Соединение обмоток трансформатора в зигзаг – Соединение обмоток трансформатора в треугольник, звезду и зигзаг

Соединение обмоток трансформатора в треугольник, звезду и зигзаг

Перед рассмотрением вопросов о группах соединений трансформаторов рассмотрим основные виды соединения обмоток силовых трансформаторов.

Соединение обмоток трансформатора в звезду

При соединении в звезду действуют следующие соотношения –

  • линейные токи равны фазным,
  • линейные напряжения больше фазных в √3 раз

Возможно множество вариантов соединения обмоток трансформатора в звезду, некоторые из них приведены на рисунке ниже. И, как говорится, не все из них одинаково полезны, а точнее, для разных случаев необходима разная схема соединений.

Следует отметить, что в звезду можно соединить как один трехфазный трансформатор, так и три однофазных. На рисунке обозначаются:

  • А, В, С – начала обмоток высшего напряжения
  • Х, Y, Z – окончания обмоток высшего напряжения
  • a, b, c – начала обмоток низкого напряжения
  • x, y, z – окончания обмоток низкого напряжения

Соединение обмоток трансформатора в треугольник

Соединение в треугольник так называется из-за внешнего сходства с треугольником (видно на рисунке).

При соединении в треугольник действуют следующие соотношения –

  • линейные токи больше фазных в √3 раз
  • линейные напряжения равны фазным

Три вторичные обмотки, при соединении в треугольник соединены последовательно, образуя тем самым замкнутую цепь. В этой цепи отсутствует ток, так-как ЭДС фаз сдвинуты на 120 градусов и их сумма в каждый момент времени равна нулю. Так же ток равен нулю при соблюдении тотчасно следующих условий – ЭДС имеют синусоидальную форму, обмотки имеют одинаковые числа витков.

Звезда и треугольник в вопросе о третьих гармониках трансформаторов

В трансформаторах схему треугольник используют кроме прочего для получения токов третьих гармоник, которые необходимы для создания синусоидальной ЭДС вторичных обмоток. Другими словами, для исключения третьей гармонической составляющей в магнитном потоке.

Чтобы ввести третьи гармоники при соединении в звезду - соединяют нейтраль звезды с нейтралью генератора, по этому пути и начинают пробегать третьи гармоники.

Соединение обмоток трансформатора в зигзаг

Соединение в зигзаг используется в случае, если на вторичных нагрузках неравномерная нагрузка. После соединения в зигзаг нагрузка распределяется более равномерно по фазам и магнитный поток трансформатора сохраняет равновесие, несмотря на неравномерную нагрузку.

Рассмотрим соединение в зигзаг-звезду трехфазного силового трансформатора. Схематично изображение приведено на рисунке.

Первичные обмотки соединяются в звезду. Далее разделяем каждую вторичную обмотку напополам. И далее соединяем, как показано на рисунке.

При соединении в зигзаг-звезду потребуется большее число витков, чем при простой звезде. Также при таком соединении возможно получение трех классов напряжения, например 380-220-127В.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

pomegerim.ru

Схема соединения "Зигзаг"

Дата публикации: .
Категория: Электротехника.

Соединение в зигзаг применяют, чтобы неравномерную нагрузку вторичных обмоток распределить более равномерно между фазами первичной сети и даже при неравномерной нагрузке сохранить магнитное равновесие.

Соединение в зигзаг однофазного трансформатора

рассмотрим на двух типичных примерах.

1. Трансформатор питает трехпроводную сеть, как показано на рисунке 1, а. Вторичная обмотка II разделена на четыре равные части 3, 4, 5 и 6. Последовательно соединены части обмотки: 3 на левом стержне и 6 – на правом стержне, 4 – на правом стержне и 5 – на левом стержне. Таким образом, каждая половина обмотки состоит из двух частей: одна из них – на левом, а другая – на правом стержне.

Рисунок 1. Примеры соединения в зигзаг однофазных трансформаторов.

Допустим самый неблагоприятный случай: нагружена только одна половина вторичной обмотки. Точками на рисунке 1, а показаны начала частей обмотки, стрелками – направления токов. Нетрудно видеть, что ток нагрузки в равной степени влияет на обе половины 1 и 2 первичной обмотки I. Действительно, четверть вторичной обмотки 5 действует на половину 1 первичной обмотки так же, как четверть обмотки 4 действует на половину обмотки 2. Поэтому магнитное равновесие почти не нарушается.

2. Трансформатор питает двухполупериодный выпрямитель по схеме с нулевым выводом. В этом случае вторичные обмотки трансформатора нужно соединить в зигзаг, но, чтобы понять, зачем нужно такое соединение, рассмотрим рисунок 1, б.

На нем показан однофазный трансформатор с двумя вторичными обмотками, между которыми выведена средняя (нулевая) точка 0. Она является отрицательным полюсом выпрямителя. В каждой вторичной обмотке за положительное направление принимается направление от нулевой точки к их наружным концам

a и b, что соответственно совпадает с проводящим направлением вентилей В1 и В2. Направление тока в положительный полупериод показано зелеными стрелками, в отрицательный – желтыми. Неблагоприятная особенность этой схемы состоит в том, что по вторичным обмоткам трансформатора проходит ток одного направления, то есть ток, содержащий не только переменную, но и постоянную составляющие. Постоянная составляющая насыщает магнитопровод, а насыщение, как объяснено в статье "Понятие о магнитном равновесии трансформатора", нарушает работу трансформатора, увеличивает намагничивающий ток и порождает высшие гармоники.

Можно, однако, так соединить обмотки трансформатора, что и постоянная, и переменная составляющие будут полностью компенсироваться. Такое соединение показано на рисунке 1, в. Рассматривая этот рисунок, нетрудно видеть, что первичная обмотка I трансформатора состоит из двух частей 1 и 2, расположенных на разных стержнях и соединенных параллельно. Вторичная обмотка II соединена в зигзаг. В положительный полупериод (зеленые стрелки) работает половина вторичной обмотки, причем части

4 (вторичная обмотка) и 2 (первичная обмотка), расположенные на правом стержне, взаимодействуют так же, как части 1 и 5 на левом стержне. В отрицательный полупериод (желтые стрелки) работает вторая половина вторичной обмотки: взаимодействия частей 1 и 3 на левом стержне и 2 и 6 на правом – одинаковы.

Соединение в зигзаг – звезду трехфазного трансформатора

Первичные обмотки трансформаторов соединены в звезду, вторичные в зигзаг – звезду (рисунок 2, а). Для этого вторичная обмотка каждой фазы составляется из двух половин: одна половина расположена на одном стержне, другая – на другом. Конец, например x1, соединен с концом (а не с началом!) y2 и так далее. Начала a2, b2 и c2 соединены и образуют нейтраль. К началам a1, b1, c1 присоединяют линейные провода вторичной сети. При таком соединении электродвижущие силы (э. д. с.) обмоток, расположенных на разных стержнях, сдвинуты на 120°; векторная диаграмма э. д. с. вторичной обмотки приведена на рисунке 2,

б.

Эта векторная диаграмма построена следующим способом. Предположим, что соединены концы x1, y1, c1 и получена диаграмма (рисунок 2, в). Затем предположено, что соединены начала a2, b2, c2. Это соответствует диаграмме на рисунке 2, г, повернутой относительно диаграммы на рисунке 2, в на 180°. Наконец, в соответствии со схемой на рисунке 2, а произведено геометрическое сложение векторов, которые изображены на рисунках 1, в и г.

Рисунок 2. Соединение в зигзаг – звезду трехфазного трансформатора.
Буквами   a1, b1, c1, a2, b2, c2   обозначены   начала   вторичных   обмоток, буквами x1, y1, z1, x2, y2, z

2 – их  концы Электродвижущие  силы вторичных  обмоток: e1, e2, e3, e’’1, e’’2, e’’3, линейные напряжения E1, E2, E3

Соединение в зигзаг – звезду дороже соединения в звезду, так как требует большего числа витков. Действительно, при последовательном соединении двух половин обмотки, расположенной на одном стержне, их э. д. с. складываются алгебраически, то есть в данном случае удваиваются. При соединении обмоток, расположенных на разных стержнях, э. д. с. складываются геометрически под углом 120° и дают э. д. с, √3 раз больше одной из них. Следовательно, чтобы получить э. д. с. той же величины при соединении в зигзаг – звезду, нужно на 15% больше витков, чем при соединении в звезду, так как 2 / 1,73 = 1,15.

При соединении в зигзаг – звезду можно получить три напряжения, например 400, 230 и 133 В. Указанные величины относятся к холостому ходу. Под нагрузкой у потребителей напряжения будут ниже, приближаясь к номинальным напряжениям сети 380, 220 и 127 В.

Источник: Каминский Е. А., "Звезда, треугольник, зигзаг" – 4-е издание, переработанное – Москва: Энергия, 1977 – 104с.

www.electromechanics.ru

Схема соединения обмоток трансформатора зигзаг

Соединение обмоток по схеме зигзага

Иногда в специальных трансформаторах применяется также соединение обмоток по схеме зигзага (обозначение Z) ( рис. 14.33 ). В этой схеме обмотка каждой фазы состоит из двух равных частей, размешенных на разных стержнях и соединенных между собой последовательно и встречно.

Рис. 14.33 . Схема соединений обмотки в зигзаг

Рис. 14.34 . Векторная диаграмма напряжений при соединении обмотки по схеме зигзага

Если предположить, что при соединении в звезду обмотка каждой фазы состоит из двух половин, расположенных на одном стержне, то фазное напряжение в этом случае будет в 2 раза больше напряжения каждой половины и, следовательно, в 2/√3 раз больше, чем при соединении по схеме зигзага. Поэтому при одних и тех же значениях фазного и линейного напряжений расход обмоточного провода для схемы зигзаг в 2/√3 раз больше, чем при соединении в звезду.

Соединение обмоток электродвигателя играет важнейшую роль в его правильном функционировании. Подключая **Силовой трансформатор** к системе его запуска, необходимо, в первую очередь, уметь правильно соединить все его обмотки.

Соединение обмоток электродвигателя играет важнейшую роль в его правильном функционировании. Подключая **Силовой трансформатор** к системе его запуска, необходимо, в первую очередь, уметь правильно соединить все его обмотки. Дело в следующем: каждый асинхронный двигатель имеет своё индивидуальное номинальное напряжение питания. Исходя из этого выбирается и соответствующая обмотка, которая является индивидуальной к каждому двигателю.

Основные виды обмоток

Существует довольно большое количество видов обмоток. **Схема соединений распределительного трансформатора** однофазного вида предполагает применение таких видов:

1) треугольник (Δ-соединение) — три фазные обмотки соединяются последовательно в кольцо или треугольник;

2) звезда (Y-соединение) — это соединение в виде звезды, которая соединяет все три обмотки их концами с одной стороны в одной нейтральной точке, называемой звездой;

3) зигзаг — (Z-соединение) — это соединение зигзагом.

Среди многих других факторов, на выбор соединений влияет мощность, которой обладает **Распределительный трансформатор**. Например, для наиболее высоких напряжений часто выбирается Y-соединение. Он лучше всего защищает прибор от перенапряжения, а также напрямую заземляет его. При соединении треугольником и звездой чаще всего комбинируют оба соединения, каждое из которых присутствует на трансформаторе по его разным сторонам.

Особенно это актуально в случаях, когда одну сторону планируют для зарядки. Обычно эту сторону и обматывают звездой. А треугольник в таких случаях даёт баланс между ампером и витком для оптимального уровня полного сопротивления нулевой последовательности. Обмотка треугольником не пропускает ток в сердечник.

Выбор обмоток с учётом напряжения оборудования

Все асинхронные электродвигатели обладают своим номинальным напряжением питания. Поэтому соединения **Звезда**, **Треугольник**, или же их комбинации **Звезда — Звезда**, **Звезда — Треугольник** — выполняют не только соединительную функцию, но определяют напряжение питания.

Известно, что напряжение обмоток, которые соединяются в звезду, в три раза больше, чем напряжение обмоток, которые соединяют в треугольник. Следовательно, применять каждый вид нужно только там, где это оптимально. Тогда правильные соединения обмоток смогут гарантировать правильную работу двигателя в течение многих лет, препятствовать его перегреву, изнашиванию.

Например, если электродвигатель нужно подключить в сеть с напряжением 380 В, с его номиналомUном = 220/380 В все обмотки соединяются в звезду. Если номинал двигателя Uном равняется 380/660 В, то обмотки заключаются в треугольник.

Выведение обмоток и их маркировка

Надо отметить, что **Группа соединений силового трансформатора** типов Δ и Y — это важнейшая составляющая не только работы всего двигателя. Важнейшую роль здесь играет и обеспечение оптимального взаимодействия трансформатора с другим оборудованием. Правильное выведение свободных обмоток — залог такого успешного "сотрудничества". Выводы обмоток выводятся на клеммник в таком виде, чтобы соединение схемы было предельно простым. Соединение концов в звезду, предполагает, что при этом перемычки устанавливаются по горизонтали в один ряд, их соединяют три клеммы. Соединяя обмотки в треугольник, следует перемычки устанавливать вертикально, соединяя три пары контактов.

Неопытные мастера могут столкнуться с проблемой маркировки обмоток. Она обязательна, так как при выводе концы могут перепутаться. Особенно это актуально при схемах **Звезда** и **Треугольник**. Например, при обмотке стартора делается 3 обмотки, каждая имеет 2 вывода, всего 6.

Сначала нужно определить при помощи омметра выводы для каждой катушки. Ставим обозначения: для первой катушки это С1-С4, для второй С2-С5, для третьей С3-С6. Так, С1, С2, С3 — это начала катушек, всё остальное — концы. Далее соединяем концы второй и третьей катушек с их началами, подводим переменный ток 220 В.

Измеряем наличие напряжения в 3-й катушке. Если его нет, катушки соединены встречно, а значит, С1-С4, С2-С5 подписаны верно. Если напряжение обнаружено, меняем маркировку 1-й или 2-й катушки. Проверяем, если третья обмотка обесточена, 1 и 2 являются правильными. Маркировка 3 катушки определяется так: конец С6 соединяем с любым другим — С4, С5. Если на не подключенной обмотке есть напряжение, меняем надпись на 3-й обмотке. Если напряжения нет, то всё правильно.

Для того, чтобы правильно сделать соединение обмоток, необходимо как можно тщательнее изучить все нюансы по данной тематике. На самом деле, в этом нет ничего сложного. Если же вы испытываете трудности в том, чтобы со всем этим самостоятельно разобраться, лучше доверить такую работу опытным специалистам, ведь с электричеством не шутят.

Построим зависимость КПД от нагрузки. При β= 0 полезная мощность и КПД равны нулю. С увеличением отдаваемой мощности КПД увеличивается, так как уменьшается удельное значение магнитных потерь в стали, имеющих постоянное значение. При некотором значении (βопткривая КПД достигает максимума, после чего начинает уменьшаться с увеличением нагрузки. Причиной этого является сильное увеличение электрических потерь в обмотках, возрастающих пропорционально квадрату тока.

45. При каком условии КПД трансформатора максимален?

Максимальное КПД в трансформаторах большой мощности достигает весьма высоких пределов (0,98. 0,99).

βопт, при котором КПД имеет максимальное значение, можно определить, взяв первую производную/ по формуле и приравняв ее нулю. КПДимеет максимум когда электрические потери в обмотках равны магнитным потерям в стали.

46. Оптимальный коэффициент нагрузки, при котором КПД трансформатора максимален. Формула.

47. Какие схемы соединения обмоток применяются в 3-х фазных трансформаторах?

Трехфазные трансформаторы могут быть соединены по схемам «звезда», «звезда с выведенной нулевой точкой», «треугольник» или «зигзаг с выведенной нулевой точкой».

48. В чем особенность соединения «зигзаг»?

Особенностью схемы "зигзаг" является то, что каждую фазу обмотки разделяют на две равные части (полуфазы), которые располагают на разных стержнях магнитопровода и соединяют между собой последовательно и встречно. ЭДС фазы обмотки, соединенной в "зигзаг", равна геометрической разности ЭДС полуфаз, которые сдвинуты на 120 º . Поэтому для достижения равенства фазных ЭДС обмотки, соединенной по схеме "звезда", и обмотки, соединенной по схеме "зигзаг", число витков последней должно быть увеличено в 2/(3) 1/2

1,15 раза. Это является недостатком схемы "зигзаг", так как при таком соединении увеличивается расход обмоточного провода.

49. В каких трансформаторах применяется соединение обмоток «зигзаг»?

Первичная и вторичная обмотки трехфазных трансформаторов могут быть соединены по схемам «звезда», «звезда с выведенной нулевой точкой», «треугольник» или «зигзаг с выведенной нулевой точкой».

Схема соединения зигзаг

Каждая фаза состоит из 2ух одинаковых катушек, размещенных на разных стержнях и соединенных между собой встречно так, чтобы векторы индуцируемых в них ЭДС вычитались.

50. Группа соединения трансформатора. Определение.

Из лекций — ГРУППЫ СОЕДИНЕНИЙ ОБМОТОК ТРАНСФОРМАТОРОВ

Трансформаторы делят на группы в зависимости от сдвига по фазе между линейными напряжениями, измеренными на одноименных зажимах.

Однофазные трансформаторы. В них напряжения первич­ной и вторичной обмоток могут совпадать по фазе или быть сдвинутыми на 180 о

Группы соединений обозна­чают целыми числами от 0 до 11. Номер группы определяют величиной угла, на который вектор линейного напряжения обмотки НН от­стает от вектора линей­ного напряжения обмотки ВН. Для определения номера группы этот угол следует разделить на 30°.

Для однофазных трансформаторов возможны только две группы соединений: нулевая и шестая.

В за­висимости от схемы соединения обмоток (У и Д) и порядка соединения их начал и концов получаются различные углы сдвига фаз между линейными напряжениями.

При соединении обмотки НН по схеме Zн, а обмотки ВН по схеме У фазные напряжения обмотки НН сдвинуты относительно соответствующих фазных напряжений обмотки ВН на угол 330°, т. е. при таком соединении имеем одиннадцатую группу. Это объясняется тем, что между векторами линейных напряжений имеется такой же угол.

Из инета — Определение группы соединения трехфазных трансформаторов

Группа соединения трансформатора характеризует сдвиг по фазе между векторами линейных напряжений первичной и вторичной обмоток. Группу соединения принято выражать числом, полученным от деления на 30 угла (в градусах), на который отстает вектор вторичного напряжения от соответствующего вектора первичного напряжения.

mytooling.ru

Области применения разных схем соединения обмоток

СИЛОВЫЕ ТРАНСФОРМАТОРЫ 10(6)/0,4 КВ

ОБЛАСТИ ПРИМЕНЕНИЯ РАЗНЫХ СХЕМ СОЕДИНЕНИЯ ОБМОТОК

Отсутствие у изготовителей и заказчиков четкого представления о принципиальных отличиях свойств силовых трансформаторов малой мощности с разными схемами соединения обмоток приводит к ошибкам в их применении. Причем неправильный выбор схемы соединения трансформаторных обмоток не только ухудшает технические показатели электроустановок и снижает качество электроэнергии, но и приводит к серьезным авариям.
Об этом напоминают нижегородские проектировщики Алевтина Ивановна Федоровская и Владимир Семенович Фишман, которые в своем материале акцентируют внимание на разнице в реакции трансформаторов на несимметричные токи, содержащие составляющую нулевой последовательности.

СХЕМЫ СОЕДИНЕНИЯ ОБМОТОК И СВОЙСТВА ТРАНСФОРМАТОРОВ

В соответствии с ГОСТ 11677-85 [1] силовые трансформаторы 10(6)/0,4 кВ мощностью от 25 до 250 кВА могут изготавливаться со следующими схемами соединения обмоток:

«звезда/звезда» – Y/Yн;

«треугольник–звезда» – Д/Yн;

«звезда–зигзаг» – Y/Zн.

Принципиальное отличие технических характеристик трансформаторов с различными схемами соединений обмоток заключается в разной реакции на несимметричные токи, содержащие составляющую нулевой последовательности. Это прежде всего однофазные сквозные короткие замыкания, а также рабочие режимы с неравномерной загрузкой фаз. 
Как известно, силовые трансформаторы 6(10)/0,4 кВ имеют трехстержневой стальной сердечник, на каждом стержне которого располагаются первичная и вторичная обмотки соответствующей фазы – А, В и С. Магнитные потоки трех фаз в симметричных режимах работы циркулируют в стальном сердечнике трансформатора и за его пределы не выходят. 
Что происходит при нарушении симметрии с преобладанием нагрузки одной из фаз на стороне 0,4 кВ? Такие режимы работы исследуются с использованием теории симметричных составляющих [2]. Согласно этой теории любой несимметричный режим работы трехфазной сети представляется в виде геометрической суммы трех симметричных составляющих тока и напряжения: это составляющие прямой, обратной и нулевой последовательностей.
Рассмотрим режим максимальной однофазной несимметрии – режим однофазного короткого замыкания (ОКЗ) на стороне 0,4 кВ трансформатора со схемой соединения обмоток Д/Yн. 
Картина токов симметричных составляющих в обмотках в этом режиме представлена на рис. 1. В неповрежденных фазах на стороне 0,4 кВ геометрическая сумма трех симметричных составляющих тока равна нулю (рабочей нагрузкой фаз пренебрегаем), а в поврежденной фазе эта сумма максимальна и равна току ОКЗ. Его величина определяется известной формулой:

 

где Uл – линейное напряжение;
R1, R0, X1, Х0 – соответственно активные и реактивные сопротивления прямой и нулевой последовательности.

СОПРОТИВЛЕНИЯ ПРЯМОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Сопротивления прямой последовательности R1 и X1 трансформаторов с разными схемами соединения обмоток определяются одними и теми же формулами и отличаются незначительно:

Заглянув в каталоги, нетрудно убедиться, что входящие в эти формулы известные величины Ркз и Uк от схем соединения обмоток трансформатора практически не зависят, а следовательно, от них не зависят и сопротивления прямой последовательности. 
В отличие от этих сопротивлений, сопротивления нулевой последовательности трансформаторов с разными схемами соединения обмоток отличаются принципиально.

СОПРОТИВЛЕНИЯ НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Рассмотрим картину векторов токов и магнитных потоков в трансформаторе со схемой соединения обмоток Д/Yн (рис. 2).
В таких трансформаторах токи прямой, обратной и нулевой последовательностей протекают как в первичной, так и во вторичной обмотках. При этом токи нулевой последовательности в первичной обмотке замыкаются внутри нее и в сеть не выходят. Создаваемые токами нулевой последовательности первичных и вторичных обмоток намагничивающие силы (ампер-витки) направлены встречно и почти полностью компенсируют друг друга, что обуславливает небольшую величину реактивных сопротивлений трансформатора. При этом сопротивления прямой и нулевой последовательностей приблизительно равны: R1 = R0; Х1 = Х0.
В трансформаторах со схемой соединения обмоток Y/Zн в аналогичном режиме ОКЗ токи нулевой последовательности протекают лишь по вторичной обмотке трансформатора, однако магнитного потока нулевой последовательности они не создают, что объясняется особенностью схемы Zн – «зигзаг». 
Эта особенность состоит в том, что на каждом стержне трансформатора расположено по одной вторичной полуобмотке двух разных фаз (рис. 3). В режиме ОКЗ намагничивающие силы, создаваемые токами нулевой последовательности в этих полуобмотках, направлены встречно и друг друга взаимно компенсируют. При этом токи нулевой последовательности в первичной обмотке отсутствуют. В таких трансформаторах сопротивления нулевой последовательности оказываются меньше сопротивлений прямой последовательности: R0 < R1; Х0 < Х1.

Рис. 1. Токи симметричных составляющих в обмотках трансформатора в режиме однофазного короткого замыкания

IA21, IA22, IA20, IB21, IB22, IB20, IC21, IC22, IC20 – токи фаз А, В, С прямой, обратной и нулевой последовательностей вторичной обмотки;
IA11, IA12, IA10, IB11, IB12, IB10, IC11, IC12, IC10 – токи фаз А, В, С прямой, обратной и нулевой последовательностей первичной обмотки.

Рис. 2. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Д/Yн

Рис. 3. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Zн 

Как следует из формулы (1), это обеспечивает большую величину тока ОКЗ у трансформаторов со схемами Y/Zн по сравнению с трансформаторами со схемами Д/Yн.
Теперь обратимся к трансформаторам со схемой соединения обмоток Y/Yн. Как известно, в обмотках, соединенных в звезду без выведенной нулевой точки, токи нулевой последовательности протекать не могут. Поэтому в режиме ОКЗ токи этой последовательности протекают только во вторичной обмотке трансформатора.
Совпадающие по фазе магнитные потоки нулевой последовательности, создаваемые токами вторичной обмотки, выходят за пределы магнитного сердечника и замыкаются через металлический кожух трансформатора (рис. 4). Это определяет значительно большую величину сопротивлений нулевой последовательности таких трансформаторов: R0 >> R1; X0 >> X1.

Рис. 4. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Yн

Следует отметить, что в отличие от сопротивлений прямой последовательности трансформаторов, которые можно рассчитать, сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн расчету не поддаются. Их можно определить только экспериментально. Величина этих сопротивлений во многом зависит от конструкции кожуха трансформатора, от величины зазоров между сердечником и кожухом и т.п. 
Схема замера сопротивлений нулевой последовательности приведена в ГОСТ 3484.1-88 [3]. К сожалению, в этом документе указано, что такие замеры предприятия-производители проводят по просьбе заказчиков. Вероятно, в последние годы таких просьб от заказчиков не поступает, а изготовители эти замеры самостоятельно не производят, считая, что в них нет необходимости. В результате проектировщики при выполнении расчетов пользуются старыми справочными данными. Однако использовать устаревшую информацию надо чрезвычайно осторожно, ведь конструкции современных трансформаторов, в частности кожухов, а также материалы, из которых они изготовлены, существенно изменились.
Кроме того, имеющиеся на сегодня данные по сопротивлениям нулевой последовательности трансформаторов крайне скудны и противоречивы. Так, согласно замерам Минского трансформаторного завода, выполненным много лет назад, реактивные сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн превышают сопротивления прямой последовательности в среднем в 10 раз. В то же время в ГОСТ 3484.1-88 имеется фраза о том, что эти сопротивления могут отличаться на два порядка. И этим сегодня противоречия не исчерпываются[4].

ПОЧЕМУ НЕОБХОДИМО ЗНАТЬ РЕАЛЬНЫЕ ЗНАЧЕНИЯ СОПРОТИВЛЕНИЙ

Реальные значения сопротивлений нулевой последовательности знать необходимо, поскольку они определяют величину тока ОКЗ. Чем больше эти сопротивления, тем меньше ток ОКЗ, соответственно труднее осуществить защиту трансформатора. 
В нормальных режимах работы большие сопротивления нулевой последовательности при неравномерной загрузке фаз трансформатора на стороне 0,4 кВ приводят к ухудшению качества электроэнергии у потребителя. 
Так, если принять R1 = R0, X1 = X0, что характерно для трансформаторов со схемами соединения обмоток Д/Yн, то получим:

Таким образом, при этих условиях ток ОКЗ на выводах 0,4 кВ трансформатора будет равен току трехфазного КЗ.
Однако, если R0>>R1 и X0>>X1, что характерно для трансформаторов со схемами соединения обмоток Y/Yн, то величина тока ОКЗ оказывается значительно меньше тока трехфазного КЗ, то есть Iокз << I3фкз. Какие при этом могут возникнуть трудности с защитой, особенно если она выполнена со стороны обмотки ВН предохранителями 6(10) кВ, можно показать на конкретном примере. 
На рис. 5 изображена схема подключения трансформатора 100 кВА, 6/0,4 кВ питания собственных нужд (ТСН) ПС 110/35/6 кВ. На ПС с переменным оперативным током такие трансформаторы устанавливаются на ОРУ и подключаются к воздушному вводу, идущему от силового трансформатора к вводной ячейке ЗРУ-6(10) кВ. Защита трансформатора, включая кабель 0,4 кВ до щита 0,4 кВ, выполняется предохранителями 6 кВ. Токи КЗ в конце защищаемой предохранителями зоны – при вводе на щит 0,4 кВ приведены в табл. 1. Как из нее видно, минимальное значение тока КЗ через предохранители 6 кВ имеет место при однофазном замыкании на стороне 0,4 кВ.

Таблица 1. Токи короткого замыкания в конце защищаемой предохранителями зоны за трансформатором 100 кВА, 6/0,4 кВ, Д/Yн при вводе на щит 0,4 кВ

Рис. 5. Схема подключения трансформатора 100 кВА, 6/0,4 кВ для питания собственных нужд ПС 110/35/6 кВ

Согласно существующим рекомендациям по условиям отстройки от броска тока намагничивания трансформатора мощностью 100 кВА номинальный ток предохранителей принимается равным Iн.пр = (2 ÷ 3) Iн.тр. В данном случае Iн.пр  2 ·10 А  20. Принимаем Iн.пр = 20 А.

Минимальный отключаемый ток предохранителем типа ПКТ-6 кВ, 20 А согласно каталожным данным составляет Iмин.откл.пр = 240 А, что значительно больше токов КЗ, приведенных в табл. 1.
Таким образом, защита предохранителями типа ПКТ 6 кВ оказывается нечувствительной. Более того, при протекании тока КЗ ниже минимально отключаемого, предохранитель не только не защищает оборудование, но и разрушается сам, вызывая аварию. 
В качестве защитного аппарата можно рассмотреть возможность использования предохранителей зарубежных фирм, например марки Merlin Gerin. Номинальный ток предохранителя специалисты компании рекомендуют выбирать из условия Iпр. 0,1с  12 Iном.тр.Пользуясь времятоковой зависимостью, приведенной в [5], определяем, что этому условию удовлетворяет предохранитель Fusarc c номинальным током 20 А, минимальный ток отключения которого равен 55 А. Казалось бы, этот предохранитель надежно защищает электрооборудование, т.к. минимально отключаемый им ток меньше минимального тока КЗ: 62 А  55 А. Однако время отключения данным предохранителем тока КЗ, равного 62 А, составляет 7 с. При таком длительном времени необходимо учитывать эффект спада тока, вызванный увеличением активного сопротивления кабеля вследствие его нагрева [6]. В результате спада тока его значение приближается к минимальному току отключения предохранителя –55 А, что делает защиту ненадежной.
Улучшить надежность защиты можно путем применения силового трансформатора 6/0,4 кВ со схемой соединения обмоток Y/Zн. В этом случае минимальный ток короткого замыкания через предохранители увеличивается до 80 А, а время его отключения предохранителем сокращается до 0,6 с и защита становится достаточно надежной.
Если же в рассмотренном примере будет применен трансформатор со схемой соединения обмоток Y/Yн, то минимальный ток КЗ через предохранители составит лишь 22 А. Очевидно, что защитить электрооборудование предохранителями 6 кВ при таком токе невозможно. Недостатки трансформаторов со схемой соединения обмоток Y/Yн проявляются и в нормальных режимах работы при неравномерной загрузке фаз. Потери напряжения в более загруженной фазе могут резко возрасти по сравнению с менее за-груженными фазами, особенно при большой загрузке трансформатора и низком cos f нагрузки.
Однако означает ли всё вышесказанное, что трансформаторы со схемой соединения обмоток Y/Yн не должны изготавливаться вообще? Представляется, что это не так. Не всегда большая величина сопротивления нулевой последовательности трансформатора является недостатком. Например, при применении трансформаторов более 1000 кВА может возникнуть проблема устойчивости однофазной коммутационной аппаратуры 0,4 кВ к току ОКЗ. В этом случае большая величина сопротивления нулевой последовательности трансформатора со схемой Y/Yн поможет решить эту проблему.
Что же касается защиты таких трансформаторов, то она решается с помощью релейной защиты и выключателя 6(10) кВ, а с низкой стороны – с помощью вводного автомата.

ВЫВОДЫ

Для трансформаторов малой мощности (от 25 до 250 кВА), защищаемых предохранителями со стороны ВН, безусловное преимущество имеет схема соединения обмоток Y/Zн. Несколько меньший эффект дает схема Д/Yн. Схему Y/Yн для таких трансформаторов применять не следует.
Схема соединения обмоток трансформаторов Y/Yн может применяться в сравнительно редких случаях для более мощных трансформаторов при необходимости ограничения тока однофазного КЗ с целью повышения устойчивости коммутационной аппаратуры.
Предприятиям-изготовителям силовых трансформаторов следует в обязательном порядке производить замеры их сопротивлений нулевой последовательности.

ЛИТЕРАТУРА

1. ГОСТ 11677-85. Трансформаторы силовые. Общие технические условия.
2. Ульянов С.А. Короткие замыкания в электрических системах. – М.: Госэнергоиздат, 1952. – 280 с.
3. ГОСТ 3484.1-88 (СТ СЭВ 1070-78). Трансформаторы силовые. Методы электромагнитных испытаний.
4. Справочник по проектированию электроснабжения, линий электропередачи и сетей / Под ред. Большама Я.М., Круповича В.И., Самовера М.Л. и др. – М.: Энергия, 1975. – 696 с.
5. Каталог на предохранители Fusarc Merlin Gerin (стандарт DIN).
6. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.

По данным: http://www.news.elteh.ru/arh/2006/41/09.php

nomek.ru

Типы соединения трансформаторов. Схемы соединения обмоток трансформатора Звезда Треугольник Зигзаг. Что это такое

Соединение обмоток электродвигателя играет важнейшую роль в его правильном функционировании. Подключая **Силовой трансформатор** к системе его запуска, необходимо, в первую очередь, уметь правильно соединить все его обмотки.

Соединение обмоток электродвигателя играет важнейшую роль в его правильном функционировании. Подключая **Силовой трансформатор** к системе его запуска, необходимо, в первую очередь, уметь правильно соединить все его обмотки. Дело в следующем: каждый асинхронный двигатель имеет своё индивидуальное номинальное напряжение питания. Исходя из этого выбирается и соответствующая обмотка, которая является индивидуальной к каждому двигателю.

Основные виды обмоток

Существует довольно большое количество видов обмоток. **Схема соединений распределительного трансформатора** однофазного вида предполагает применение таких видов:

1) треугольник (Δ-соединение) - три фазные обмотки соединяются последовательно в кольцо или треугольник;

2) звезда (Y-соединение) - это соединение в виде звезды, которая соединяет все три обмотки их концами с одной стороны в одной нейтральной точке, называемой звездой;

3) зигзаг - (Z-соединение) - это соединение зигзагом.

Среди многих других факторов, на выбор соединений влияет мощность, которой обладает **Распределительный трансформатор**. Например, для наиболее высоких напряжений часто выбирается Y-соединение. Он лучше всего защищает прибор от перенапряжения, а также напрямую заземляет его. При соединении треугольником и звездой чаще всего комбинируют оба соединения, каждое из которых присутствует на трансформаторе по его разным сторонам.

Особенно это актуально в случаях, когда одну сторону планируют для зарядки. Обычно эту сторону и обматывают звездой. А треугольник в таких случаях даёт баланс между ампером и витком для оптимального уровня полного сопротивления нулевой последовательности. Обмотка треугольником не пропускает ток в сердечник.

Выбор обмоток с учётом напряжения оборудования

Все асинхронные электродвигатели обладают своим номинальным напряжением питания. Поэтому соединения **Звезда**, **Треугольник**, или же их комбинации **Звезда - Звезда**, **Звезда - Треугольник** - выполняют не только соединительную функцию, но определяют напряжение питания.

Известно, что напряжение обмоток, которые соединяются в звезду, в три раза больше, чем напряжение обмоток, которые соединяют в треугольник. Следовательно, применять каждый вид нужно только там, где это оптимально. Тогда правильные соединения обмоток смогут гарантировать правильную работу двигателя в течение многих лет, препятствовать его перегреву, изнашиванию.

Например, если электродвигатель нужно подключить в сеть с напряжением 380 В, с его номиналомUном = 220/380 В все обмотки соединяются в звезду. Если номинал двигателя Uном равняется 380/660 В, то обмотки заключаются в треугольник.

Выведение обмоток и их маркировка

Надо отметить, что **Группа соединений силового трансформатора** типов Δ и Y - это важнейшая составляющая не только работы всего двигателя. Важнейшую роль здесь играет и обеспечение оптимального взаимодействия трансформатора с другим оборудованием. Правильное выведение свободных обмоток - залог такого успешного "сотрудничества". Выводы обмоток выводятся на клеммник в таком виде, чтобы соединение схемы было предельно простым. Соединение концов в звезду, предполагает, что при этом перемычки устанавливаются по горизонтали в один ряд, их соединяют три клеммы. Соединяя обмотки в треугольник, следует перемычки устанавливать вертикально, соединяя три пары контактов.

Неопытные мастера могут столкнуться с проблемой маркировки обмоток. Она обязательна, так как при выводе концы могут перепутаться. Особенно это актуально при схемах **Звезда** и **Треугольник**. Например, при обмотке стартора делается 3 обмотки, каждая имеет 2 вывода, всего 6.

Сначала нужно определить при помощи омметра выводы для каждой катушки. Ставим обозначения: для первой катушки это С1-С4, для второй С2-С5, для третьей С3-С6. Так, С1, С2, С3 - это начала катушек, всё остальное - концы. Далее соединяем концы второй и третьей катушек с их началами, подводим переменный ток 220 В.

Измеряем наличие напряжения в 3-й катушке. Если его нет, катушки соединены встречно, а значит, С1-С4, С2-С5 подписаны верно. Если напряжение обнаружено, меняем маркировку 1-й или 2-й катушки. Проверяем, если третья обмотка обесточена, 1 и 2 являются правильными. Маркировка 3 катушки определяется так: конец С6 соединяем с любым другим - С4, С5. Если на не подключенной обмотке есть напряжение, меняем надпись на 3-й обмотке. Если напряжения нет, то всё правильно.

Для того, чтобы правильно сделать соединение обмоток, необходимо как можно тщательнее изучить все нюансы по данной тематике. На самом деле, в этом нет ничего сложного. Если же вы испытываете трудности в том, чтобы со всем этим самостоятельно разобраться, лучше доверить такую работу опытным специалистам, ведь с электричеством не шутят.

При соединении обмоток трехфазных трансформаторов как двухобмоточных, так и трехобмоточных применяют различные схемы соединения. Однако в силовых трансформаторах как повышающих, так и понижающих, главных образом применяются схемы соединения в звезду, треугольник и зигзаг-звезду. Для практических целей в энергосистемах не требуется большого количества схем соединений обмоток. Так, для мощных трансформаторов применяется одно соединение обмоток ВН и СН- в звезду с выведенной нейтралью (Y0), а для обмоток НН - в треугольник (А).
ГОСТ 12022-66 предусматривает для трансформаторов мощностью 25, 40, 63 и 100 кВА с ПБВ (с переключением ответвлений обмотки трансформатора без возбуждения - т. е. после отключения всех обмоток трансформатора от сети) и для трансформаторов мощностью 63, 100, 160 и 250 кВА с ПБВ и РПН (с регулированием напряжения путем переключения ответвлений обмотки трансформатора под нагрузкой при следу

gettarget.ru

В каких трансформаторах применяется соединение обмоток зигзаг. Какие бывают схемы соединения обмоток трансформатора

Содержание:

Электрическая энергия в промышленных масштабах не может передаваться в виде однофазного переменного тока. С этой целью успешно применяется , а для его передачи используются трехфазные трансформаторы. Одним из способов трансформации трехфазного тока служит применение трех однофазных трансформаторов.

Соединение первичных и вторичных обмоток в этих устройствах осуществляется в одну из трехфазных систем - звезду или треугольник. Именно по этому принципу происходит работа мощных однофазных трансформаторов, которыми оборудуются крупные электростанции. Их первичные обмотки соединяются с соответствующими фазами генераторов, а вторичные обмотки, соединенные звездой, подключаются к соответствующим фазам линий электропередачи.

Принцип действия трехфазного трансформатора

Как видно из приведенной схемы, вместо трех однофазных устройств может быть использован один трехфазный трансформатор. В состав его магнитопровода входят три стержня, которые замыкаются ярмами сверху и снизу. На каждый стержень наматывается первичная и вторичная обмотка, соединяемые затем звездой или треугольником. Каждый стержень с обмотками по своей сути является однофазным трансформатором. Одновременно, он выполняет функцию отдельной фазы трехфазного трансформатора.

Под действием тока первичной обмотки во всех стержнях происходит появление магнитного потока. Следует учитывать принадлежность каждой такой обмотки к одной из фаз, входящих в . Поэтому токи, протекающие по этим обмоткам, а также приложенные напряжения, относятся к трехфазным. Поэтому сформированные магнитные потоки тоже являются трехфазными.

Ранее считалось, что движение магнитного потока осуществляется по замкнутой траектории, то есть, проходя по стержню, он возвращается к его началу. В трехфазных трансформаторах такой обратный путь отсутствует, в нем просто нет необходимости, при условии одинаковой нагрузки фаз. Кроме того, отсутствует и необходимость нейтрального соединения в звезду.


Циркуляция каждого потока происходит лишь по собственному стержню. В конечном итоге все потоки сходятся в центральных частях верхнего и нижнего ярма. В этих точках получается геометрическое сложение этих потоков, сдвинутых между собой на величину угла 120 градусов. В результате, геометрическая сумма сложенных величин, окажется равной нулю. Следовательно, каждый магнитный поток проходит лишь по собственному стержню, обратного пути не имеет, а все три потока в сумме дают нулевое значение.

Движение потоков крайних фаз происходит не только по стержню. Оно захватывает половину каждого ярма. Поток в средней фазе будет проходить только по своему стержню. Поэтому значение токов холостого хода в фазах, расположенных по краям, всегда превышает аналогичное значение в средней фазе.

Как передается трехфазный ток

Первичным источником питания в большинстве случаев является электрическая сеть. Ее напряжение представлено в виде синусоиды с частотой 50 Гц. Однако в тех случаях, когда линии электропередачи обладают большой протяженностью, происходит излучение передаваемой энергии в окружающее пространство, что приводит к дополнительным . Поэтому в цепях электропитания высокой мощности применяется трехфазное напряжение.

Для того чтобы уменьшить излучение, сумма напряжений на всех трех

levevg.ru

Некоторые ошибки при соединениях в звезду, треугольник, зигзаг

Дата публикации: .
Категория: Электротехника.

Ошибки при соединении в треугольник

При соединениях иногда допускают ошибки, в результате которых вместо треугольника (рисунок 1, а) получается другое соединение (рисунок 1, в). Его причина – другое направление намотки одной из обмоток или, проще, ошибочное определение ее конца и начала. Пока треугольник еще разомкнут, то есть точки y и z еще не соединены, между ними получается двойное фазное напряжение 2U. Если их соединить, произойдет короткое замыкание.

Рисунок 1. Ошибки при соединениях обмоток трансформаторов в треугольник.

Чтобы избежать этой ошибки, поступают следующим образом. Соединяют два каких-либо конца разных обмоток и измеряют напряжение между свободными концами, принимая необходимые меры предосторожности, например, проводя испытания при значительно пониженном напряжении. Если концы выбраны правильно, то вольтметр V покажет фазное напряжение U (рисунок 1, б). Если же напряжение будет в 1,73 раза больше фазного 1,73U (рисунок 1, г), то у одной из обмоток нужно переменить концы. Затем к одному из свободных концов присоединяют один конец третьей обмотки и снова измеряют напряжение между свободными концами (рисунок 1, д). Оно должно быть равно нулю. Но если третья обмотка "вывернута" (рисунок 1, в), то вольтметр покажет удвоенное фазное напряжение 2U. Тогда у третьей обмотки нужно переменить концы.

Следует здесь же заметить, что при наличии третьих гармоник (смотрите статью "Понятие о магнитном равновесии трансформатора") вольтметр может показать некоторое (меньше, чем двойное фазное) напряжение. В этом случае надо соединить концы через сопротивление R и амперметр А (рисунок 1, е). Если напряжение, показываемое вольтметром, происходит от третьих гармоник, то отклонение стрелки амперметра невелико. Это объясняется тем, что для токов тройной частоты обмотки представляют большое сопротивление. Если же перепутано направление обмотки, амперметр покажет значительный уравнительный ток.

Ошибки при соединении в звезду

Переворачивание одной из обмоток при соединении в звезду вместо звезды (рисунок 2, а) дает "веер" ("елочку"), как показано на рисунке 2, б. Короткого замыкания при этом не будет, но напряжение, близкое к номинальному, сохранится только между фазами a и c. Между фазами a и b, b и c напряжение будет значительно понижено и равно примерно фазному напряжению. В сетях освещения "елочка" вместо звезды приведет к недокалу ламп.

Рисунок 2. Правильное (а) и неправильное (б) соединения вторичных обмоток трансформаторов в звезду.

В сетях, соединенных "елочкой" и питающих электродвигатели (а также при включении обмоток электродвигателя, соединенного "елочкой"), не только уменьшится мощность на валу (что может привести к остановке и сгоранию электродвигателя), но изменится направление его вращения. Почему? Потому что если при правильном соединении обмоток вращающееся магнитное поле имело направление a, b, c (смотрите стрелку на рисунке 2, а), то при соединении "елочкой" оно, а следовательно, и ротор электродвигателя меняют направление на обратное, а именно a, c, b, и, конечно, резко снижается вращающий момент из-за нарушения симметрии.

В трехфазных стержневых трансформаторах важно правильно соединить первичные обмотки, то есть соединить их так, чтобы в каждый данный момент поток в одном стержне был направлен вверх, а в двух других стержнях вниз (рисунок 3, а). Если же одну фазу "вывернуть" (неправильно определены ее конец и начало или намотка выполнена в другом направлении), то потоки ФA, ФB и ФC во всех стержнях будут иметь одинаковое направление (рисунок 3, б). Иными словами, поток одной фазы, направленный навстречу потокам других фаз, будет размагничивать их стержни, что приведет к увеличению намагничивающего тока.

Рисунок 3. Правильное (а) и неправильное (б) соединение в звезду первичных обмоток трехфазного стержневого трансформатора.

Ошибки при соединении в зигзаг

Все сказанное о соединениях в звезду еще в большей мере относится к соединению в зигзаг – звезду, так как приходится соединять значительно больше выводов. Результат неправильного определения конца и начала одной из обмоток (показано штриховой линией) иллюстрирует рисунок 4, б (сравните с векторной диаграммой на рисунке 4, а). Рисунок 4, в показывает, что в результате неправильного определения концов и начал трех обмоток получены √3 раз меньшие напряжения, чем нормальное. Кроме того, векторная диаграмма повернулась на 90°.

Рисунок 4. Соединение в зигзаг: правильное (а) и неправильные (б и в).

Источник: Каминский Е. А., "Звезда, треугольник, зигзаг" – 4-е издание, переработанное – Москва: Энергия, 1977 – 104с.

www.electromechanics.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о