперь, как зависит сопротивление проводника от его поперечного сечения, т. е. от толщины.

    Подберем для этого два или три проводника из одного и того же материала (медь, железо или никелин), но различного поперечного сечения и включим их поочередно между зажимами а и б, как указано на рис. 1.

    Наблюдая каждый раз за показаниями амперметра, можно убедиться, что чем тоньше проводник, тем меньше ток в цепи, а следовательно, тем больше сопротивление проводника. И, наоборот, чем толще проводник, тем больше ток в цепи, а следовательно, тем меньше сопротивление проводника.

    Значит, сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

    Чтобы лучше уяснить эту зависимость, представьте себе две пары сообщающихся сосудов (рис. 3), причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая.

    Рисунок 3. Вода по толстой трубке перейдет быстрее, чем по тонкой

    Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой. Это значит, что толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

    Обобщая результаты произведенных нами опытов, можно сделать следующий общий вывод:

     электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь его поперечного сечения..

    Математически эта зависимость выражается следующей формулой:

     

    где R—сопротивление проводника в Ом;

    ρ — удельное сопротивление материала в Ом*мм2/м;

    l — длина проводника в м;

    S—площадь поперечного сечения проводника в мм2.

    Примечание. Площадь поперечного сечения круглого проводника вычисляется по формуле

    где π—постоянная величина, равная 3,14;

    d—диаметр проводника.

    Указанная выше зависимость дает возможность определить длину проводника или его сечение, если известны одна из этих величин и сопротивление проводника.

    Так, например, длина проводника определяется по формуле:

    Если же необходимо определить площадь поперечного сечения проводника, то формула принимает следующий вид:

    Решив это равенство относительно ρ, получим выражение для определения удельного сопротивления проводника:

    Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Определив по формуле удельное сопротивление проводника, можно найти  материал, обладающий таким удельным сопротивлением.  

    ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

    Похожие материалы:

    Добавить комментарий

    www.sxemotehnika.ru

    Что такое электрическое сопротивление? :: SYL.ru

    Физика полна понятий, которые сложно представить. Яркий пример этого — тема про электричество. Почти все встречающиеся там явления и термины сложно увидеть или представить.

    Что такое электрическое сопротивление? Откуда оно появляется? Почему возникает напряжение? И почему у тока есть сила? Вопросов бесконечное количество. Стоит разобраться во всем по порядку. И начать хорошо бы с сопротивления.

    Что происходит в проводнике, когда по нему идет ток?

    Бывают ситуации, когда материал, который обладает проводящей способностью, оказывается между двумя полюсами электрического поля: положительным и отрицательным. И тогда по нему идет электрический ток. Это проявляется в том, что свободные электроны начинают направленное движение. Поскольку они имеют отрицательный заряд, то их перемещение осуществляется в одну сторону - к плюсу. Интересно, что за направление электрического тока принято указывать другое - от плюса к минусу.

    Во время движения электроны ударяются об атомы вещества и передают им часть своей энергии. Этим объясняется то, что включенный в сеть проводник нагревается. А сами электроны замедляют свое движение. Но электрическое поле их снова ускоряет, поэтому они вновь устремляются к плюсу. Этот процесс происходит бесконечно, пока вокруг проводника имеется электрическое поле. Получается, что именно электроны испытывают сопротивление электрического тока. То есть чем больше препятствий они встречают, тем выше значение этой величины.

    Что такое электрическое сопротивление?

    Ему можно дать определение исходя из двух позиций. Первая связана с формулой для закона Ома. И звучит оно так: электрическое сопротивление — это физическая величина, которая определяется как отношение напряжения в проводнике к силе тока, протекающего в нем. Математическая запись приведена немного ниже.

    Вторая основывается на свойствах тела. Электрическое сопротивление проводника — это физическая величина, которая указывает на свойство тела преобразовывать энергию электричества в тепло. Оба этих утверждения верны. Только в школьном курсе чаще всего останавливаются на запоминании первого. Обозначается изучаемая величина буквой R. Единицы, в которых измеряется электрическое сопротивление, — Ом.

    По каким формулам его можно найти?

    Самая известная вытекает из закона Ома для участка цепи. Она объединяет электрический ток, напряжение, сопротивление. Выглядит так:


    Это формула под номером 1.
    Вторая учитывает то, что сопротивление зависит от параметров проводника:
    Эта формула имеет номер 2. В ней введены такие обозначения:
    ВеличинаБукваЕдиницы измерения
    Удельное сопротивление

    ρ

    Ом * м
    Длина проводникаlм
    Площадь, которую имеет поперечное сечениеSм2

    Удельное электрическое сопротивление — это физическая величина, которая равна сопротивлению материала длиной в 1 м и с площадью сечения в 1 м2.

    В таблице указана системная единица измерения удельного сопротивления. В реальных ситуациях не бывает такого, чтобы сечение измерялось в квадратных метрах. Почти всегда это квадратные миллиметры. Поэтому и удельное электрическое сопротивление удобнее брать в Ом * мм2 / м, а площадь подставлять в мм2.

    От чего и как зависит сопротивление?

    Во-первых, от вещества, из которого изготовлен проводник. Чем больше значение, которое имеет удельное электрическое сопротивление, тем хуже он будет проводить ток.

    Во-вторых, от длины провода. И здесь зависимость прямая. С увеличением длины сопротивление возрастает.

    В-третьих, от толщины. Чем толще проводник, тем меньше у него сопротивление.

    И наконец, в-четвертых, от температуры проводника. И здесь все не так однозначно. Если речь идет о металлах, то их электрическое сопротивление возрастает по мере нагревания. Исключение составляют некоторые специальные сплавы - их сопротивление практически не изменяется при нагревании. К ним относятся: константан, никелин и манганин. Когда же нагреваются жидкости, то их сопротивление уменьшается.

    Какие существуют резисторы?

    Это элемент, который включается в электрическую цепь. Он имеет вполне конкретное сопротивление. Именно это и используется в схемах. Принято разделять резисторы на два вида: постоянные и переменные. Их название связано с тем, можно ли изменить их сопротивление. Первые — постоянные — не позволяют каким-либо образом изменить номинальное значение сопротивления. Оно остается неизменным. Вторые — переменные — дают возможность производить регулировку, изменяя сопротивление в зависимости от потребностей конкретной схемы. В радиоэлектронике выделяют еще один вид — подстроечные. Их сопротивление изменяется только в тот момент, когда нужно настроить прибор, а потом остается постоянным.

    Как на схемах выглядит резистор?

    Прямоугольник с двумя выходами из узких его сторон. Это постоянный резистор. Если с третьей стороны к нему пририсована стрелка, то он уже переменный. К тому же на схемах еще подписывается и электрическое сопротивление резистора. Прямо внутри этого прямоугольника. Обычно просто цифры или с наименованием, если они очень большие.

    Для чего существует изоляция и зачем ее нужно измерять?

    Ее назначение - обеспечение электрической безопасности. Электрическое сопротивление изоляции является главной характеристикой. Оно не позволяет протекать через тело человека опасному значению тока.


    Выделяют четыре вида изоляции:
    • рабочая - ее назначение в том, чтобы обеспечить нормальное функционирование оборудования, поэтому она не всегда обладает достаточным уровнем защиты человека;
    • дополнительная является дополнением к первому виду и защищает людей;
    • двойная объединяет два первых вида изоляции;
    • усиленная, которая представляет собой усовершенствованный вид рабочей, она так же надежна, как дополнительная.

    Все устройства, которые имеют бытовое назначение, обязаны быть оборудованы двойной или усиленной изоляцией. Причем она должна обладать такими характеристиками, чтобы выдерживать любые механические, электрические и тепловые нагрузки.

    С течением времени изоляция стареет, и ее параметры ухудшаются. Этим объясняется то, что она требует регулярного профилактического осмотра. Его целью является устранение дефектов, а также измерение ее активного сопротивления. Для этого используется специальный прибор — мегаомметр.

    Примеры задач с решениями

    Условие 1: требуется определить электрическое сопротивление железной проволоки, которая имеет длину, равную 200 м, и площадь поперечного сечения в 5 мм².

    Решение. Нужно воспользоваться второй формулой. В ней неизвестно только удельное сопротивление. Но его можно посмотреть в таблице. Оно равно 0,098 Ом * мм / м2. Теперь нужно только подставить значения в формулу и сосчитать:

    R = 0,098 * 200 / 5 = 3,92 Ом.

    Ответ: сопротивление приблизительно равно 4 Ом.

    Условие 2: вычислить электрическое сопротивление проводника, изготовленного из алюминия, если его длина равна 2 км, а площадь сечения — 2,5 мм².

    Решение. Аналогично первой задаче, удельное сопротивление — 0,028 Ом * мм / м2. Чтобы получить верный ответ, потребуется перевести километры в метры: 2 км = 2000 м. Теперь можно считать:

    R = 0,028 * 2000 / 2,5 = 22,4 Ом.

    Ответ: R = 22,4 Ом.

    Условие 3: какой длины потребуется проволока, если ее сопротивление должно быть равно 30 Ом? Известна площадь ее сечения — 0,2 мм², и материал — никелин.

    Решение. Из той же формулы сопротивления можно получить выражение для длины проволоки:

    l = (R * S) / ρ. Известно все, кроме удельного сопротивления, которое нужно взять из таблицы: 0,45 Ом * мм2 / м. После подстановки и расчетов получается, что l = 13,33 м.

    Ответ: приблизительное значение длины равно 13 м.

    Условие 4: определить материал, из которого изготовлен резистор, если его длина равна 40 м, сопротивление — 16 Ом, сечение — 0,5 мм².


    Решение. Аналогично третьей задаче, выражается формула для удельного сопротивления:

    ρ = (R * S) / l. Подстановка значений и расчеты дают такой результат: ρ = 0,2 Ом * мм2 / м. Данное значение удельного сопротивления характерно для свинца.

    Ответ: свинец.

    www.syl.ru

    Удельное сопротивление и электропроводимость: формулы и объяснение

    В данной статье мы подробно разберем что такое удельное сопротивление и электропроводность, ясно опишем все формулы с помощью примеров задач, а так же дадим вам таблицу удельных сопротивлений некоторых проводников.

    Описание

    Закон Ома гласит, что, когда источник напряжения (V) подается между двумя точками в цепи, между ними будет протекать электрический ток (I), вызванный наличием разности потенциалов между этими двумя точками. Количество протекающего электрического тока ограничено величиной присутствующего сопротивления (R). Другими словами, напряжение стимулирует протекание тока (движение заряда), но это сопротивление препятствует этому.

    Мы всегда измеряем электрическое сопротивление в Омах, где Ом обозначается греческой буквой Омега, Ω. Так, например: 50 Ом, 10 кОм или 4,7 МОм и т.д. Проводники (например, провода и кабели) обычно имеют очень низкие значения сопротивления (менее 0,1 Ом), и, таким образом, мы можем пренебречь ими, как мы предполагаем в расчетах анализа цепи, что провода имеют ноль сопротивление. С другой стороны, изоляторы (например, пластиковые или воздушные), как правило, имеют очень высокие значения сопротивления (более 50 МОм), поэтому мы можем их игнорировать и для анализа цепи, поскольку их значение слишком велико.

    Но электрическое сопротивление между двумя точками может зависеть от многих факторов, таких как длина проводников, площадь их поперечного сечения, температура, а также фактический материал, из которого он изготовлен. Например, давайте предположим, что у нас есть кусок провода (проводник), который имеет длину L, площадь поперечного сечения A и сопротивление R, как показано ниже.

    Электрическое сопротивление R этого простого проводника является функцией его длины, L и площади поперечного сечения A. Закон Ома говорит нам, что для данного сопротивления R ток, протекающий через проводник, пропорционален приложенному напряжению, поскольку I = V / R. Теперь предположим, что мы соединяем два одинаковых проводника вместе в последовательной комбинации, как показано на рисунке.

    Здесь, соединив два проводника вместе в последовательной комбинации, то есть, к концу, мы фактически удвоили общую длину проводника (2L), в то время как площадь поперечного сечения A остается точно такой же, как и раньше. Но помимо удвоения длины, мы также удвоили общее сопротивление проводника, дав 2R как: 1R + 1R = 2R.

    Таким образом , мы можем видеть , что сопротивление проводника пропорционально его длину, то есть: R ∝ L. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально больше, чем оно длиннее.

    Отметим также, что, удваивая длину и, следовательно, сопротивление проводника (2R), чтобы заставить тот же ток I, чтобы течь через проводник, как и раньше, нам нужно удвоить (увеличить) приложенное напряжение I = (2 В) / (2R). Далее предположим, что мы соединяем два идентичных проводника вместе в параллельной комбинации, как показано.

    Здесь, соединяя два проводника в параллельную комбинацию, мы фактически удвоили общую площадь, дающую 2А, в то время как длина проводников L остается такой же, как у исходного одиночного проводника. Но помимо удвоения площади, путем параллельного соединения двух проводников мы фактически вдвое сократили общее сопротивление проводника, получив 1 / 2R, поскольку теперь каждая половина тока протекает через каждую ветвь проводника.

    Таким образом, сопротивление проводника обратно пропорционально его площади, то есть: R 1 / ∝ A или R ∝ 1 / A. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально меньше, чем больше его площадь поперечного сечения.

    Кроме того, удваивая площадь и, следовательно, вдвое увеличивая суммарное сопротивление ветви проводника (1 / 2R), для того же тока, чтобы I протекал через параллельную ветвь провода, как раньше, нам нужно только наполовину уменьшить приложенное напряжение I = (1 / 2V) / (1 / 2R).

    Надеемся, мы увидим, что сопротивление проводника прямо пропорционально длине (L) проводника, то есть: R ∝ L, и обратно пропорционально его площади (A), R ∝ 1 / A. Таким образом, мы можем правильно сказать, что сопротивление это:

    Пропорциональность сопротивления

    Но помимо длины и площади проводника, мы также ожидаем, что электрическое сопротивление проводника будет зависеть от фактического материала, из которого он изготовлен, потому что разные проводящие материалы, медь, серебро, алюминий и т.д., имеют разные физические и электрические свойства. Таким образом, мы можем преобразовать знак пропорциональности (∝) вышеприведенного уравнения в знак равенства, просто добавив «пропорциональную константу» в вышеприведенное уравнение, давая:

    Уравнение удельного электрического сопротивления

    Где: R — сопротивление в омах (Ω), L — длина в метрах (м), A — площадь в квадратных метрах (м 2 ), и где известна пропорциональная постоянная ρ (греческая буква «rho») — удельное сопротивление .

    Удельное электрическое сопротивление

    Удельное электрическое сопротивление конкретного материала проводника является мерой того, насколько сильно материал противостоит потоку электрического тока через него. Этот коэффициент удельного сопротивления, иногда называемый его «удельным электрическим сопротивлением», позволяет сравнивать сопротивление различных типов проводников друг с другом при определенной температуре в соответствии с их физическими свойствами без учета их длины или площади поперечного сечения. Таким образом, чем выше значение удельного сопротивления ρ, тем больше сопротивление, и наоборот.

    Например, удельное сопротивление хорошего проводника, такого как медь, составляет порядка 1,72 х 10 -8 Ом (или 17,2 нОм), тогда как удельное сопротивление плохого проводника (изолятора), такого как воздух, может быть значительно выше 1,5 х 10 14 или 150 трлн.

    Такие материалы, как медь и алюминий, известны низким уровнем удельного сопротивления, благодаря чему электрический ток легко проходит через них, что делает эти материалы идеальными для изготовления электрических проводов и кабелей. Серебро и золото имеют очень низкие значения удельного сопротивления, но по понятным причинам дороже делать из них электрические провода.

    Тогда факторы, которые влияют на сопротивление (R) проводника в омах, могут быть перечислены как:

    • Удельное сопротивление (ρ) материала, из которого сделан проводник.
    • Общая длина (L) проводника.
    • Площадь поперечного сечения (А) проводника.
    • Температура проводника.

    Пример удельного сопротивления № 1

    Рассчитайте общее сопротивление постоянному току 100-метрового рулона медного провода 2,5 мм 2, если удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8  Ом метр.

    Приведенные данные: удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 , длина катушки L = 100 м, площадь поперечного сечения проводника составляет 2,5 мм 2, что дает площадь: A = 2,5 x 10 -6 м 2 .

    Ответ: 688 МОм или 0,688 Ом.

    Удельное электрическое сопротивление материала

    Ранее мы говорили, что удельное сопротивление — это электрическое сопротивление на единицу длины и на единицу площади поперечного сечения проводника, таким образом, показывая, что удельное сопротивление ρ имеет размеры в Ом-метрах или Ом · м, как это обычно пишется. Таким образом, для конкретного материала при определенной температуре его удельное электрическое сопротивление определяется как.

    Электрическая проводимость

    Хотя как электрическое сопротивление (R), так и удельное сопротивление ρ, являются функцией физической природы используемого материала, а также его физической формы и размера, выраженных его длиной (L) и площадью его сечения ( А), Проводимость или удельная проводимость относится к легкости, с которой электрический ток проходит через материал.

    Проводимость (G) является обратной величиной сопротивления (1 / R) с единицей проводимости, являющейся сименсом (S), и ей дается перевернутый символ омов mho, ℧. Таким образом, когда проводник имеет проводимость 1 сименс (1S), он имеет сопротивление 1 Ом (1 Ом). Таким образом, если его сопротивление удваивается, проводимость уменьшается вдвое, и наоборот, как: Сименс = 1 / Ом, или Ом = 1 / Ом.

    В то время как сопротивление проводников дает степень сопротивления потоку электрического тока, проводимость проводника указывает на легкость, с которой он пропускает электрический ток. Таким образом, металлы, такие как медь, алюминий или серебро, имеют очень большие значения проводимости, что означает, что они являются хорошими проводниками.

    Проводимость, σ (греческая буква сигма), является обратной величиной удельного сопротивления. Это 1 / ρ и измеряется в сименах на метр (S / m). Поскольку электропроводность σ = 1 / ρ, предыдущее выражение для электрического сопротивления R можно переписать в виде:

    Электрическое сопротивление как функция проводимости

    Тогда мы можем сказать, что проводимость — это эффективность, посредством которой проводник пропускает электрический ток или сигнал без потери сопротивления. Поэтому материал или проводник, который имеет высокую проводимость, будет иметь низкое удельное сопротивление, и наоборот, поскольку 1 сименс (S) равен 1 Ом -1 . Таким образом, медь, которая является хорошим проводником электрического тока, имеет проводимость 58,14 x 10 6 Симен на метр.

    Пример удельного сопротивления №2

    Кабель длиной 20 метров имеет площадь поперечного сечения 1 мм 2 и сопротивление 5 Ом. Рассчитать проводимость кабеля.

    Приведенные данные: сопротивление постоянному току, R = 5 Ом, длина кабеля, L = 20 м, а площадь поперечного сечения проводника составляет 1 мм 2, что дает площадь: A = 1 x 10 -6 м 2 .

    Ответ: 4 мега-симена на метр длины.

    Таблица удельных сопротивлений проводников

    ПроводникУдельное сопротивление
    ρ

    Температурный коэффициент α
    Алюминий0,0284,2
    Бронза0,095 — 0,1
    Висмут1,2
    Вольфрам0,055
    Железо0,16
    Золото0,0234
    Иридий0,0474
    Константан0,50,05
    Латунь0,025 — 0,1080,1-0,4
    Магний0,0453,9
    Манганин0,43 — 0,510,01
    Медь0,01754,3
    Молибден0,059
    Нейзильбер0,20,25
    Натрий0,047
    Никелин0,420,1
    Никель0,0876,5
    Нихром1,05 — 1,40,1
    Олово0,124,4
    Платина0.1073,9
    Ртуть0,941,0
    Свинец0,223,7
    Серебро0,0154,1
    Сталь0,103 — 0,1371-4
    Титан0,6
    Фехраль1,15 — 1,350,1
    Хромаль1,3 — 1,5
    Цинк0,0544,2
    Чугун0,5-1,01,0

    Где: удельное сопротивление ρ измеряется в Ом*мм2 и температурный коэффициент электрического сопротивления металлов α измеряется в 10 -3*C-1(или K -1) .

    Краткое описание удельного сопротивления

    Мы поговорили в этой статье об удельном сопротивлении, что удельное сопротивление — это свойство материала или проводника, которое указывает, насколько хорошо материал проводит электрический ток. Мы также видели, что электрическое сопротивление (R) проводника зависит не только от материала, из которого сделан проводник, меди, серебра, алюминия и т.д., но также от его физических размеров.

    Сопротивление проводника прямо пропорционально его длине (L) как R ∝ L. Таким образом, удвоение его длины удвоит его сопротивление, в то время как последовательное удвоение проводника уменьшит вдвое его сопротивление. Также сопротивление проводника обратно пропорционально его площади поперечного сечения (A) как R ∝ 1 / A. Таким образом, удвоение его площади поперечного сечения уменьшило бы его сопротивление вдвое, тогда как удвоение его площади поперечного сечения удвоило бы его сопротивление.

    Мы также узнали, что удельное сопротивление (символ: ρ) проводника (или материала) связано с физическим свойством, из которого он изготовлен, и варьируется от материала к материалу. Например, удельное сопротивление меди обычно дается как: 1,72 х 10 -8 Ом · м. Удельное сопротивление конкретного материала измеряется в единицах Ом-метров (Ом), которое также зависит от температуры.

    В зависимости от значения удельного электрического сопротивления конкретного материала его можно классифицировать как «проводник», «изолятор» или «полупроводник». Обратите внимание, что полупроводники — это материалы, в которых их проводимость зависит от примесей, добавляемых в материал.

    Удельное сопротивление также важно в системах распределения электроэнергии, так как эффективность системы заземления для системы электропитания и распределения сильно зависит от удельного сопротивления земли и материала почвы в месте расположения системы.

    Проводимость — это имя, данное движению свободных электронов в форме электрического тока. Проводимость, σ является обратной величиной удельного сопротивления. Это 1 / ρ и имеет единицу измерения сименс на метр, S / m. Проводимость варьируется от нуля (для идеального изолятора) до бесконечности (для идеального проводника). Таким образом, сверхпроводник имеет бесконечную проводимость и практически нулевое омическое сопротивление.

    meanders.ru

    формула, проводников, от чего зависит и в чем измеряется

    Проведем простейший эксперимент. К автомобильному аккумулятору с помощью двух коротких проводов подключим лампочку из фары машины. Лампочка светится, и довольно ярко. А теперь ту же лампу подключим гораздо более длинными соединителями. Свет явно стал слабее. В чем дело? В сопротивлении проводов.

    Что такое электрическое сопротивление

    Существуют разные формулировки описания этого явления. Воспользуемся одной из них:

    «Электрическое сопротивление – физическая величина, которое характеризует свойство проводника противодействовать протеканию электротока».

    В нашем эксперименте провода, подводящие напряжение от аккумулятора к лампочке, оказывают электросопротивление току, протекающему через замкнутую цепь. От источника напряжения – аккумулятора, через провода – проводники, к нагрузке – лампе.

    Физическая сущность явления

    При подключении нагрузки к источнику напряжения соединителями, возникает замкнутая цепь, в которой появляется электрическое поле, вызывающее направленное движение электронов металла проводов от отрицательного полюса аккумулятора к положительному. Электроны доставляют электроэнергию от источника к нагрузке, и вызывают свечение спирали лампы. На пути своего движения электроны ударяются об ионы кристаллической решетки проводника, теряют часть энергии, которая идет на нагрев материала соединителей.

    Еще одно определение: «Причиной появления электросопротивления является результат взаимодействия потока электронов с молекулами (ионами) из которых состоит проводник».

    Важное замечание! Хотя электроны движутся от минуса источника напряжения к плюсу, направление электрического тока исторически считается противоположным — от плюса к минусу.

    Ток может протекать не только в твердых материалах, металлах, но и в жидких веществах, растворах солей, кислот, щелочей. Там основным переносчиком энергии являются ионы положительного и отрицательного заряда. Например, в автомобильных аккумуляторах ток проходит через водный раствор серной кислоты.

    Измерение сопротивления проводников

    За единицу электросопротивления в системе СИ принят 1 Ом. Если воспользоваться законом Ома для участка электрической цепи:

    I = U / R,

    где:

    • I – ток, протекающий в цепи;
    • U – напряжение;
    • R – электросопротивление.

    преобразуя формулу R = U / I, можно сказать, что 1 Ом равен отношению напряжения в 1 Вольт к току в 1 Ампер.

    R в данной формуле величина постоянная и не зависит от величин напряжения и тока.

    Для более крупных значений применяются единицы:

    • 1 кОм = 1 000 Ом;
    • 1 МОм = 1 000 000 Ом;
    • 1 ГОм = 1 000 000 000 Ом.

    От чего зависит электросопротивление проводника

    В первую очередь оно зависит от материала, из которого сделан соединитель. Разные металлы по-разному препятствуют прохождению электрического тока.  Известно, что серебро, медь, алюминий хорошо проводят электроток, а сталь значительно хуже.

    Существует понятие удельного электросопротивления материала, которое обозначили греческой буквой р (ро).  Эта характеристика зависит только от внутренних свойств вещества, из которого изготовлен проводник. Но его полное сопротивление будет зависть еще и от длины и площади сечения. Вот формула, которая связывает все эти величины:

    R = р * L /S,

    где:

    • р – удельное сопротивление материала;
    • L — длина ;
    • S – площадь поперечного сечения.

    Площадь сечения S в практической электротехнике принято считать в кв.мм., тогда размерность р выражается, как Ом*кв.мм/метр.

    Вывод: для уменьшения электросопротивления, а значит и потерь в электроцепи, материал должен иметь минимальное удельное сопротивление, а сам проводник быть, как можно короче и иметь достаточно большое поперечное сечение.

    Показатели для твердотельных материалов

    Материал Удельное электросопротивление (Ом*кв.мм/м) Материал Удельное электросопротивление (Ом*кв.мм/м)
    Серебро 0,016 Никелин (сплав) 0,4
    Медь 0,017 Манганин (сплав) 0,43
    Золото 0,024 Константан (сплав) 0,5
    Алюминий 0,028 Ртуть 0,98
    Вольфрам 0,055 Нихром (сплав) 1,1
    Сталь 0,1 Фехраль(сплав) 1,3
    Свинец 0,21 Графит 13

    Из таблицы видно, что для изготовления соединителей, на которых будет теряться минимальное количество электроэнергии, лучше всего подойдут серебро, медь и алюминий, а вот из фехрали и нихрома изготовят термоэлектронагреватели (ТЭНы).

    Следует отметить, что все эти значения справедливы для температуры 200 С. При повышении температуры удельное электросопротивление металлов растет, при понижении падает, исключение составляет Константан, его удельная характеристика меняется незначительно.

    При сильном понижении температуры, близком к абсолютному нулю, сопротивление металлов может стать нулевым, наступает явление сверхпроводимости. Объясняется это тем, что ионы кристаллической решетки «замерзают», перестают колебаться, и не оказывают электронам помех в их движении.

    Показатели для жидких проводников

    Удельные электросопротивления растворов солей, кислот и щелочей зависят не только от их химического состава, но и от концентрации раствора. Зависимость от температуры обратная, чем у металлов. При нагреве удельное сопротивление падает, при охлаждении растет. Жидкость может замерзнуть при низких температурах и перестать проводить ток.

    Наглядный пример – поведение автомобильных аккумуляторов в сильный мороз. Электролит — раствор серной кислоты, при значительных минусовых температурах (-20, -30С0) увеличивает внутреннее электросопротивление аккумулятора, и полноценная отдача тока стартеру становится невозможной.

    Электропроводимость

    В некоторых случаях удобнее пользоваться понятием проводимости электротока. Это характеристика измеряется в Сименсах (См):

    G = 1/ R,

    где:

    • G – проводимость;
    • R – сопротивление,
    • а 1 См = 1/ Ом.

    Пример из практики

    Получив некоторые сведения об электросопротивлении, стоит провести несложный расчет, и выяснить, как влияют характеристики соединителей на параметры электрических цепей.

    Вернемся к простейшей электрической схеме, состоящей из аккумулятора, лампочки и проводов:

    • Напряжение аккумулятора 12,5 В.
    • Лампа имеет мощность 21 Вт.
    • Соединители медные, длина 1 метр х 2 шт., сечение 1,5 кв.мм.

    Найдем электросопротивление проводов: R = р* L/S. Подставляем наши данные: R = 0,017*2/1,5 = 0,023 Ом.

    Найдем сопротивление лампы. Ее электрическая мощность 21 Вт, при подключении к источнику питания 12,5 В. ток в цепи будет равен:

    I = P/U,

    где:

    • I – искомый ток;
    • P – мощность лампы;
    • U – напряжение источника.

    Подставляем числа: I = 21/12,5 = 1,68 А.

    Сопротивление лампы находим по закону Ома для участка цепи. Если I = U/R, то R = U/I. Или: R = 12,5/1,68 = 7,44 Ом.

    В расчете мы пренебрегли сопротивлением проводов, оно более чем в 300 раз меньше электросопротивления нагрузки.

    Найдем потери мощности на проводах и сравним ее с полезной мощностью нагрузки. Нам известен ток в цепи, известны параметры соединителей, найдем мощность, теряющуюся на проводах:

    P = U*I,

    заменяем в формуле напряжение согласно закону Ома: U = I*R, подставляем в формулу мощности:

    P = I*R*I = I2 *R.

    После подстановки чисел: P = 1,682 *0,023 = 0,065 Вт.

    Результат отличный, соединители отнимают у нагрузки всего 0,3% мощности.

    Но если подключить лампу через длинные провода, (20 метров), да еще и тонкие, сечение 0,75 кв.мм., то картина изменится. Не повторяя здесь весь расчет, можно отметить, что при таких соединителях эффективная мощность лампы снизится почти на 11%, а потери энергии на проводниках составят уже 6%.

    Запомним правило — для уменьшения потерь в электрических сетях необходимо снижать электросопротивление проводов, применять медь или алюминий, по возможности сокращать длину и увеличивать сечения проводников.

    Что такое сопротивление: видео

    Читайте также:

    electroadvice.ru

    Электрическое сопротивление проводника » что это такое.

     

     

     

    Тема: что такое электрическое сопротивление проводника.

     

    В данной теме я постараюсь освежить Ваши знания (кто подзабыл) и раскрыть секретную информацию (для тех, кто вовсе не знал) об этом простом, основополагающим и повсеместно распространённом понятии. Как Вы знаете, в нашем мире на любое действие есть своё противодействие. К примеру, на движущуюся машину будет действовать сила трения (об воздух, о поверхность дороги, трение внутренних частей и т.д.), при нагревании, какого либо предмета на него обязательно будет влиять более низкая температура окружающей среды, которая после прекращения нагревания, вернёт предмету прежнюю температуру. В сфере электричества подобное обратное влияние (по отношению к протеканию электрического тока) будет оказывать электрическое сопротивление.

     

    Электрическое сопротивление проводника, это некоторая способность материалов (точнее, веществ из которых и сделан сам проводник) противодействовать движению заряженных частиц внутри этого проводника. Причём, следует заметить, что при этом противодействии происходит некоторое преобразование электрической энергии в иной её вид (в основном, электроэнергия преобразуется в тепло).

     

    Электрическое сопротивление имеет свою единицу измерения под названием «Ом». 1 Ом — это сопротивление, которое будет иметь столб ртути с высотой — 106,3 см; поперч. сеч. — 1 кв.мм. и температурой — 0 град. Сопротивление принято обозначать буквой — R или r. Название величин сопротивления: Ом, кОм (1 килоом = 1000 Ом), мОм (1 мегаом = 1000 000 Ом).

     

    Чтобы лучше понять суть сопротивления (как и из-за чего оно возникает) следует вспомнить школьные уроки химии и физики, на которых рассказывали о структуре веществ. Твёрдые вещества представляют собой множество атомов (молекул). Они крепко связаны между собой полями и образуют структуру в виде кристаллической решётки. Вокруг каждого атома (по его орбитам) вращаются электроны. Электроны, что расположены дальше всего от атома, способны отрываться и перелетать на соседние атомы. Такие электроны называются свободными и благодаря ним, материалы (проводники) могут проводить через себя электрический ток.

     

     

     

     

    При подключении внешнего постоянного источника электропитания (электрического поля) свободные электроны упорядочено начинают перемещаться с одного конца проводника в другой. Если бы при их перемещении им ничего не мешало, то и про проводник можно сказать, что он имеет нулевое сопротивление (сверхпроводимостью обладают некоторые материалы при сверхнизких температурах = -273 град.). При нормальных же температурах электрические проводники имеют ряд препятствий для прохода электронов, откуда и возникает это самое электрическое сопротивление проводника.

     

    Что порождает и влияет на электрическое сопротивление? Как ни странно, но, это сами атомы, так как они и мешают электронам на их пути. Электрону, что несётся на огромной скорости, постоянно приходится натыкаться на атомы, теряя при этом свою внутреннюю энергию, которая в свою очередь, превращается в тепло. Следовательно, чем длиннее путь (проводник), тем больше будет у него внутренее сопротивление. Чем больше сечение проводника, то наоборот, электрическое сопротивление его будет уменьшаться (большее электронов пройдёт через него).

     

    Поскольку у различных материалов (веществ) различные структуры кристаллических решеток, следовательно, и сопротивление у них будет тоже разное. Это ещё называется удельным сопротивлением материала. То есть, удельное сопротивление, это определённое значение электрического сопротивления, которое в точности соответствует определённому материалу (проводнику), при длине в 1 метр и поперечным сечением в 1 кв.мм. Удельное сопротивление обозначается буквой «p». Ниже приведена таблица удельного сопротивления проводников.

     

     

     

    Для расчёта электрического сопротивления определённой длины и сечения того или иного материала используют следующую формулу:

     

    R=p×L/S

    • R — электрическое сопротивление;
    • p — удельное сопротивление материала;
    • L — длина проводника;
    • S — поперечное сечение проводника.

     

    Следует (но не обязательно) учитывать, что значение температуры также влияет на общее электрическое сопротивление проводника. При нагревании проводника в нём происходит увеличение хаотического движения атомов вещества. Это в свою очередь затрудняет протекание электронов по этому проводнику, что и увеличивает общее сопротивление этого материала. При простом (особая точность не требуется) расчёте электрического сопротивления, обычно температура не берется в расчёт, так как её влияние незначительно. Приблизительное значение зависимости температуры на сопротивление: 0.4% на 1 град. На этом и завершу тему, электрическое сопротивление проводника.

     

    P.S. Несмотря на то, что медь и алюминий не самые лучшие проводники электрического тока (серебро лучше проводит электричество), их широкое применение обусловлено относильной дешевизной и большим количеством в природе.

    electrohobby.ru

    0 comments on “Электрическое сопротивление проводника – Электрическое сопротивление — Википедия

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *